line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# math-image --path=DragonRounded --lines --scale=10 |
20
|
|
|
|
|
|
|
# math-image --path=DragonRounded,arms=4 --all --output=numbers_dash --size=132x60 |
21
|
|
|
|
|
|
|
# |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
package Math::PlanePath::DragonRounded; |
25
|
1
|
|
|
1
|
|
1470
|
use 5.004; |
|
1
|
|
|
|
|
4
|
|
26
|
1
|
|
|
1
|
|
5
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
47
|
|
27
|
|
|
|
|
|
|
#use List::Util 'min','max'; |
28
|
|
|
|
|
|
|
*min = \&Math::PlanePath::_min; |
29
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
30
|
|
|
|
|
|
|
|
31
|
1
|
|
|
1
|
|
5
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
58
|
|
32
|
|
|
|
|
|
|
$VERSION = 129; |
33
|
1
|
|
|
1
|
|
868
|
use Math::PlanePath; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
54
|
|
34
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
35
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
38
|
1
|
|
|
|
|
46
|
'is_infinite', |
39
|
|
|
|
|
|
|
'round_nearest', |
40
|
1
|
|
|
1
|
|
8
|
'floor'; |
|
1
|
|
|
|
|
2
|
|
41
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
42
|
1
|
|
|
1
|
|
623
|
'round_up_pow'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
55
|
|
43
|
1
|
|
|
1
|
|
721
|
use Math::PlanePath::DragonMidpoint; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
31
|
|
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
46
|
|
|
|
|
|
|
#use Smart::Comments; |
47
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
|
49
|
1
|
|
|
1
|
|
7
|
use constant n_start => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
71
|
|
50
|
1
|
|
|
|
|
120
|
use constant parameter_info_array => [ { name => 'arms', |
51
|
|
|
|
|
|
|
share_key => 'arms_4', |
52
|
|
|
|
|
|
|
display => 'Arms', |
53
|
|
|
|
|
|
|
type => 'integer', |
54
|
|
|
|
|
|
|
minimum => 1, |
55
|
|
|
|
|
|
|
maximum => 4, |
56
|
|
|
|
|
|
|
default => 1, |
57
|
|
|
|
|
|
|
width => 1, |
58
|
|
|
|
|
|
|
description => 'Arms', |
59
|
1
|
|
|
1
|
|
6
|
} ]; |
|
1
|
|
|
|
|
2
|
|
60
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
{ |
62
|
|
|
|
|
|
|
my @x_negative_at_n = (undef, 8,5,2,2); |
63
|
|
|
|
|
|
|
sub x_negative_at_n { |
64
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
65
|
0
|
|
|
|
|
0
|
return $x_negative_at_n[$self->{'arms'}]; |
66
|
|
|
|
|
|
|
} |
67
|
|
|
|
|
|
|
} |
68
|
|
|
|
|
|
|
{ |
69
|
|
|
|
|
|
|
my @y_negative_at_n = (undef, 26,17,8,3); |
70
|
|
|
|
|
|
|
sub y_negative_at_n { |
71
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
72
|
0
|
|
|
|
|
0
|
return $y_negative_at_n[$self->{'arms'}]; |
73
|
|
|
|
|
|
|
} |
74
|
|
|
|
|
|
|
} |
75
|
1
|
|
|
1
|
|
7
|
use constant sumabsxy_minimum => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
46
|
|
76
|
1
|
|
|
1
|
|
6
|
