line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::PlanePath::CornerReplicate; |
20
|
1
|
|
|
1
|
|
9298
|
use 5.004; |
|
1
|
|
|
|
|
11
|
|
21
|
1
|
|
|
1
|
|
7
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
61
|
|
22
|
|
|
|
|
|
|
#use List::Util 'max'; |
23
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
24
|
|
|
|
|
|
|
|
25
|
1
|
|
|
1
|
|
7
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
8
|
|
|
1
|
|
|
|
|
69
|
|
26
|
|
|
|
|
|
|
$VERSION = 129; |
27
|
1
|
|
|
1
|
|
689
|
use Math::PlanePath; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
50
|
|
28
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
29
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
32
|
1
|
|
|
|
|
47
|
'is_infinite', |
33
|
1
|
|
|
1
|
|
7
|
'round_nearest'; |
|
1
|
|
|
|
|
2
|
|
34
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
35
|
1
|
|
|
|
|
78
|
'round_down_pow', |
36
|
|
|
|
|
|
|
'bit_split_lowtohigh', |
37
|
1
|
|
|
1
|
|
475
|
'digit_split_lowtohigh'; |
|
1
|
|
|
|
|
2
|
|
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
40
|
|
|
|
|
|
|
# use Smart::Comments; |
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
|
43
|
1
|
|
|
1
|
|
7
|
use constant n_start => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
49
|
|
44
|
1
|
|
|
1
|
|
6
|
use constant class_x_negative => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
40
|
|
45
|
1
|
|
|
1
|
|
5
|
use constant class_y_negative => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
82
|
|
46
|
|
|
|
|
|
|
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1; |
47
|
|
|
|
|
|
|
|
48
|
1
|
|
|
1
|
|
6
|
use constant dy_maximum => 1; # dY=1,-1,-3,-7,-15,etc only |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
54
|
|
49
|
1
|
|
|
1
|
|
6
|
use constant dsumxy_maximum => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
46
|
|
50
|
1
|
|
|
1
|
|
5
|
use constant ddiffxy_minimum => -1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
61
|
|
51
|
1
|
|
|
1
|
|
6
|
use constant dir_maximum_dxdy => (2,-1); # ESE |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
53
|
|
52
|
1
|
|
|
1
|
|
6
|
use constant turn_any_straight => 0; # never straight |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
1211
|
|
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
56
|
|
|
|
|
|
|
my @digit_to_x = (0,1,1,0); |
57
|
|
|
|
|
|
|
my @digit_to_y = (0,0,1,1); |
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
sub n_to_xy { |
60
|
286
|
|
|
286
|
1
|
16223
|
my ($self, $n) = @_; |
