| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::PlanePath::HilbertSpiral; |
|
20
|
1
|
|
|
1
|
|
1424
|
use 5.004; |
|
|
1
|
|
|
|
|
4
|
|
|
21
|
1
|
|
|
1
|
|
5
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
26
|
|
|
22
|
|
|
|
|
|
|
|
|
23
|
1
|
|
|
1
|
|
5
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
61
|
|
|
24
|
|
|
|
|
|
|
$VERSION = 129; |
|
25
|
1
|
|
|
1
|
|
749
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
34
|
|
|
26
|
1
|
|
|
1
|
|
502
|
use Math::PlanePath::Base::NSEW; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
42
|
|
|
27
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath::Base::NSEW', |
|
28
|
|
|
|
|
|
|
'Math::PlanePath'); |
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
31
|
1
|
|
|
|
|
47
|
'is_infinite', |
|
32
|
1
|
|
|
1
|
|
7
|
'round_nearest'; |
|
|
1
|
|
|
|
|
2
|
|
|
33
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
34
|
1
|
|
|
1
|
|
552
|
'digit_split_lowtohigh'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
60
|
|
|
35
|
|
|
|
|
|
|
|
|
36
|
1
|
|
|
1
|
|
668
|
use Math::PlanePath::BetaOmega 52; |
|
|
1
|
|
|
|
|
30
|
|
|
|
1
|
|
|
|
|
44
|
|
|
37
|
|
|
|
|
|
|
*_y_round_down_len_level = \&Math::PlanePath::BetaOmega::_y_round_down_len_level; |
|
38
|
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
40
|
|
|
|
|
|
|
#use Smart::Comments; |
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
|
|
43
|
1
|
|
|
1
|
|
7
|
use constant n_start => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
51
|
|
|
44
|
1
|
|
|
1
|
|
6
|
use constant xy_is_visited => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
42
|
|
|
45
|
1
|
|
|
1
|
|
5
|
use constant x_negative_at_n => 4; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
70
|
|
|
46
|
1
|
|
|
1
|
|
7
|
use constant y_negative_at_n => 8; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
1029
|
|
|
47
|
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
50
|
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
# generated by tools/hilbert-spiral-table.pl |
|
52
|
|
|
|
|
|
|
# |
|
53
|
|
|
|
|
|
|
my @next_state = (8,0,0,12, 12,4,4,8, 0,8,8,4, 4,12,12,0, |
|
54
|
|
|
|
|
|
|
20,0,0,12, 16,4,4,8); |
|
55
|
|
|
|
|
|
|
my @digit_to_x = (0,1,1,0, 1,0,0,1, 0,0,1,1, 1,1,0,0, |
|
56
|
|
|
|
|
|
|
0,1,1,0, 1,0,0,1); |
|
57
|
|
|
|
|
|
|
my @digit_to_y = (0,0,1,1, 1,1,0,0, 0,1,1,0, 1,0,0,1, |
|
58
|
|
|
|
|
|
|
0,0,1,1, 1,1,0,0); |
|
59
|
|
|
|
|
|
|
my @xy_to_digit = (0,3,1,2, 2,1,3,0, 0,1,3,2, 2,3,1,0, |
|
60
|
|
|
|
|
|
|
0,3,1,2, 2,1,3,0); |
|
61
|
|
|
|
|
|
|
my @min_digit = (0,0,1,0, 0,1,3,2, 2,undef,undef,undef, |
|
62
|
|
|
|
|
|
|
2,2,3,1, 0,0,1,0, 0,undef,undef,undef, |
|
63
|
|
|
|
|
|
|
0,0,3,0, 0,2,1,1, 2,undef,undef,undef, |
|
64
|
|
|
|
|
|
|
2,1,1,2, 0,0,3,0, 0,undef,undef,undef, |
|
65
|
|
|
|
|
|
|
0,0,1,0, 0,1,3,2, 2,undef,undef,undef, |
|
66
|
|
|
|
|
|
|
2,2,3,1, 0,0,1,0, 0); |