use constant absdiffxy_minimum => 1; # X=Y doesn't occur |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
41
|
|
77
|
1
|
|
|
1
|
|
6
|
use constant rsquared_minimum => 1; # minimum X=1,Y=0 |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
71
|
|
78
|
|
|
|
|
|
|
|
79
|
1
|
|
|
1
|
|
6
|
use constant dx_minimum => -1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
51
|
|
80
|
1
|
|
|
1
|
|
7
|
use constant dx_maximum => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
63
|
|
81
|
1
|
|
|
1
|
|
6
|
use constant dy_minimum => -1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
65
|
|
82
|
1
|
|
|
1
|
|
7
|
use constant dy_maximum => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
88
|
|
83
|
|
|
|
|
|
|
*_UNDOCUMENTED__dxdy_list = \&Math::PlanePath::_UNDOCUMENTED__dxdy_list_eight; |
84
|
1
|
|
|
1
|
|
7
|
use constant dsumxy_minimum => -2; # diagonals |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
43
|
|
85
|
1
|
|
|
1
|
|
6
|
use constant dsumxy_maximum => 2; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
52
|
|
86
|
1
|
|
|
1
|
|
7
|
use constant ddiffxy_minimum => -2; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
56
|
|
87
|
1
|
|
|
1
|
|
6
|
use constant ddiffxy_maximum => 2; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
56
|
|
88
|
1
|
|
|
1
|
|
6
|
use constant dir_maximum_dxdy => (1,-1); # South-East |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
72
|
|
89
|
1
|
|
|
1
|
|
6
|
use constant turn_any_straight => 0; # never straight |
|
1
|
|
|
|
|
66
|
|
|
1
|
|
|
|
|
942
|
|
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
sub new { |
95
|
17
|
|
|
17
|
1
|
1948
|
my $self = shift->SUPER::new(@_); |
96
|
17
|
|
100
|
|
|
85
|
$self->{'arms'} = max(1, min(4, $self->{'arms'} || 1)); |
97
|
17
|
|
|
|
|
47
|
return $self; |
98
|
|
|
|
|
|
|
} |
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
sub n_to_xy { |
101
|
241
|
|
|
241
|
1
|
19702
|
my ($self, $n) = @_; |
102
|
|
|
|
|
|
|
### DragonRounded n_to_xy(): $n |
103
|
|
|
|
|
|
|
|
104
|
241
|
50
|
|
|
|
562
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
105
|
241
|
50
|
|
|
|
604
|
if (is_infinite($n)) { return ($n, $n); } |
|
0
|
|
|
|
|
0
|
|
106
|
|
|
|
|
|
|
|
107
|
241
|
|
|
|
|
405
|
my $frac; |
108
|
|
|
|
|
|
|
{ |
109
|
241
|
|
|
|
|
382
|
my $int = int($n); |
|
241
|
|
|
|
|
356
|
|
110
|
241
|
|
|
|
|
358
|
$frac = $n - $int; |
111
|
241
|
|
|
|
|
353
|
$n = $int; # BigFloat int() gives BigInt, use that |
112
|
|
|
|
|
|
|
} |
113
|
|
|
|
|
|
|
### $frac |
114
|
|
|
|
|
|
|
|
115
|
241
|
|
|
|
|
356
|
my $zero = ($n * 0); # inherit bignum 0 |
116
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
# arm as initial rotation |
118
|
241
|
|
|
|
|
652
|
my $rot = _divrem_mutate ($n, $self->{'arms'}); |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
# two points per edge |
121