61
|
|
|
|
|
|
|
### CornerReplicate n_to_xy(): $n |
62
|
|
|
|
|
|
|
|
63
|
286
|
50
|
|
|
|
621
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
64
|
286
|
50
|
|
|
|
717
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
{ |
67
|
286
|
|
|
|
|
470
|
my $int = int($n); |
|
286
|
|
|
|
|
426
|
|
68
|
|
|
|
|
|
|
### $int |
69
|
|
|
|
|
|
|
### $n |
70
|
286
|
100
|
|
|
|
509
|
if ($n != $int) { |
71
|
60
|
|
|
|
|
118
|
my ($x1,$y1) = $self->n_to_xy($int); |
72
|
60
|
|
|
|
|
152
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
73
|
60
|
|
|
|
|
132
|
my $frac = $n - $int; # inherit possible BigFloat |
74
|
60
|
|
|
|
|
89
|
my $dx = $x2-$x1; |
75
|
60
|
|
|
|
|
97
|
my $dy = $y2-$y1; |
76
|
60
|
|
|
|
|
210
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
77
|
|
|
|
|
|
|
} |
78
|
226
|
|
|
|
|
391
|
$n = $int; # BigFloat int() gives BigInt, use that |
79
|
|
|
|
|
|
|
} |
80
|
|
|
|
|
|
|
|
81
|
226
|
|
|
|
|
360
|
my $x = my $y = ($n * 0); # inherit bignum 0 |
82
|
226
|
|
|
|
|
319
|
my $len = $x + 1; # inherit bignum 1 |
83
|
|
|
|
|
|
|
|
84
|
226
|
|
|
|
|
492
|
foreach my $digit (digit_split_lowtohigh($n,4)) { |
85
|
|
|
|
|
|
|
### at: "$x,$y digit=$digit" |
86
|
|
|
|
|
|
|
|
87
|
957
|
|
|
|
|
1342
|
$x += $digit_to_x[$digit] * $len; |
88
|
957
|
|
|
|
|
1243
|
$y += $digit_to_y[$digit] * $len; |
89
|
957
|
|
|
|
|
1316
|
$len *= 2; |
90
|
|
|
|
|
|
|
} |
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
### final: "$x,$y" |
93
|
226
|
|
|
|
|
493
|
return ($x,$y); |
94
|
|
|
|
|
|
|
} |
95
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
my @digit_to_next_dx = (1, 0, -1, -1); |
97
|
|
|
|
|
|
|
my @digit_to_next_dy = (0, 1, 0, 0); |
98
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
# use Smart::Comments; |
100
|
|
|
|
|
|
|
sub n_to_dxdy { |
101
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
102
|
|
|
|
|
|
|
### CornerReplicate n_to_dxdy(): $n |
103
|
|
|
|
|
|
|
|
104
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
105
|
0
|
0
|
|
|
|
0
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
106
|
|
|
|
|
|
|
|
107
|
0
|
|
|
|
|
0
|
my $zero = $n * 0; |
108
|
0
|
|
|
|
|
0
|
my $int = int($n); |
109
|
0
|
|
|
|
|
0
|
$n -= $int; # fractional part |
110
|
|
|
|
|
|
|
|
111
|
0
|
|
|
|
|
0
|
my $digit = _divrem_mutate($int,4); |
112
|
|
|
|
|
|
|
### low digit: $digit |
113
|
|
|
|
|
|
|
|
114
|
0
|
0
|
|
|
|
0
|
if ($digit == 0) { |
115
|
|
|
|
|
|
|
# N = "...0" eg. N=0 |
116
|
|
|
|
|
|
|
# ^ |
117
|
|
|
|
|
|
|
