line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
# Kanga "Number Mosaics" rotated to |
21
|
|
|
|
|
|
|
# |
22
|
|
|
|
|
|
|
# ...-16---15 |
23
|
|
|
|
|
|
|
# \ |
24
|
|
|
|
|
|
|
# 6----5 14 |
25
|
|
|
|
|
|
|
# / \ \ |
26
|
|
|
|
|
|
|
# 7 1 4 13 |
27
|
|
|
|
|
|
|
# / / / / |
28
|
|
|
|
|
|
|
# 8 2----3 12 |
29
|
|
|
|
|
|
|
# \ / |
30
|
|
|
|
|
|
|
# 9---10---11 |
31
|
|
|
|
|
|
|
# |
32
|
|
|
|
|
|
|
# |
33
|
|
|
|
|
|
|
# Could go pointy end with same loop/step, or point to the right |
34
|
|
|
|
|
|
|
# |
35
|
|
|
|
|
|
|
# 13--12--11 |
36
|
|
|
|
|
|
|
# / | |
37
|
|
|
|
|
|
|
# 14 4---3 10 |
38
|
|
|
|
|
|
|
# / / | | |
39
|
|
|
|
|
|
|
# 15 5 1---2 9 |
40
|
|
|
|
|
|
|
# \ \ | |
41
|
|
|
|
|
|
|
# 16 6---7---8 |
42
|
|
|
|
|
|
|
# \ | |
43
|
|
|
|
|
|
|
# 17--18--19--20 |
44
|
|
|
|
|
|
|
# |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
package Math::PlanePath::HexSpiral; |
48
|
4
|
|
|
4
|
|
10956
|
use 5.004; |
|
4
|
|
|
|
|
27
|
|
49
|
4
|
|
|
4
|
|
23
|
use strict; |
|
4
|
|
|
|
|
7
|
|
|
4
|
|
|
|
|
202
|
|
50
|
|
|
|
|
|
|
#use List::Util 'max'; |
51
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
52
|
|
|
|
|
|
|
|
53
|
4
|
|
|
4
|
|
26
|
use vars '$VERSION', '@ISA'; |
|
4
|
|
|
|
|
6
|
|
|
4
|
|
|
|
|
290
|
|
54
|
|
|
|
|
|
|
$VERSION = 129; |
55
|
4
|
|
|
4
|
|
2267
|
use Math::PlanePath; |
|
4
|
|
|
|
|
9
|
|
|
4
|
|
|
|
|
192
|
|
56
|
|
|
|
|
|
|
*_sqrtint = \&Math::PlanePath::_sqrtint; |
57
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
60
|
4
|
|
|
|
|
193
|
'round_nearest', |
61
|
4
|
|
|
4
|
|
25
|
'xy_is_even'; |
|
4
|
|
|
|
|
15
|
|
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
65
|
|
|
|
|
|
|
#use Devel::Comments '###'; |
66
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
|
68
|
4
|
|
|
4
|
|
2249
|
use Math::PlanePath::SquareSpiral; |
|
4
|
|
|
|
|
11
|
|
|
4
|
|
|
|
|
807
|
|
69
|
|
|
|
|
|
|
*parameter_info_array = \&Math::PlanePath::SquareSpiral::parameter_info_array; |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
# 2w+3 --- 3w/2+3 -- w+4 |
72
|
|
|
|
|
|
|
# / \ |
73
|
|
|
|
|
|
|
# 2w+4 0 -------- w+3 * |
74
|
|
|
|
|
|
|
# \ / |
75
|
|
|
|
|
|
|
# 2w+5 ----------------- 3w+7 w=2; 1+3*w+7=14 |
76
|
|
|
|
|
|
|
# ^ |
77
|
|
|
|
|
|
|
# X=0 |
78
|
|
|
|
|
|
|
sub x_negative_at_n { |
79
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
80
|
0
|
0
|
|
|
|
0
|
return $self->n_start + ($self->{'wider'} ? 0 : 3); |
81
|
|
|
|
|
|
|
} |
82
|
|
|
|
|
|
|
sub y_negative_at_n { |
83
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
84
|
0
|
|
|
|
|
0
|
return $self->n_start + 2*$self->{'wider'} + 5; |
85
|
|
|
|
|
|
