line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# http://www.woollythoughts.com/afghans/peano.html |
20
|
|
|
|
|
|
|
# Knitting |
21
|
|
|
|
|
|
|
# |
22
|
|
|
|
|
|
|
# http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node36.html |
23
|
|
|
|
|
|
|
# Closed path, curved parts |
24
|
|
|
|
|
|
|
# |
25
|
|
|
|
|
|
|
# http://www.wolframalpha.com/entities/calculators/Peano_curve/jh/4o/im/ |
26
|
|
|
|
|
|
|
# Curved corners tilted to a diamond, or is it an 8-step pattern? |
27
|
|
|
|
|
|
|
# |
28
|
|
|
|
|
|
|
# http://www.davidsalomon.name/DC2advertis/AppendC.pdf |
29
|
|
|
|
|
|
|
# |
30
|
|
|
|
|
|
|
# http://www.cut-the-knot.org/do_you_know/hilbert.shtml |
31
|
|
|
|
|
|
|
# Java applet |
32
|
|
|
|
|
|
|
# |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
package Math::PlanePath::HilbertCurve; |
35
|
5
|
|
|
5
|
|
2117
|
use 5.004; |
|
5
|
|
|
|
|
25
|
|
36
|
5
|
|
|
5
|
|
28
|
use strict; |
|
5
|
|
|
|
|
8
|
|
|
5
|
|
|
|
|
249
|
|
37
|
|
|
|
|
|
|
#use List::Util 'max','min'; |
38
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
39
|
|
|
|
|
|
|
|
40
|
5
|
|
|
5
|
|
30
|
use vars '$VERSION', '@ISA'; |
|
5
|
|
|
|
|
11
|
|
|
5
|
|
|
|
|
396
|
|
41
|
|
|
|
|
|
|
$VERSION = 129; |
42
|
5
|
|
|
5
|
|
1622
|
use Math::PlanePath; |
|
5
|
|
|
|
|
12
|
|
|
5
|
|
|
|
|
154
|
|
43
|
5
|
|
|
5
|
|
1525
|
use Math::PlanePath::Base::NSEW; |
|
5
|
|
|
|
|
11
|
|
|
5
|
|
|
|
|
219
|
|
44
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath::Base::NSEW', |
45
|
|
|
|
|
|
|
'Math::PlanePath'); |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
48
|
5
|
|
|
|
|
279
|
'is_infinite', |
49
|
5
|
|
|
5
|
|
31
|
'round_nearest'; |
|
5
|
|
|
|
|
10
|
|
50
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
51
|
5
|
|
|
|
|
336
|
'round_down_pow', |
52
|
|
|
|
|
|
|
'round_up_pow', |
53
|
|
|
|
|
|
|
'bit_split_lowtohigh', |
54
|
|
|
|
|
|
|
'digit_split_lowtohigh', |
55
|
5
|
|
|
5
|
|
1416
|
'digit_join_lowtohigh'; |
|
5
|
|
|
|
|
11
|
|
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
58
|
|
|
|
|
|
|
#use Smart::Comments; |
59
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
|
61
|
5
|
|
|
5
|
|
32
|
use constant n_start => 0; |
|
5
|
|
|
|
|
10
|
|
|
5
|
|
|
|
|
257
|
|
62
|
5
|
|
|
5
|
|
30
|
use constant class_x_negative => 0; |
|
5
|
|
|
|
|
11
|
|
|
5
|
|
|
|
|
218
|
|
63
|
5
|
|
|
5
|
|
27
|
use constant class_y_negative => 0; |
|
5
|
|
|
|
|
11
|
|
|
5
|
|
|
|
|
5670
|
|
64
|
|
|
|
|
|
|
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1; |
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
68
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
# state=0 3--2 plain |
70
|
|
|
|
|
|
|
# | |
71
|
|
|
|
|
|
|
# 0--1 |
72
|
|
|
|
|
|
|
# |
73
|
|
|
|
|
|
|
# state=4 1--2 transpose |
74
|
|
|
|
|
|
|
# | | |
75
|
|
|
|
|
|
|
# 0 3 |
76
|
|
|
|
|
|
|
# |
77
|
|
|
|
|
|
|
# state=8 |
78
|
|
|
|
|
|
|
# |
79
|
|
|
|
|
|
|
# state=12 3 0 rot180 + transpose |
80
|
|
|
|
|
|
|
# | | |
81
|
|
|
|
|
|
|
# 2--1 |
82
|
|
|
|
|
|
|
# |
83
|
|
|
|
|
|
|
# generated by tools/hilbert-curve-table.pl |
84
|
|
|
|
|
|
|
my @next_state = (4,0,0,12, 0,4,4,8, 12,8,8,4, 8,12,12,0); |