|
241
|
|
|
|
|
454
|
my $x_offset = _divrem_mutate ($n, 2); |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
# ENHANCE-ME: sx,sy just from len=3*2**level |
124
|
241
|
|
|
|
|
510
|
my @digits; |
125
|
|
|
|
|
|
|
my @sx; |
126
|
241
|
|
|
|
|
0
|
my @sy; |
127
|
|
|
|
|
|
|
{ |
128
|
241
|
|
|
|
|
288
|
my $sx = $zero + 3; |
|
241
|
|
|
|
|
340
|
|
129
|
241
|
|
|
|
|
363
|
my $sy = $zero; |
130
|
241
|
|
|
|
|
450
|
while ($n) { |
131
|
1818
|
|
|
|
|
2487
|
push @digits, ($n % 2); |
132
|
1818
|
|
|
|
|
2455
|
push @sx, $sx; |
133
|
1818
|
|
|
|
|
2386
|
push @sy, $sy; |
134
|
1818
|
|
|
|
|
2493
|
$n = int($n/2); |
135
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
# (sx,sy) + rot+90(sx,sy) |
137
|
1818
|
|
|
|
|
3334
|
($sx,$sy) = ($sx - $sy, |
138
|
|
|
|
|
|
|
$sy + $sx); |
139
|
|
|
|
|
|
|
} |
140
|
|
|
|
|
|
|
} |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
### @digits |
143
|
241
|
|
|
|
|
332
|
my $rev = 0; |
144
|
241
|
|
|
|
|
316
|
my $x = $zero; |
145
|
241
|
|
|
|
|
327
|
my $y = $zero; |
146
|
241
|
|
|
|
|
319
|
my $above_low_zero = 0; |
147
|
|
|
|
|
|
|
|
148
|
241
|
|
|
|
|
527
|
for (my $i = $#digits; $i >= 0; $i--) { # high to low |
149
|
1818
|
|
|
|
|
2452
|
my $digit = $digits[$i]; |
150
|
1818
|
|
|
|
|
2385
|
my $sx = $sx[$i]; |
151
|
1818
|
|
|
|
|
2317
|
my $sy = $sy[$i]; |
152
|
|
|
|
|
|
|
### at: "$x,$y $digit side $sx,$sy" |
153
|
|
|
|
|
|
|
### $rot |
154
|
|
|
|
|
|
|
|
155
|
1818
|
100
|
|
|
|
2977
|
if ($rot & 2) { |
156
|
828
|
|
|
|
|
1269
|
($sx,$sy) = (-$sx,-$sy); |
157
|
|
|
|
|
|
|
} |
158
|
1818
|
100
|
|
|
|
2935
|
if ($rot & 1) { |
159
|
887
|
|
|
|
|
1343
|
($sx,$sy) = (-$sy,$sx); |
160
|
|
|
|
|
|
|
} |
161
|
|
|
|
|
|
|
### rotated side: "$sx,$sy" |
162
|
|
|
|
|
|
|
|
163
|
1818
|
100
|
|
|
|
2743
|
if ($rev) { |
164
|
886
|
100
|
|
|
|
1275
|
if ($digit) { |
165
|
434
|
|
|
|
|
565
|
$x += -$sy; |
166
|
434
|
|
|
|
|
799
|
$y += $sx; |
167
|
|
|
|
|
|
|
### rev add to: "$x,$y next is still rev" |
168
|
|
|
|
|
|
|
} else { |
169
|
452
|
|
|
|
|
651
|
$above_low_zero = $digits[$i+1]; |
170
|
452
|
|
|
|
|
634
|
$rot ++; |
171
|
452
|
|
|
|
|
859
|
$rev = 0; |
172
|
|
|
|
|
|
|
### rev rot, next is no rev ... |
173
|
|
|
|
|
|
|
} |
174
|
|
|
|
|
|
|
} else { |
175
|
932
|
100
|
|
|
|
1365
|
if ($digit) { |
176
|
550
|
|
|
|
|
677
|
$rot ++; |
177
|
550
|
|
|
|
|
764
|
$x += $sx; |
178
|
550
|
|
|
|
|
694
|
$y += $sy; |
179
|
550
|
|
|
|
|
1016
|
$rev = 1; |
180
|
|
|
|
|
|
|
### plain add to: "$x,$y next is rev" |
181
|
|
|
|
|
|
|
} else { |
182
|
382
|
|
|
|
|
737
|
$above_low_zero = $digits[$i+1]; |
183
|
|
|
|
|
|
|
} |
184
|
|
|
|
|
|
|
} |
185
|
|
|
|
|
|
|
} |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
# Digit above the low zero is the direction of the next turn, 0 for left, |
188
|
|
|
|
|
|
|