|
} |
86
|
|
|
|
|
|
|
sub _UNDOCUMENTED__dxdy_list_at_n { |
87
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
88
|
0
|
|
|
|
|
0
|
return $self->n_start + 3*$self->{'wider'} + 7; |
89
|
|
|
|
|
|
|
} |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
sub rsquared_minimum { |
92
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
93
|
0
|
0
|
|
|
|
0
|
return ($self->{'wider'} % 2 |
94
|
|
|
|
|
|
|
? 1 # odd "wider" minimum X=1,Y=0 |
95
|
|
|
|
|
|
|
: 0); # even "wider" includes X=0,Y=0 |
96
|
|
|
|
|
|
|
} |
97
|
|
|
|
|
|
|
*sumabsxy_minimum = \&rsquared_minimum; |
98
|
|
|
|
|
|
|
|
99
|
4
|
|
|
4
|
|
32
|
use constant dx_minimum => -2; |
|
4
|
|
|
|
|
7
|
|
|
4
|
|
|
|
|
203
|
|
100
|
4
|
|
|
4
|
|
23
|
use constant dx_maximum => 2; |
|
4
|
|
|
|
|
8
|
|
|
4
|
|
|
|
|
228
|
|
101
|
4
|
|
|
4
|
|
28
|
use constant dy_minimum => -1; |
|
4
|
|
|
|
|
7
|
|
|
4
|
|
|
|
|
235
|
|
102
|
4
|
|
|
4
|
|
26
|
use constant dy_maximum => 1; |
|
4
|
|
|
|
|
7
|
|
|
4
|
|
|
|
|
246
|
|
103
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
*_UNDOCUMENTED__dxdy_list = \&Math::PlanePath::_UNDOCUMENTED__dxdy_list_six; |
105
|
|
|
|
|
|
|
|
106
|
4
|
|
|
4
|
|
35
|
use constant absdx_minimum => 1; |
|
4
|
|
|
|
|
8
|
|
|
4
|
|
|
|
|
292
|
|
107
|
|
|
|
|
|
|
*absdiffxy_minimum = \&rsquared_minimum; |
108
|
|
|
|
|
|
|
|
109
|
4
|
|
|
4
|
|
28
|
use constant dsumxy_minimum => -2; # SW diagonal |
|
4
|
|
|
|
|
8
|
|
|
4
|
|
|
|
|
205
|
|
110
|
4
|
|
|
4
|
|
27
|
use constant dsumxy_maximum => 2; # dX=+2 and diagonal |
|
4
|
|
|
|
|
7
|
|
|
4
|
|
|
|
|
181
|
|
111
|
4
|
|
|
4
|
|
23
|
use constant ddiffxy_minimum => -2; # NW diagonal |
|
4
|
|
|
|
|
20
|
|
|
4
|
|
|
|
|
220
|
|
112
|
4
|
|
|
4
|
|
28
|
use constant ddiffxy_maximum => 2; # SE diagonal |
|
4
|
|
|
|
|
15
|
|
|
4
|
|
|
|
|
184
|
|
113
|
4
|
|
|
4
|
|
22
|
use constant dir_maximum_dxdy => (1,-1); # South-East |
|
4
|
|
|
|
|
7
|
|
|
4
|
|
|
|
|
230
|
|
114
|
|
|
|
|
|
|
|
115
|
4
|
|
|
4
|
|
35
|
use constant turn_any_right => 0; # only left or straight |
|
4
|
|
|
|
|
15
|
|
|
4
|
|
|
|
|
3135
|
|
116
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_left_at_n { |
117
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
118
|
0
|
|
|
|
|
0
|
return $self->n_start + $self->{'wider'} + 1; |
119
|
|
|
|
|
|
|
} |
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
123
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
sub new { |
125
|
6
|
|
|
6
|
1
|
1314
|
my $self = shift->SUPER::new (@_); |
126
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
# parameters |
128
|
6
|
|
50
|
|
|
52
|
$self->{'wider'} ||= 0; # default |