|
67
|
|
|
|
|
|
|
my @max_digit = (0,1,1,3, 3,2,3,3, 2,undef,undef,undef, |
|
68
|
|
|
|
|
|
|
2,3,3,2, 3,3,1,1, 0,undef,undef,undef, |
|
69
|
|
|
|
|
|
|
0,3,3,1, 3,3,1,2, 2,undef,undef,undef, |
|
70
|
|
|
|
|
|
|
2,2,1,3, 3,1,3,3, 0,undef,undef,undef, |
|
71
|
|
|
|
|
|
|
0,1,1,3, 3,2,3,3, 2,undef,undef,undef, |
|
72
|
|
|
|
|
|
|
2,3,3,2, 3,3,1,1, 0); |
|
73
|
|
|
|
|
|
|
# neg state 20 |
|
74
|
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
sub n_to_xy { |
|
76
|
2161
|
|
|
2161
|
1
|
22185
|
my ($self, $n) = @_; |
|
77
|
|
|
|
|
|
|
### HilbertSpiral n_to_xy(): $n |
|
78
|
|
|
|
|
|
|
### hex: sprintf "%#X", $n |
|
79
|
|
|
|
|
|
|
|
|
80
|
2161
|
50
|
|
|
|
4004
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
81
|
2161
|
50
|
|
|
|
4118
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
82
|
|
|
|
|
|
|
|
|
83
|
2161
|
|
|
|
|
4005
|
my $int = int($n); |
|
84
|
2161
|
|
|
|
|
2886
|
$n -= $int; |
|
85
|
|
|
|
|
|
|
|
|
86
|
2161
|
|
|
|
|
4119
|
my @digits = digit_split_lowtohigh($int,4); |
|
87
|
2161
|
|
|
|
|
4041
|
my $len = ($n*0 + 2) ** scalar(@digits); # inherit possible bigint 1 |
|
88
|
|
|
|
|
|
|
|
|
89
|
2161
|
100
|
|
|
|
4016
|
my $state = ($#digits & 1 ? 4 : 0); |
|
90
|
2161
|
|
|
|
|
2925
|
my $dir = $state + 2; # default if all $digit==3 |
|
91
|
|
|
|
|
|
|
### @digits |
|
92
|
|
|
|
|
|
|
|
|
93
|
2161
|
|
|
|
|
3068
|
my $x = my $y = 0; |
|
94
|
|
|
|
|
|
|
|
|
95
|
2161
|
|
|
|
|
4128
|
while (defined (my $digit = pop @digits)) { # high to low |
|
96
|
10106
|
|
|
|
|
13842
|
$len /= 2; |
|
97
|
10106
|
|
|
|
|
12596
|
$state += $digit; |
|
98
|
10106
|
100
|
|
|
|
15974
|
if ($digit != 3) { |
|
99
|
7454
|
|
|
|
|
9789
|
$dir = $state; # lowest non-3 digit |
|
100
|
|
|
|
|
|
|
} |
|
101
|
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
### at: "$x,$y len=$len" |
|
103
|
|
|
|
|
|
|
### $state |
|
104
|
|
|
|
|
|
|
### $dir |
|
105
|
|
|
|
|
|
|
### digit_to_x: $digit_to_x[$state] |
|
106
|
|
|
|
|
|
|
### digit_to_y: $digit_to_y[$state] |
|
107
|
|
|
|
|
|
|
### next_state: $next_state[$state] |
|
108
|
|
|
|
|
|
|
|
|
109
|
10106
|
|
|
|
|
13932
|
my $offset = scalar(@digits) & 1; |
|
110
|
10106
|
|
|
|
|
15203
|
$x += $len * ($digit_to_x[$state] - $offset); |
|
111
|
10106
|
|
|
|
|
13720
|
$y += $len * ($digit_to_y[$state] - $offset); |
|
112
|
10106
|
|
|
|
|
19456
|
$state = $next_state[$state]; |
|
113
|
|
|
|
|
|
|
} |
|
114
|
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
### frac: $n |
|
117
|
|
|
|
|
|
|
### $dir |
|
118
|
|
|
|
|
|
|
### dir dx: ($digit_to_x[$dir+1] - $digit_to_x[$dir]) |
|
119
|
|
|
|
|
|
|
### dir dy: ($digit_to_y[$dir+1] - $digit_to_y[$dir]) |
|
120
|
|
|
|
|
|
|
### x: $n * ($digit_to_x[$dir+1] - $digit_to_x[$dir]) + $x |
|
121
|
|
|
|
|
|
|
### y: $n * ($digit_to_y[$dir+1] - $digit_to_y[$dir]) + $y |
|
122
|
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