# | this dX=1,dY=0 |
118
|
|
|
|
|
|
|
# N---* next dX=0,dY=1 |
119
|
|
|
|
|
|
|
# dX = dXthis*(1-frac) + dXnext*frac |
120
|
|
|
|
|
|
|
# = 1*(1-frac) + 0*frac |
121
|
|
|
|
|
|
|
# = 1-frac |
122
|
|
|
|
|
|
|
# dY = dYthis*(1-frac) + dYnext*frac |
123
|
|
|
|
|
|
|
# = 0*(1-frac) + 1*frac |
124
|
|
|
|
|
|
|
# = frac |
125
|
0
|
|
|
|
|
0
|
return (1-$n,$n); |
126
|
|
|
|
|
|
|
} |
127
|
|
|
|
|
|
|
|
128
|
0
|
0
|
|
|
|
0
|
if ($digit == 1) { |
129
|
|
|
|
|
|
|
# N = "...1" eg. N=1 |
130
|
|
|
|
|
|
|
# <---* |
131
|
|
|
|
|
|
|
# | this dX=0,dY=1 |
132
|
|
|
|
|
|
|
# N next dX=-1,dY=0 |
133
|
|
|
|
|
|
|
# dX = dXthis*(1-frac) + dXnext*frac |
134
|
|
|
|
|
|
|
# = 0*(1-frac) + -1*frac |
135
|
|
|
|
|
|
|
# = -frac |
136
|
|
|
|
|
|
|
# dY = dYthis*(1-frac) + dYnext*frac |
137
|
|
|
|
|
|
|
# = 1*(1-frac) + 0*frac |
138
|
|
|
|
|
|
|
# = 1-frac |
139
|
0
|
|
|
|
|
0
|
return (-$n,1-$n); |
140
|
|
|
|
|
|
|
} |
141
|
|
|
|
|
|
|
|
142
|
0
|
|
|
|
|
0
|
my ($dx,$dy); |
143
|
0
|
0
|
|
|
|
0
|
if ($digit == 2) { |
144
|
|
|
|
|
|
|
# N="...2" |
145
|
|
|
|
|
|
|
# *---N this dX=-1, dY=0 |
146
|
|
|
|
|
|
|
# \ next dX=power, dY=power |
147
|
|
|
|
|
|
|
# \ |
148
|
|
|
|
|
|
|
# power part for next only needed if $n fractional |
149
|
0
|
|
|
|
|
0
|
$dx = -1; |
150
|
0
|
|
|
|
|
0
|
$dy = 0; |
151
|
|
|
|
|
|
|
|
152
|
0
|
0
|
|
|
|
0
|
if ($n) { |
153
|
|
|
|
|
|
|
# N = "[digit]333..3332" |
154
|
0
|
|
|
|
|
0
|
(my $exp, $digit) = _count_low_base4_3s($int); |
155
|
|
|
|
|
|
|
|
156
|
0
|
0
|
|
|
|
0
|
if ($digit == 1) { |
157
|
|
|
|
|
|
|
# N = "1333..3332" so N=6, N=30, N=126, ... |
158
|
|
|
|
|
|
|
# ^ |
159
|
|
|
|
|
|
|
# | this dX=-1, dY=0 |
160
|
|
|
|
|
|
|
# *---N next dX=0, dY=+1 |
161
|
|
|
|
|
|
|
# dX = dXthis*(1-frac) + dXnext*frac |
162
|
|
|
|
|
|
|
# = -1*(1-frac) + 0*frac |
163
|
|
|
|
|
|
|
# = frac-1 |
164
|
|
|
|
|
|
|
# dY = dYthis*(1-frac) + dYnext*frac |
165
|
|
|
|
|
|
|
# = 0*(1-frac) + 1*frac |
166
|
|
|
|
|
|
|
# = frac |
167
|
0
|
|
|
|
|
0
|
return ($n-1, $n); |
168
|
|
|
|
|
|
|
} |
169
|
|
|
|
|
|
|
|
170
|
0
|
|
|
|
|
0
|
my $next_dx = (2+$zero) ** ($exp+1); |
171
|
0
|
|
|
|
|
0
|
my $next_dy; |
172
|
|
|
|
|
|
|
### power: $dx |
173
|
|
|
|
|
|
|
|
174
|
0
|
0
|
|
|
|
0
|
if ($digit) { # $digit == 2 |
175
|
|
|
|
|
|
|
# N = "2333..3332" so N=10, N=14, N=62, ... |
176
|
|
|
|
|
|
|
# *---N this dX=-1, dY=0 |
177
|
|
|
|
|
|
|
# / next dX=-2^k, dY=-(2^k-1)=1-2^k |
178
|
|
|
|
|
|
|
# / |
179
|
0
|
|
|
|
|
0
|
$next_dx = -$next_dx; |
180
|
0
|
|
|