129
|
6
|
100
|
|
|
|
18
|
if (! defined $self->{'n_start'}) { |
130
|
4
|
|
|
|
|
22
|
$self->{'n_start'} = $self->default_n_start; |
131
|
|
|
|
|
|
|
} |
132
|
|
|
|
|
|
|
|
133
|
6
|
|
|
|
|
19
|
return $self; |
134
|
|
|
|
|
|
|
} |
135
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
# wider==0 |
137
|
|
|
|
|
|
|
# diagonal down and to the left |
138
|
|
|
|
|
|
|
# d = [ 0, 1, 2, 3 ] |
139
|
|
|
|
|
|
|
# N = [ 1, 6, 17, 34 ] |
140
|
|
|
|
|
|
|
# N = (3*$d**2 + 2*$d + 1) |
141
|
|
|
|
|
|
|
# d = -1/3 + sqrt(1/3 * $n + -2/9) |
142
|
|
|
|
|
|
|
# = (-1 + sqrt(3*$n - 2)) / 3 |
143
|
|
|
|
|
|
|
# |
144
|
|
|
|
|
|
|
# wider==1 |
145
|
|
|
|
|
|
|
# diagonal down and to the left |
146
|
|
|
|
|
|
|
# d = [ 0, 1, 2, 3 ] |
147
|
|
|
|
|
|
|
# N = [ 1, 8, 21, 40 ] |
148
|
|
|
|
|
|
|
# N = (3*$d**2 + 4*$d + 1) |
149
|
|
|
|
|
|
|
# d = -2/3 + sqrt(1/3 * $n + 1/9) |
150
|
|
|
|
|
|
|
# = (-2 + sqrt(3*$n + 1)) / 3 |
151
|
|
|
|
|
|
|
# |
152
|
|
|
|
|
|
|
# wider==2 |
153
|
|
|
|
|
|
|
# diagonal down and to the left |
154
|
|
|
|
|
|
|
# d = [ 0, 1, 2, 3, 4 ] |
155
|
|
|
|
|
|
|
# N = [ 1, 10, 25, 46, 73 ] |
156
|
|
|
|
|
|
|
# N = (3*$d**2 + 6*$d + 1) |
157
|
|
|
|
|
|
|
# d = -1 + sqrt(1/3 * $n + 2/3) |
158
|
|
|
|
|
|
|
# = (-3 + sqrt(3*$n + 6)) / 3 |
159
|
|
|
|
|
|
|
# |
160
|
|
|
|
|
|
|
# N = 3*$d*$d + (2+2*$w)*$d + 1 |
161
|
|
|
|
|
|
|
# = (3*$d + 2 + 2*$w)*$d + 1 |
162
|
|
|
|
|
|
|
# d = (-1-w + sqrt(3*$n + ($w+2)*$w - 2)) / 3 |
163
|
|
|
|
|
|
|
# = (sqrt(3*$n + ($w+2)*$w - 2) -1-w) / 3 |
164
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
sub n_to_xy { |
166
|
51
|
|
|
51
|
1
|
8966
|
my ($self, $n) = @_; |
167
|
|
|
|
|
|
|
#### n_to_xy: "$n wider=$self->{'wider'}" |
168
|
|
|
|
|
|
|
|
169
|
51
|
|
|
|
|
103
|
$n = $n - $self->{'n_start'}; # N=0 basis |
170
|
51
|
50
|
|
|
|
128
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
171
|
51
|
|
|
|
|
82
|
my $w = $self->{'wider'}; |
172
|
|
|
|
|
|
|
|
173
|
51
|
|
|
|
|
141
|
my $d = int((_sqrtint(3*$n + ($w+2)*$w + 1) - 1 - $w) / 3); |
174
|
|
|
|
|
|
|
#### d frac: ((_sqrtint(3*$n + ($w+2)*$w + 1) - 1 - $w) / 3) |
175
|
|
|
|
|
|
|
#### $d |
176
|
|
|
|
|
|
|
|
177
|
51
|
|
|
|
|
87
|
$n += 1; # N=1 basis |
178
|
|
|
|
|
|
|
|
179
|
51
|
|
|
|
|
78
|
$n -= (3*$d + 2 + 2*$w)*$d + 1; |
180
|
|
|
|
|
|
|
#### remainder: $n |
181
|
|
|
|
|
|
|
|
182
|
51
|
|
|
|
|
78
|
$d = $d + 1; # no warnings if $d==inf |
183
|
51
|
100
|
|
|
|
96
|
if ($n <= $d+$w) { |
184
|
|
|
|
|
|
|
#### bottom horizontal |
185
|
24
|
|
|
|
|
40
|
$d = -$d + 1; |
186
|
24
|
|
|
|
|
66
|
return (2*$n + $d - $w, |
187
|
|
|
|
|
|
|
$d); |
188
|
|
|