# with $n fractional part |
|
124
|
2161
|
|
|
|
|
7116
|
return ($n * ($digit_to_x[$dir+1] - $digit_to_x[$dir]) + $x, |
|
125
|
|
|
|
|
|
|
$n * ($digit_to_y[$dir+1] - $digit_to_y[$dir]) + $y); |
|
126
|
|
|
|
|
|
|
} |
|
127
|
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
sub xy_to_n { |
|
129
|
0
|
|
|
0
|
1
|
|
my ($self, $x, $y) = @_; |
|
130
|
|
|
|
|
|
|
### HilbertSpiral xy_to_n(): "$x, $y" |
|
131
|
|
|
|
|
|
|
|
|
132
|
0
|
|
|
|
|
|
$x = round_nearest ($x); |
|
133
|
0
|
|
|
|
|
|
$y = round_nearest ($y); |
|
134
|
|
|
|
|
|
|
|
|
135
|
0
|
|
|
|
|
|
my $n = ($x * 0 * $y); |
|
136
|
|
|
|
|
|
|
|
|
137
|
0
|
|
|
|
|
|
my ($len, $level) = _y_round_down_len_level ($x); |
|
138
|
|
|
|
|
|
|
{ |
|
139
|
0
|
|
|
|
|
|
my ($ylen, $ylevel) = _y_round_down_len_level ($y); |
|
|
0
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
### y len/level: "$ylen $ylevel" |
|
141
|
0
|
0
|
|
|
|
|
if ($ylevel > $level) { |
|
142
|
0
|
|
|
|
|
|
$level = $ylevel; |
|
143
|
0
|
|
|
|
|
|
$len = $ylen; |
|
144
|
|
|
|
|
|
|
} |
|
145
|
|
|
|
|
|
|
} |
|
146
|
0
|
0
|
|
|
|
|
if (is_infinite($len)) { |
|
147
|
0
|
|
|
|
|
|
return $len; |
|
148
|
|
|
|
|
|
|
} |
|
149
|
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
### $len |
|
151
|
|
|
|
|
|
|
### $level |
|
152
|
|
|
|
|
|
|
|
|
153
|
0
|
|
|
|
|
|
my $state; |
|
154
|
|
|
|
|
|
|
{ |
|
155
|
0
|
|
|
|
|
|
my $offset; |
|
|
0
|
|
|
|
|
|
|
|
156
|
0
|
0
|
|
|
|
|
if ($level & 1) { |
|
157
|
0
|
|
|
|
|
|
$state = 4; |
|
158
|
0
|
|
|
|
|
|
$offset = 4*$len; |
|
159
|
|
|
|
|
|
|
} else { |
|
160
|
0
|
|
|
|
|
|
$state = 0; |
|
161
|
0
|
|
|
|
|
|
$offset = 2*$len; |
|
162
|
|
|
|
|
|
|
} |
|
163
|
0
|
|
|
|
|
|
$offset -= 2; |
|
164
|
0
|
|
|
|
|
|
$offset /= 3; |
|
165
|
0
|
|
|
|
|
|
$y += $offset; |
|
166
|
0
|
|
|
|
|
|
$x += $offset; |
|
167
|
|
|
|
|
|
|
# $x,$y now relative to Xmin(level),Ymin(level), |
|
168
|
|
|
|
|
|
|
# so in range 0 <= $x,$y < 2*len |
|
169
|
|
|
|
|
|
|
} |
|
170
|
|
|
|
|
|
|
### offset x,y to: "$x, $y" |
|
171
|
|
|
|
|
|
|
|
|
172
|
0
|
|
|
|
|
|
for (;;) { |
|
173
|
|
|
|
|
|
|
### at: "$x,$y len=$len" |
|
174
|
|
|
|
|
|
|
### assert: $x >= 0 |
|
175
|
|
|
|
|
|
|
### assert: $y >= 0 |
|
176
|
|
|
|
|
|
|
### assert: $x < 2*$len |
|
177
|
|
|
|
|
|
|
### assert: $y < 2*$len |
|
178
|
|
|
|
|
|
|
|
|
179
|
0
|
|
|
|
|
|
my $xo; |
|
180
|
0
|
0
|
|
|
|
|
if ($xo = ($x >= $len)) { |
|
181
|
0
|
|
|
|
|
|
$x -= $len; |
|
182
|
|
|
|
|
|
|
} |
|
183
|
0
|
|
|
|
|
|
my $yo; |
|
184
|
0
|
0
|
|
|
|
|
if ($yo = ($y >= $len)) { |
|
185
|
0
|
|
|
|
|
|
$y -= $len; |
|
186
|
|
|
|
|
|
|
} |
|
187
|
|
|
|
|
|
|
### xy bits: ($xo+0).", ".($yo+0) |
|
188
|
|
|
|
|
|
|
|
|
189
|
0
|
|
|
|
|
|
my $digit = $xy_to_digit[$state + 2*$xo + $yo]; |
|
190
|
0
|
|
|
|
|
|
$n = 4*$n + $digit; |
|
191
|
0
|
|
|
|
|
|
$state = $next_state[$state+$digit]; |
|
192
|
|
|
|
|
|