|
|
0
|
$next_dy = $next_dx+1; |
181
|
|
|
|
|
|
|
} else { # $digit == 0 |
182
|
|
|
|
|
|
|
# N = "0333..3332" so N=2, N=14, N=62, ... |
183
|
|
|
|
|
|
|
# *---N this dX=-1, dY=0 |
184
|
|
|
|
|
|
|
# \ next dX=+2^k, dY=-(2^k-1)=1-2^k |
185
|
|
|
|
|
|
|
# \ |
186
|
0
|
|
|
|
|
0
|
$next_dy = 1-$next_dx; |
187
|
|
|
|
|
|
|
} |
188
|
|
|
|
|
|
|
|
189
|
0
|
|
|
|
|
0
|
my $f1 = 1-$n; |
190
|
0
|
|
|
|
|
0
|
$dx = $f1*$dx + $n*$next_dx; |
191
|
0
|
|
|
|
|
0
|
$dy = $f1*$dy + $n*$next_dy; |
192
|
|
|
|
|
|
|
} |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
} else { # $digit == 3 |
195
|
0
|
|
|
|
|
0
|
my ($exp, $digit) = _count_low_base4_3s($int); |
196
|
|
|
|
|
|
|
### $exp |
197
|
|
|
|
|
|
|
### $digit |
198
|
|
|
|
|
|
|
|
199
|
0
|
0
|
|
|
|
0
|
if ($digit == 1) { |
200
|
|
|
|
|
|
|
# N = "1333..333" eg. N=31 |
201
|
|
|
|
|
|
|
# N+1 = "2000..000" eg. N=32 |
202
|
|
|
|
|
|
|
# *---> |
203
|
|
|
|
|
|
|
# | this dX=0, dY=+1 |
204
|
|
|
|
|
|
|
# N next dX=+1, dY=0 |
205
|
|
|
|
|
|
|
# dX = dXthis*(1-frac) + dXnext*frac |
206
|
|
|
|
|
|
|
# = 0*(1-frac) + 1*frac |
207
|
|
|
|
|
|
|
# = frac |
208
|
|
|
|
|
|
|
# dY = dYthis*(1-frac) + dYnext*frac |
209
|
|
|
|
|
|
|
# = 1*(1-frac) + 0*frac |
210
|
|
|
|
|
|
|
# = 1-frac |
211
|
0
|
|
|
|
|
0
|
return ($n, 1-$n); |
212
|
|
|
|
|
|
|
} |
213
|
|
|
|
|
|
|
|
214
|
0
|
|
|
|
|
0
|
$dx = (2+$zero) ** ($exp+1); |
215
|
|
|
|
|
|
|
### power: $dx |
216
|
0
|
0
|
|
|
|
0
|
if ($digit) { # $digit == 2 |
217
|
|
|
|
|
|
|
# N = "2333..333" so N=11, N=47, N=191 |
218
|
|
|
|
|
|
|
# N |
219
|
|
|
|
|
|
|
# / this dX=-2^k, dY=-(2^k-1)=1-2^k |
220
|
|
|
|
|
|
|
# / next dX=1, dY=0 |
221
|
|
|
|
|
|
|
# *-> |
222
|
0
|
|
|
|
|
0
|
$dx = -$dx; |
223
|
0
|
|
|
|
|
0
|
$dy = $dx+1; |
224
|
|
|
|
|
|
|
} else { # $digit == 0 |
225
|
|
|
|
|
|
|
# N = "0333..333" so N=3, N=15, N=63, ... |
226
|
|
|
|
|
|
|
# N |
227
|
|
|
|
|
|
|
# \ this dX=2^k, dY=-(2^k-1)=1-2^k |
228
|
|
|
|
|
|
|
# \ next dX=1, dY=0 |
229
|
|
|
|
|
|
|
# *-> |
230
|
0
|
|
|
|
|
0
|
$dy = 1-$dx; |
231
|
|
|
|
|
|
|
} |
232
|
|
|
|
|
|
|
|
233
|
0
|
0
|
|
|
|
0
|
if ($n) { |
234
|
|
|
|
|
|
|
# dX*(1-frac) + nextdX*frac |
235
|
|
|
|
|
|
|
# dY*(1-frac) + nextdY*frac |
236
|
|
|
|
|
|
|
# nextdX=1, nextdY=0 |
237
|
0
|
|
|
|
|
0
|
my $f1 = 1-$n; |
238
|
0
|
|
|
|
|
0
|
$dx = $f1*$dx + $n; |
239
|
0
|
|
|
|
|
0
|
$dy = $f1*$dy; |
240
|
|
|
|
|
|
|
} |
241
|
|
|
|
|
|
|
} |
242
|
|
|
|
|
|
|
### final: "$dx,$dy" |
243
|
0
|
|
|
|
|
0
|
return ($dx,$dy); |
244
|
|