85
|
|
|
|
|
|
|
my @digit_to_x = (0,1,1,0, 0,0,1,1, 1,0,0,1, 1,1,0,0); |
86
|
|
|
|
|
|
|
my @digit_to_y = (0,0,1,1, 0,1,1,0, 1,1,0,0, 1,0,0,1); |
87
|
|
|
|
|
|
|
my @yx_to_digit = (0,1,3,2, 0,3,1,2, 2,3,1,0, 2,1,3,0); |
88
|
|
|
|
|
|
|
my @min_digit = (0,0,1,0, 0,1,3,2, 2,undef,undef,undef, |
89
|
|
|
|
|
|
|
0,0,3,0, 0,2,1,1, 2,undef,undef,undef, |
90
|
|
|
|
|
|
|
2,2,3,1, 0,0,1,0, 0,undef,undef,undef, |
91
|
|
|
|
|
|
|
2,1,1,2, 0,0,3,0, 0); |
92
|
|
|
|
|
|
|
my @max_digit = (0,1,1,3, 3,2,3,3, 2,undef,undef,undef, |
93
|
|
|
|
|
|
|
0,3,3,1, 3,3,1,2, 2,undef,undef,undef, |
94
|
|
|
|
|
|
|
2,3,3,2, 3,3,1,1, 0,undef,undef,undef, |
95
|
|
|
|
|
|
|
2,2,1,3, 3,1,3,3, 0); |
96
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
sub n_to_xy { |
98
|
128
|
|
|
128
|
1
|
12124
|
my ($self, $n) = @_; |
99
|
|
|
|
|
|
|
### HilbertCurve n_to_xy(): $n |
100
|
|
|
|
|
|
|
### hex: sprintf "%#X", $n |
101
|
|
|
|
|
|
|
|
102
|
128
|
50
|
|
|
|
302
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
103
|
128
|
50
|
|
|
|
384
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
104
|
|
|
|
|
|
|
|
105
|
128
|
|
|
|
|
239
|
my $int = int($n); |
106
|
128
|
|
|
|
|
204
|
$n -= $int; # fraction part |
107
|
|
|
|
|
|
|
|
108
|
128
|
|
|
|
|
288
|
my @ndigits = digit_split_lowtohigh($int,4); |
109
|
128
|
100
|
|
|
|
292
|
my $state = ($#ndigits & 1 ? 4 : 0); |
110
|
128
|
100
|
|
|
|
215
|
my $dirstate = ($#ndigits & 1 ? 0 : 4); # default if all $ndigit==3 |
111
|
|
|
|
|
|
|
|
112
|
128
|
|
|
|
|
191
|
my (@xbits, @ybits); |
113
|
128
|
|
|
|
|
280
|
foreach my $i (reverse 0 .. $#ndigits) { # digits high to low |
114
|
569
|
|
|
|
|
762
|
my $ndigit = $ndigits[$i]; |
115
|
569
|
|
|
|
|
728
|
$state += $ndigit; |
116
|
569
|
100
|
|
|
|
964
|
if ($ndigit != 3) { |
117
|
399
|
|
|
|
|
545
|
$dirstate = $state; # lowest non-3 digit |
118
|
|
|
|
|
|
|
} |
119
|
|
|
|
|
|
|
|
120
|
569
|
|
|
|
|
803
|
$xbits[$i] = $digit_to_x[$state]; |
121
|
569
|
|
|
|
|
769
|
$ybits[$i] = $digit_to_y[$state]; |
122
|
569
|
|
|
|
|
940
|
$state = $next_state[$state]; |
123
|
|
|
|
|
|
|
} |
124
|
|
|
|
|
|
|
|
125
|
128
|
|
|
|
|
228
|
my $zero = ($int * 0); # inherit bigint 0 |
126
|
128
|
|
|
|
|
380
|
return ($n * ($digit_to_x[$dirstate+1] - $digit_to_x[$dirstate]) # frac |
127
|
|
|
|
|
|
|
+ digit_join_lowtohigh (\@xbits, 2, $zero), |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
$n * ($digit_to_y[$dirstate+1] - $digit_to_y[$dirstate]) # frac |
130
|
|
|
|
|
|
|
+ digit_join_lowtohigh (\@ybits, 2, $zero)); |
131
|
|
|
|
|
|
|
} |
132
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
sub xy_to_n { |
134
|
289
|
|
|
289
|
1
|
9953
|
my ($self, $x, $y) = @_; |
135
|
|
|
|
|
|
|
### HilbertCurve xy_to_n(): "$x, $y" |
136
|
|
|
|
|
|
|
|
137
|
289
|
|
|
|
|
612
|
$x = round_nearest ($x); |
138
|
289
|
50
|
|
|
|
656
|
if (is_infinite($x)) { return $x; } |
|
0
|
|
|
|
|
0
|
|
139
|
289
|
|
|
|
|
646
|
$y = round_nearest ($y); |
140
|
289
|
50
|
|
|
|
527
|
if (is_infinite($y)) { return $y; } |
|
0
|
|
|
|
|
0
|
|
141
|
|
|
|
|
|
|
|
142
|
289
|
50
|
33
|
|
|
880
|
if ($x < 0 || $y < 0) { |