|
|
|
|
} |
189
|
27
|
|
|
|
|
40
|
$n -= $d+$w; |
190
|
27
|
100
|
|
|
|
58
|
if ($n <= $d-1) { |
191
|
|
|
|
|
|
|
#### right lower diagonal, being 1 shorter: $n |
192
|
4
|
|
|
|
|
12
|
return ($n + $d + 1 + $w, |
193
|
|
|
|
|
|
|
$n - $d + 1); |
194
|
|
|
|
|
|
|
} |
195
|
23
|
|
|
|
|
31
|
$n -= $d-1; |
196
|
23
|
100
|
|
|
|
44
|
if ($n <= $d) { |
197
|
|
|
|
|
|
|
#### right upper diagonal: $n |
198
|
7
|
|
|
|
|
24
|
return (-$n + 2*$d + $w, |
199
|
|
|
|
|
|
|
$n); |
200
|
|
|
|
|
|
|
} |
201
|
16
|
|
|
|
|
21
|
$n -= $d; |
202
|
16
|
100
|
|
|
|
34
|
if ($n <= $d+$w) { |
203
|
|
|
|
|
|
|
#### top horizontal |
204
|
7
|
|
|
|
|
29
|
return (-2*$n + $d + $w, |
205
|
|
|
|
|
|
|
$d); |
206
|
|
|
|
|
|
|
} |
207
|
9
|
|
|
|
|
12
|
$n -= $d+$w; |
208
|
9
|
100
|
|
|
|
19
|
if ($n <= $d) { |
209
|
|
|
|
|
|
|
#### left upper diagonal |
210
|
7
|
|
|
|
|
20
|
return (-$n - $d - $w, |
211
|
|
|
|
|
|
|
-$n + $d ); |
212
|
|
|
|
|
|
|
} |
213
|
|
|
|
|
|
|
#### left lower diagonal |
214
|
2
|
|
|
|
|
4
|
$n -= $d; |
215
|
2
|
|
|
|
|
7
|
return ($n - 2*$d - $w, |
216
|
|
|
|
|
|
|
-$n); |
217
|
|
|
|
|
|
|
} |
218
|
|
|
|
|
|
|
|
219
|
|
|
|
|
|
|
sub xy_is_visited { |
220
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x, $y) = @_; |
221
|
0
|
|
|
|
|
0
|
return xy_is_even($self,$x+$self->{'wider'},$y); |
222
|
|
|
|
|
|
|
} |
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
sub xy_to_n { |
225
|
9
|
|
|
9
|
1
|
512
|
my ($self, $x, $y) = @_; |
226
|
|
|
|
|
|
|
### xy_to_n(): "$x, $y" |
227
|
|
|
|
|
|
|
|
228
|
9
|
|
|
|
|
24
|
$x = round_nearest ($x); |
229
|
9
|
|
|
|
|
21
|
$y = round_nearest ($y); |
230
|
9
|
|
|
|
|
17
|
my $w = $self->{'wider'}; |
231
|
9
|
50
|
|
|
|
27
|
if (($x ^ $y ^ $w) & 1) { |
232
|
0
|
|
|
|
|
0
|
return undef; # nothing on odd squares |
233
|
|
|
|
|
|
|
} |
234
|
|
|
|
|
|
|
|
235
|
9
|
|
|
|
|
14
|
my $ay = abs($y); |
236
|
9
|
|
|
|
|
15
|
my $ax = abs($x) - $w; |
237
|
9
|
100
|
|
|
|
21
|
if ($ax > $ay) { |
238
|
3
|
|
|
|
|
6
|
my $d = ($ax + $ay)/2; # x+y is even |
239
|
|
|
|
|
|
|
|
240
|
3
|
100
|
|
|
|
6
|
if ($x > 0) { |
241
|
|
|
|
|
|
|
### right ends |
242
|
|
|
|
|
|
|
### $d |
243
|
|
|
|
|
|
|
return ((3*$d - 2 + 2*$w)*$d - $w # horizontal to the right |
244
|
|
|
|
|
|
|
+ $y # offset up or down |
245
|
2
|
|
|
|
|
7
|
+ $self->{'n_start'}); |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
} else { |
248
|
|
|
|
|
|
|
### left ends |
249
|
|
|
|
|
|
|
return ((3*$d + 1 + 2*$w)*$d # horizontal to the left |
250
|
|
|
|
|
|
|
- $y # offset up or down |
251
|
1
|
|
|
|
|
15
|
+ $self->{'n_start'}); |
252
|
|
|
|
|
|
|
} |
253