|
|
|
|
|
} |
245
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
# Return ($count,$digit) where $count is how many trailing 3s on $n |
247
|
|
|
|
|
|
|
# (possibly 0), and $digit is the next digit above those 3s. |
248
|
|
|
|
|
|
|
sub _count_low_base4_3s { |
249
|
0
|
|
|
0
|
|
0
|
my ($n) = @_; |
250
|
0
|
|
|
|
|
0
|
my $count =0; |
251
|
0
|
|
|
|
|
0
|
for (;;) { |
252
|
0
|
|
|
|
|
0
|
my $digit = _divrem_mutate($n,4); |
253
|
0
|
0
|
|
|
|
0
|
if ($digit != 3) { |
254
|
0
|
|
|
|
|
0
|
return ($count,$digit); |
255
|
|
|
|
|
|
|
} |
256
|
0
|
|
|
|
|
0
|
$count++; |
257
|
|
|
|
|
|
|
} |
258
|
|
|
|
|
|
|
} |
259
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
# my @yx_to_digit = ([0,1], |
261
|
|
|
|
|
|
|
# [3,2]); |
262
|
|
|
|
|
|
|
sub xy_to_n { |
263
|
66
|
|
|
66
|
1
|
1909
|
my ($self, $x, $y) = @_; |
264
|
|
|
|
|
|
|
### CornerReplicate xy_to_n(): "$x, $y" |
265
|
|
|
|
|
|
|
|
266
|
66
|
|
|
|
|
166
|
$x = round_nearest ($x); |
267
|
66
|
|
|
|
|
133
|
$y = round_nearest ($y); |
268
|
66
|
50
|
33
|
|
|
218
|
if ($x < 0 || $y < 0) { |
269
|
0
|
|
|
|
|
0
|
return undef; |
270
|
|
|
|
|
|
|
} |
271
|
66
|
50
|
|
|
|
128
|
if (is_infinite($x)) { return $x; } |
|
0
|
|
|
|
|
0
|
|
272
|
66
|
50
|
|
|
|
136
|
if (is_infinite($y)) { return $y; } |
|
0
|
|
|
|
|
0
|
|
273
|
|
|
|
|
|
|
|
274
|
66
|
|
|
|
|
157
|
my @xbits = bit_split_lowtohigh($x); |
275
|
66
|
|
|
|
|
139
|
my @ybits = bit_split_lowtohigh($y); |
276
|
|
|
|
|
|
|
|
277
|
66
|
|
|
|
|
118
|
my $n = ($x * 0 * $y); # inherit bignum 0 |
278
|
66
|
|
|
|
|
237
|
foreach my $i (reverse 0 .. max($#xbits,$#ybits)) { # high to low |
279
|
281
|
|
|
|
|
361
|
$n *= 4; |
280
|
281
|
|
100
|
|
|
607
|
my $ydigit = $ybits[$i] || 0; |
281
|
281
|
|
100
|
|
|
732
|
$n += 2*$ydigit + (($xbits[$i]||0) ^ $ydigit); |
282
|
|
|
|
|
|
|
} |
283
|
66
|
|
|
|
|
227
|
return $n; |
284
|
|
|
|
|
|
|
} |
285
|
|
|
|
|
|
|
|
286
|
|
|
|
|
|
|
# these tables generated by tools/corner-replicate-table.pl |
287
|
|
|
|
|
|
|
my @min_digit = (0,0,1, 0,0,1, 3,2,2); |
288
|
|
|
|
|
|
|
my @max_digit = (0,1,1, 3,3,2, 3,3,2); |
289
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
# exact |
291
|
|
|
|
|
|
|
sub rect_to_n_range { |
292
|
83
|
|
|
83
|
1
|
7406
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
293
|
|
|
|
|
|
|
### CornerReplicate rect_to_n_range(): "$x1,$y1 $x2,$y2" |
294
|
|
|
|
|
|
|
|
295
|
83
|
|
|
|
|
227
|
$x1 = round_nearest ($x1); |
296
|
83
|
|
|
|
|
164
|
$y1 = round_nearest ($y1); |
297
|