143
|
0
|
|
|
|
|
0
|
return undef; |
144
|
|
|
|
|
|
|
} |
145
|
|
|
|
|
|
|
|
146
|
289
|
|
|
|
|
585
|
my @xbits = bit_split_lowtohigh($x); |
147
|
289
|
|
|
|
|
642
|
my @ybits = bit_split_lowtohigh($y); |
148
|
289
|
|
|
|
|
852
|
my $numbits = max($#xbits,$#ybits); |
149
|
|
|
|
|
|
|
|
150
|
289
|
|
|
|
|
413
|
my @ndigits; |
151
|
289
|
100
|
|
|
|
549
|
my $state = ($numbits & 1 ? 4 : 0); |
152
|
289
|
|
|
|
|
579
|
foreach my $i (reverse 0 .. $numbits) { # high to low |
153
|
|
|
|
|
|
|
### at: "state=$state xbit=".($xbits[$i]||0)." ybit=".($ybits[$i]||0) |
154
|
1971
|
|
100
|
|
|
6119
|
my $ndigit = $yx_to_digit[$state + 2*($ybits[$i]||0) + ($xbits[$i]||0)]; |
|
|
|
100
|
|
|
|
|
155
|
1971
|
|
|
|
|
2980
|
$ndigits[$i] = $ndigit; |
156
|
1971
|
|
|
|
|
3061
|
$state = $next_state[$state+$ndigit]; |
157
|
|
|
|
|
|
|
} |
158
|
|
|
|
|
|
|
### @ndigits |
159
|
289
|
|
|
|
|
816
|
return digit_join_lowtohigh(\@ndigits, 4, |
160
|
|
|
|
|
|
|
$x * 0 * $y); # inherit bignum 0 |
161
|
|
|
|
|
|
|
} |
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
# rect_to_n_range() finds the exact minimum/maximum N in the given rectangle. |
165
|
|
|
|
|
|
|
# |
166
|
|
|
|
|
|
|
# The strategy is similar to xy_to_n(), except that at each bit position |
167
|
|
|
|
|
|
|
# instead of taking a bit of x,y from the input instead those bits are |
168
|
|
|
|
|
|
|
# chosen from among the 4 sub-parts according to which has the maximum N and |
169
|
|
|
|
|
|
|
# is within the given target rectangle. The final result is both an $n_max |
170
|
|
|
|
|
|
|
# and a $x_max,$y_max which is its position, but only the $n_max is |
171
|
|
|
|
|
|
|
# returned. |
172
|
|
|
|
|
|
|
# |
173
|
|
|
|
|
|
|
# At a given sub-part the comparisons ask whether x1 is above or below the |
174
|
|
|
|
|
|
|
# midpoint, and likewise x2,y1,y2. Since x2>=x1 and y2>=y1 there's only 3 |
175
|
|
|
|
|
|
|
# combinations of x1>=cmp,x2>=cmp, not 4. |
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
# exact |
178
|
|
|
|
|
|
|
sub rect_to_n_range { |
179
|
78
|
|
|
78
|
1
|
1172
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
180
|
|
|
|
|
|
|
### HilbertCurve rect_to_n_range(): "$x1,$y1, $x2,$y2" |
181
|
|
|
|
|
|
|
|
182
|
78
|
|
|
|
|
173
|
$x1 = round_nearest ($x1); |
183
|
78
|
|
|
|
|
150
|
$y1 = round_nearest ($y1); |
184
|
78
|
|
|
|
|
136
|
$x2 = round_nearest ($x2); |
185
|
78
|
|
|
|
|
154
|
$y2 = round_nearest ($y2); |
186
|
78
|
100
|
|
|
|
355
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
187
|
78
|
100
|
|
|
|
161
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
188
|
|
|
|
|
|
|
|
189
|
78
|
50
|
33
|
|
|
260
|
if ($x2 < 0 || $y2 < 0) { |
190
|
0
|
|
|
|
|
0
|
return (1, 0); # rectangle outside first quadrant |
191
|
|
|
|
|
|
|
} |
192
|
|
|
|
|
|
|
|
193
|
78
|
|
|
|
|
144
|
my $n_min = my $n_max |
194
|
|
|
|
|
|
|
= my $x_min = my $y_min |
195
|
|
|
|
|
|
|
= my $x_max = my $y_max |
196
|
|
|
|
|
|
|
= ($x1 * 0 * $x2 * $y1 * $y2); # inherit bignum 0 |
197
|
|
|
|
|
|
|
|
198
|
78
|
100
|
|
|
|
211
|
my ($len, $level) = round_down_pow (($x2 > $y2 ? $x2 : $y2), |
199
|
|
|
|
|