# 1 for right, and that determines the y_offset to apply to go across |
189
|
|
|
|
|
|
|
# towards the next edge. When original input $n is odd, which means |
190
|
|
|
|
|
|
|
# $x_offset 0 at this point, there's no y_offset as going along the edge |
191
|
|
|
|
|
|
|
# not across the vertex. |
192
|
|
|
|
|
|
|
# |
193
|
241
|
100
|
|
|
|
444
|
my $y_offset = ($x_offset ? ($above_low_zero ? -$frac : $frac) |
|
|
100
|
|
|
|
|
|
194
|
|
|
|
|
|
|
: 0); |
195
|
241
|
|
|
|
|
417
|
$x_offset = $frac + 1 + $x_offset; |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
### final: "$x,$y rot=$rot above_low_zero=$above_low_zero offset=$x_offset,$y_offset" |
198
|
241
|
100
|
|
|
|
403
|
if ($rot & 2) { |
199
|
108
|
|
|
|
|
175
|
($x_offset,$y_offset) = (-$x_offset,-$y_offset); # rotate 180 |
200
|
|
|
|
|
|
|
} |
201
|
241
|
100
|
|
|
|
427
|
if ($rot & 1) { |
202
|
118
|
|
|
|
|
207
|
($x_offset,$y_offset) = (-$y_offset,$x_offset); # rotate +90 |
203
|
|
|
|
|
|
|
} |
204
|
241
|
|
|
|
|
334
|
$x = $x_offset + $x; |
205
|
241
|
|
|
|
|
336
|
$y = $y_offset + $y; |
206
|
|
|
|
|
|
|
### rotated offset: "$x_offset,$y_offset return $x,$y" |
207
|
241
|
|
|
|
|
717
|
return ($x,$y); |
208
|
|
|
|
|
|
|
} |
209
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
my @yx_rtom_dx = ([undef, 1, 1, undef, 1, 1], |
211
|
|
|
|
|
|
|
[ 0, undef, undef, 1, undef, undef], |
212
|
|
|
|
|
|
|
[ 0, undef, undef, 1, undef, undef], |
213
|
|
|
|
|
|
|
[undef, 1, 1, undef, 1, 1], |
214
|
|
|
|
|
|
|
[ 1, undef, undef, 0, undef, undef], |
215
|
|
|
|
|
|
|
[ 1, undef, undef, 0, undef, undef]); |
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
my @yx_rtom_dy = ([undef, 0, 0, undef, -1, -1], |
218
|
|
|
|
|
|
|
[ 0, undef, undef, 0, undef, undef], |
219
|
|
|
|
|
|
|
[ 0, undef, undef, 0, undef, undef], |
220
|
|
|
|
|
|
|
[undef, -1, -1, undef, 0, 0], |
221
|
|
|
|
|
|
|
[ 0, undef, undef, 0, undef, undef], |
222
|
|
|
|
|
|
|
[ 0, undef, undef, 0, undef, undef]); |
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
sub xy_to_n { |
225
|
279
|
|
|
279
|
1
|
8690
|
my ($self, $x, $y) = @_; |
226
|
|
|
|
|
|
|
### DragonRounded xy_to_n(): "$x, $y" |
227
|
|
|
|
|
|
|
|
228
|
279
|
|
|
|
|
607
|
$x = round_nearest($x); |
229
|
279
|
|
|
|
|
544
|
$y = round_nearest($y); |
230
|
|
|
|
|
|
|
|
231
|
279
|
|
|
|
|
442
|
my $x6 = $x % 6; |
232
|
279
|
|
|
|
|
369
|
my $y6 = $y % 6; |
233
|
279
|
100
|
|
|
|
441
|
my $dx = $yx_rtom_dx[$y6][$x6]; defined $dx or return undef; |
|
279
|
|
|
|
|
543
|
|
234
|
199
|
50
|
|
|
|
331
|
my $dy = $yx_rtom_dy[$y6][$x6]; defined $dy or return undef; |
|
199
|
|
|
|
|
354
|
|
235
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
# my $n = $self->Math::PlanePath::DragonMidpoint::xy_to_n |
237
|
|
|
|
|
|
|
# ($x - floor($x/3) - $dx, |
238
|
|
|
|
|
|
|
# $y - floor($y/3) - $dy); |
239
|
|