|
|
|
193
|
0
|
0
|
|
|
|
|
last if --$level < 0; |
|
194
|
0
|
|
|
|
|
|
$len /= 2; |
|
195
|
|
|
|
|
|
|
} |
|
196
|
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
### assert: $x == 0 |
|
198
|
|
|
|
|
|
|
### assert: $y == 0 |
|
199
|
|
|
|
|
|
|
|
|
200
|
0
|
|
|
|
|
|
return $n; |
|
201
|
|
|
|
|
|
|
} |
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
# This finds the exact minimum/maximum N in the given rectangle. |
|
205
|
|
|
|
|
|
|
# |
|
206
|
|
|
|
|
|
|
# The strategy is similar to xy_to_n(), except that at each bit position |
|
207
|
|
|
|
|
|
|
# instead of taking a bit of x,y from the input instead those bits are |
|
208
|
|
|
|
|
|
|
# chosen from among the 4 sub-parts according to which has the maximum N and |
|
209
|
|
|
|
|
|
|
# is within the given target rectangle. The final result is both an $n_max |
|
210
|
|
|
|
|
|
|
# and a $x_max,$y_max which is its position, but only the $n_max is |
|
211
|
|
|
|
|
|
|
# returned. |
|
212
|
|
|
|
|
|
|
# |
|
213
|
|
|
|
|
|
|
# At a given sub-part the comparisons ask whether x1 is above or below the |
|
214
|
|
|
|
|
|
|
# midpoint, and likewise x2,y1,y2. Since x2>=x1 and y2>=y1 there's only 3 |
|
215
|
|
|
|
|
|
|
# combinations of x1>=cmp,x2>=cmp, not 4. |
|
216
|
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
# exact |
|
218
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
219
|
0
|
|
|
0
|
1
|
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
220
|
|
|
|
|
|
|
### HilbertSpiral rect_to_n_range(): "$x1,$y1, $x2,$y2" |
|
221
|
|
|
|
|
|
|
|
|
222
|
0
|
|
|
|
|
|
$x1 = round_nearest ($x1); |
|
223
|
0
|
|
|
|
|
|
$y1 = round_nearest ($y1); |
|
224
|
0
|
|
|
|
|
|
$x2 = round_nearest ($x2); |
|
225
|
0
|
|
|
|
|
|
$y2 = round_nearest ($y2); |
|
226
|
0
|
0
|
|
|
|
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
|
227
|
0
|
0
|
|
|
|
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
|
228
|
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
# If y1/y2 both positive or both negative then only look at the bigger of |
|
230
|
|
|
|
|
|
|
# the two. If y1 negative and y2 positive then consider both. |
|
231
|
0
|
|
|
|
|
|
my $len = 1; |
|
232
|
0
|
|
|
|
|
|
my $level = 0; |
|
233
|
0
|
0
|
|
|
|
|
foreach my $z (($x2 > 0 ? ($x2) : ()), |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
($x1 < 0 ? ($x1) : ()), |
|
235
|
|
|
|
|
|
|
($y2 > 0 ? ($y2) : ()), |
|
236
|
|
|
|
|
|
|
($y1 < 0 ? ($y1) : ())) { |
|
237
|
0
|
|
|
|
|
|
my ($zlen, $zlevel) = _y_round_down_len_level ($z); |
|
238
|
|
|
|
|
|
|
### y len/level: "$zlen $zlevel" |
|
239
|
0
|
0
|
|
|
|
|
if ($zlevel > $level) { |
|
240
|
0
|
|
|
|
|
|
$level = $zlevel; |
|
241
|
0
|
|
|
|
|
|
$len = $zlen; |
|
242
|
|
|
|
|
|
|
} |
|
243
|
|
|
|
|
|
|
} |
|
244
|
0
|
0
|
|
|
|
|
if (is_infinite($len)) { |
|
245
|
0
|
|
|
|
|
|
return (0, $len); |
|
246
|
|
|
|
|
|
|
} |
|
247
|