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
} else { |
255
|
6
|
|
|
|
|
9
|
my $d = $ay; |
256
|
|
|
|
|
|
|
|
257
|
6
|
100
|
|
|
|
22
|
if ($y > 0) { |
258
|
|
|
|
|
|
|
### top horizontal |
259
|
|
|
|
|
|
|
### $d |
260
|
|
|
|
|
|
|
return ((3*$d + 2*$w)*$d # diagonal up to the left |
261
|
|
|
|
|
|
|
+ (-$d - $x-$w) / 2 # negative offset rightwards |
262
|
2
|
|
|
|
|
7
|
+ $self->{'n_start'}); |
263
|
|
|
|
|
|
|
} else { |
264
|
|
|
|
|
|
|
### bottom horizontal, and centre horizontal |
265
|
|
|
|
|
|
|
### $d |
266
|
|
|
|
|
|
|
### offset: $d |
267
|
|
|
|
|
|
|
return ((3*$d + 2 + 2*$w)*$d # diagonal down to the left |
268
|
|
|
|
|
|
|
+ ($x + $w + $d)/2 # offset rightwards |
269
|
4
|
|
|
|
|
20
|
+ $self->{'n_start'}); |
270
|
|
|
|
|
|
|
} |
271
|
|
|
|
|
|
|
} |
272
|
|
|
|
|
|
|
} |
273
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
# not exact |
275
|
|
|
|
|
|
|
sub rect_to_n_range { |
276
|
1
|
|
|
1
|
1
|
8
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
277
|
|
|
|
|
|
|
### HexSpiral rect_to_n_range(): $x1,$y1, $x2,$y2 |
278
|
1
|
|
|
|
|
3
|
my $w = $self->{'wider'}; |
279
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
# symmetric in +/-y, and biggest y is biggest n |
281
|
1
|
|
|
|
|
5
|
my $y = max (abs($y1), abs($y2)); |
282
|
|
|
|
|
|
|
|
283
|
|
|
|
|
|
|
# symmetric in +/-x, and biggest x |
284
|
1
|
|
|
|
|
4
|
my $x = max (abs($x1), abs($x2)); |
285
|
1
|
50
|
|
|
|
4
|
if ($x >= $w) { |
286
|
1
|
|
|
|
|
3
|
$x -= $w; |
287
|
|
|
|
|
|
|
} |
288
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
# in the middle horizontal path parts y determines the loop number |
290
|
|
|
|
|
|
|
# in the end parts diagonal distance, 2 apart |
291
|
1
|
50
|
|
|
|
3
|
my $d = ($y >= $x |
292
|
|
|
|
|
|
|
? $y # middle |
293
|
|
|
|
|
|
|
: ($x + $y + 1)/2); # ends |
294
|
1
|
|
|
|
|
3
|
$d = int($d) + 1; |
295
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
# diagonal downwards bottom left being the end of a revolution |
297
|
|
|
|
|
|
|
# s=0 |
298
|
|
|
|
|
|
|
# s=1 n=7 |
299
|
|
|
|
|
|
|
# s=2 n=19 |
300
|
|
|
|
|
|
|
# s=3 n=37 |
301
|
|
|
|
|
|
|
# s=4 n=61 |
302
|
|
|
|
|
|
|
# n = 3*$d*$d + 3*$d + 1 |
303
|
|
|
|
|
|
|
# |
304
|
|
|
|
|
|
|
# ### gives: "sum $d is " . (3*$d*$d + 3*$d + 1) |
305
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
# ENHANCE-ME: find actual minimum if rect doesn't cover 0,0 |
307
|
|
|
|
|
|
|
return ($self->{'n_start'}, |
308
|
1
|
|
|
|
|
5
|
(3*$d + 3 + 2*$w)*$d + $self->{'n_start'}); |
309
|
|
|
|
|
|
|
} |
310
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
1; |
312
|
|
|
|
|
|
|
__END__ |