|
|
|
|
|
# ### dxy: "$dx, $dy" |
240
|
|
|
|
|
|
|
# ### to: ($x - floor($x/3) - $dx).", ".($y - floor($y/3) - $dy) |
241
|
|
|
|
|
|
|
# ### $n |
242
|
|
|
|
|
|
|
|
243
|
199
|
|
|
|
|
511
|
return $self->Math::PlanePath::DragonMidpoint::xy_to_n |
244
|
|
|
|
|
|
|
($x - floor($x/3) - $dx, |
245
|
|
|
|
|
|
|
$y - floor($y/3) - $dy); |
246
|
|
|
|
|
|
|
} |
247
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
# level 21 n=1048576 .. 2097152 |
249
|
|
|
|
|
|
|
# min 1052677 0b100000001000000000101 at -1026,1 factor 1.99610706057474 |
250
|
|
|
|
|
|
|
# n=2^20 min r^2=2^20 plus a bit |
251
|
|
|
|
|
|
|
# maybe ... |
252
|
|
|
|
|
|
|
# |
253
|
|
|
|
|
|
|
# not exact |
254
|
|
|
|
|
|
|
sub rect_to_n_range { |
255
|
147
|
|
|
147
|
1
|
13338
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
256
|
|
|
|
|
|
|
### DragonRounded rect_to_n_range(): "$x1,$y1 $x2,$y2 arms=$self->{'arms'}" |
257
|
|
|
|
|
|
|
|
258
|
147
|
|
|
|
|
267
|
$x1 = abs($x1); |
259
|
147
|
|
|
|
|
192
|
$x2 = abs($x2); |
260
|
147
|
|
|
|
|
219
|
$y1 = abs($y1); |
261
|
147
|
|
|
|
|
193
|
$y2 = abs($y2); |
262
|
147
|
|
|
|
|
383
|
my $xmax = int(max($x1,$x2) / 3); |
263
|
147
|
|
|
|
|
293
|
my $ymax = int(max($y1,$y2) / 3); |
264
|
|
|
|
|
|
|
return (0, |
265
|
147
|
|
|
|
|
447
|
($xmax*$xmax + $ymax*$ymax + 1) * $self->{'arms'} * 16); |
266
|
|
|
|
|
|
|
} |
267
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
269
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
# each 2 points is a line segment, so 2*DragonMidpoint |
271
|
|
|
|
|
|
|
# level 0 0--1 |
272
|
|
|
|
|
|
|
# level 1 0--1 2--3 |
273
|
|
|
|
|
|
|
# level 2 0--1 2--3 4--5 6--7 |
274
|
|
|
|
|
|
|
# |
275
|
|
|
|
|
|
|
# arms=4 |
276
|
|
|
|
|
|
|
# level 0 0--3 / 1--4 / 2--5 / 3--7 |
277
|
|
|
|
|
|
|
# level 1 |
278
|
|
|
|
|
|
|
# |
279
|
|
|
|
|
|
|
# 2^level segments |
280
|
|
|
|
|
|
|
# 2*2^level rounded points |
281
|
|
|
|
|
|
|
# arms*2^level when multi-arm |
282
|
|
|
|
|
|
|
# numbered starting 0 |
283
|
|
|
|
|
|
|
# |
284
|
|
|
|
|
|
|
sub level_to_n_range { |
285
|
5
|
|
|
5
|
1
|
310
|
my ($self, $level) = @_; |
286
|
5
|
|
|
|
|
20
|
return (0, 2**($level+1) * $self->{'arms'} - 1); |
287
|
|
|
|
|
|
|
} |
288
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
sub n_to_level { |
290
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
291
|
0
|
0
|
|
|
|
|
if ($n < 0) { return undef; } |
|
0
|
|
|
|
|
|
|
292
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
0
|
|
|
|
|
|
|
293
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
294
|
0
|
|
|
|
|
|
_divrem_mutate ($n, 2*$self->{'arms'}); |
295
|
0
|
|
|
|
|
|
my ($pow, $exp) = round_up_pow ($n+1, 2); |
296
|
0
|
|
|
|
|
|
return $exp; |
297
|
|
|
|
|
|
|
} |
298
|
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
300
|
|
|
|
|
|
|
1; |
301
|
|
|
|
|
|
|
__END__ |