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
# At this point an easy over-estimate would be: |
|
249
|
|
|
|
|
|
|
# return (0, $len*$len*4-1); |
|
250
|
|
|
|
|
|
|
|
|
251
|
0
|
|
|
|
|
|
my $n_min = my $n_max = 0; |
|
252
|
0
|
|
|
|
|
|
my $x_min = my $x_max = my $y_min = my $y_max |
|
253
|
|
|
|
|
|
|
= - (4**int(($level+1)/2) - 1) * 2 / 3; |
|
254
|
0
|
0
|
|
|
|
|
my $min_state = my $max_state = ($level & 1 ? 20 : 16); |
|
255
|
|
|
|
|
|
|
### $x_min |
|
256
|
|
|
|
|
|
|
### $y_min |
|
257
|
|
|
|
|
|
|
|
|
258
|
0
|
|
|
|
|
|
while ($level >= 0) { |
|
259
|
|
|
|
|
|
|
### $level |
|
260
|
|
|
|
|
|
|
### $len |
|
261
|
|
|
|
|
|
|
{ |
|
262
|
0
|
|
|
|
|
|
my $x_cmp = $x_min + $len; |
|
263
|
0
|
|
|
|
|
|
my $y_cmp = $y_min + $len; |
|
264
|
0
|
0
|
|
|
|
|
my $digit = $min_digit[3*$min_state |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
+ ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0) |
|
266
|
|
|
|
|
|
|
+ ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)]; |
|
267
|
|
|
|
|
|
|
|
|
268
|
0
|
|
|
|
|
|
$n_min = 4*$n_min + $digit; |
|
269
|
0
|
|
|
|
|
|
$min_state += $digit; |
|
270
|
0
|
0
|
|
|
|
|
if ($digit_to_x[$min_state]) { $x_min += $len; } |
|
|
0
|
|
|
|
|
|
|
|
271
|
0
|
|
|
|
|
|
$y_min += $len * $digit_to_y[$min_state]; |
|
272
|
0
|
|
|
|
|
|
$min_state = $next_state[$min_state]; |
|
273
|
|
|
|
|
|
|
} |
|
274
|
|
|
|
|
|
|
{ |
|
275
|
0
|
|
|
|
|
|
my $x_cmp = $x_max + $len; |
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
276
|
0
|
|
|
|
|
|
my $y_cmp = $y_max + $len; |
|
277
|
0
|
0
|
|
|
|
|
my $digit = $max_digit[3*$max_state |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
+ ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0) |
|
279
|
|
|
|
|
|
|
+ ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)]; |
|
280
|
|
|
|
|
|
|
|
|
281
|
0
|
|
|
|
|
|
$n_max = 4*$n_max + $digit; |
|
282
|
0
|
|
|
|
|
|
$max_state += $digit; |
|
283
|
0
|
0
|
|
|
|
|
if ($digit_to_x[$max_state]) { $x_max += $len; } |
|
|
0
|
|
|
|
|
|
|
|
284
|
0
|
|
|
|
|
|
$y_max += $len * $digit_to_y[$max_state]; |
|
285
|
0
|
|
|
|
|
|
$max_state = $next_state[$max_state]; |
|
286
|
|
|
|
|
|
|
} |
|
287
|
|
|
|
|
|
|
|
|
288
|
0
|
|
|
|
|
|
$len = int($len/2); |
|
289
|
0
|
|
|
|
|
|
$level--; |
|
290
|
|
|
|
|
|
|
} |
|
291
|
|
|
|
|
|
|
|
|
292
|
0
|
|
|
|
|
|
return ($n_min, $n_max); |
|
293
|
|
|
|
|
|
|
} |
|
294
|
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
296
|
|
|
|
|
|
|
# levels |
|
297
|
|
|
|
|
|
|
|
|
298
|
1
|
|
|
1
|
|
9
|
use Math::PlanePath::HilbertCurve; |
|
|
1
|
|
|
|
|
4
|
|
|
|
1
|
|
|
|
|
80
|
|
|
299
|
|
|
|
|
|
|
*level_to_n_range = \&Math::PlanePath::HilbertCurve::level_to_n_range; |
|
300
|
|
|
|
|
|
|
*n_to_level = \&Math::PlanePath::HilbertCurve::n_to_level; |
|
301
|
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
303
|
|
|
|
|
|
|
1; |
|
304
|
|
|
|
|
|
|
__END__ |