|
|
2); |
200
|
|
|
|
|
|
|
### $len |
201
|
|
|
|
|
|
|
### $level |
202
|
78
|
50
|
|
|
|
223
|
if (is_infinite($level)) { |
203
|
0
|
|
|
|
|
0
|
return (0, $level); |
204
|
|
|
|
|
|
|
} |
205
|
78
|
100
|
|
|
|
188
|
my $min_state = my $max_state = ($level & 1 ? 4 : 0); |
206
|
|
|
|
|
|
|
|
207
|
78
|
|
|
|
|
153
|
while ($level >= 0) { |
208
|
|
|
|
|
|
|
{ |
209
|
403
|
|
|
|
|
531
|
my $x_cmp = $x_min + $len; |
210
|
403
|
|
|
|
|
560
|
my $y_cmp = $y_min + $len; |
211
|
403
|
100
|
|
|
|
953
|
my $digit = $min_digit[3*$min_state |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
212
|
|
|
|
|
|
|
+ ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0) |
213
|
|
|
|
|
|
|
+ ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)]; |
214
|
|
|
|
|
|
|
|
215
|
403
|
|
|
|
|
567
|
$n_min = 4*$n_min + $digit; |
216
|
403
|
|
|
|
|
506
|
$min_state += $digit; |
217
|
403
|
100
|
|
|
|
725
|
if ($digit_to_x[$min_state]) { $x_min += $len; } |
|
172
|
|
|
|
|
233
|
|
218
|
403
|
100
|
|
|
|
647
|
if ($digit_to_y[$min_state]) { $y_min += $len; } |
|
183
|
|
|
|
|
247
|
|
219
|
403
|
|
|
|
|
595
|
$min_state = $next_state[$min_state]; |
220
|
|
|
|
|
|
|
} |
221
|
|
|
|
|
|
|
{ |
222
|
403
|
|
|
|
|
533
|
my $x_cmp = $x_max + $len; |
|
403
|
|
|
|
|
491
|
|
|
403
|
|
|
|
|
569
|
|
223
|
403
|
|
|
|
|
531
|
my $y_cmp = $y_max + $len; |
224
|
403
|
100
|
|
|
|
936
|
my $digit = $max_digit[3*$max_state |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
225
|
|
|
|
|
|
|
+ ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0) |
226
|
|
|
|
|
|
|
+ ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)]; |
227
|
|
|
|
|
|
|
|
228
|
403
|
|
|
|
|
536
|
$n_max = 4*$n_max + $digit; |
229
|
403
|
|
|
|
|
569
|
$max_state += $digit; |
230
|
403
|
100
|
|
|
|
724
|
if ($digit_to_x[$max_state]) { $x_max += $len; } |
|
195
|
|
|
|
|
258
|
|
231
|
403
|
100
|
|
|
|
633
|
if ($digit_to_y[$max_state]) { $y_max += $len; } |
|
198
|
|
|
|
|
242
|
|
232
|
403
|
|
|
|
|
593
|
$max_state = $next_state[$max_state]; |
233
|
|
|
|
|
|
|
} |
234
|
|
|
|
|
|
|
|
235
|
403
|
|
|
|
|
596
|
$len = int($len/2); |
236
|
403
|
|
|
|
|
675
|
$level--; |
237
|
|
|
|
|
|
|
} |
238
|
|
|
|
|
|
|
|
239
|
78
|
|
|
|
|
201
|
return ($n_min, $n_max); |
240
|
|
|
|
|
|
|
} |
241
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
243
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
# shared by Math::PlanePath::AR2W2Curve and others |
245
|
|
|
|
|
|
|
sub level_to_n_range { |
246
|
0
|
|
|
0
|
1
|
|
my ($self, $level) = @_; |
247
|
0
|
|
|
|
|
|
return (0, 4**$level - 1); |
248
|
|
|
|
|
|
|
} |
249
|
|
|
|
|
|
|
sub n_to_level { |
250
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
251
|
0
|
0
|
|
|
|
|
if ($n < 0) { return undef; } |
|
0
|
|
|
|
|
|
|
252
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
0
|
|
|
|
|
|
|
253
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
254
|
0
|
|
|
|
|
|
my ($pow, $exp) = round_up_pow ($n+1, 4); |
255
|
0
|
|
|
|
|
|
return $exp; |
256
|
|
|
|
|
|
|
} |
257
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
259
|
|
|
|
|
|
|
1; |
260
|
|
|
|
|
|
|
__END__ |