83
|
|
|
|
|
162
|
$x2 = round_nearest ($x2); |
298
|
83
|
|
|
|
|
149
|
$y2 = round_nearest ($y2); |
299
|
83
|
50
|
|
|
|
199
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
300
|
83
|
50
|
|
|
|
157
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
301
|
|
|
|
|
|
|
### rect: "X = $x1 to $x2, Y = $y1 to $y2" |
302
|
|
|
|
|
|
|
|
303
|
83
|
50
|
33
|
|
|
304
|
if ($x2 < 0 || $y2 < 0) { |
304
|
|
|
|
|
|
|
### rectangle outside first quadrant ... |
305
|
0
|
|
|
|
|
0
|
return (1, 0); |
306
|
|
|
|
|
|
|
} |
307
|
|
|
|
|
|
|
|
308
|
83
|
|
|
|
|
201
|
my ($len, $level) = round_down_pow (max($x2,$y2), 2); |
309
|
|
|
|
|
|
|
### $len |
310
|
|
|
|
|
|
|
### $level |
311
|
83
|
50
|
|
|
|
195
|
if (is_infinite($level)) { |
312
|
0
|
|
|
|
|
0
|
return (0,$level); |
313
|
|
|
|
|
|
|
} |
314
|
|
|
|
|
|
|
|
315
|
83
|
|
|
|
|
185
|
my $n_min = my $n_max |
316
|
|
|
|
|
|
|
= my $x_min = my $y_min |
317
|
|
|
|
|
|
|
= my $x_max = my $y_max |
318
|
|
|
|
|
|
|
= ($x1 * 0 * $x2 * $y1 * $y2); # inherit bignum 0 |
319
|
|
|
|
|
|
|
|
320
|
83
|
|
|
|
|
186
|
while ($level-- >= 0) { |
321
|
|
|
|
|
|
|
### $level |
322
|
|
|
|
|
|
|
|
323
|
|
|
|
|
|
|
{ |
324
|
311
|
|
|
|
|
469
|
my $x_cmp = $x_max + $len; |
325
|
311
|
|
|
|
|
425
|
my $y_cmp = $y_max + $len; |
326
|
311
|
100
|
|
|
|
716
|
my $digit = $max_digit[($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0) |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
327
|
|
|
|
|
|
|
+ ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)]; |
328
|
311
|
|
|
|
|
442
|
$n_max = 4*$n_max + $digit; |
329
|
311
|
100
|
|
|
|
538
|
if ($digit_to_x[$digit]) { $x_max += $len; } |
|
175
|
|
|
|
|
247
|
|
330
|
311
|
100
|
|
|
|
529
|
if ($digit_to_y[$digit]) { $y_max += $len; } |
|
145
|
|
|
|
|
219
|
|
331
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
# my $key = ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0) |
333
|
|
|
|
|
|
|
# + ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0); |
334
|
|
|
|
|
|
|
### max ... |
335
|
|
|
|
|
|
|
### len: sprintf "%#X", $len |
336
|
|
|
|
|
|
|
### $x_cmp |
337
|
|
|
|
|
|
|
### $y_cmp |
338
|
|
|
|
|
|
|
# ### $key |
339
|
|
|
|
|
|
|
### $digit |
340
|
|
|
|
|
|
|
### n_max: sprintf "%#X", $n_max |
341
|
|
|
|
|
|
|
### $x_max |
342
|
|
|
|
|
|
|
### $y_max |
343
|
|
|
|
|
|
|
} |
344
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
{ |
346
|
311
|
|
|
|
|
413
|
my $x_cmp = $x_min + $len; |
|
311
|
|
|
|
|
420
|
|
|
311
|
|
|
|
|
419
|
|
347
|
311
|
|
|
|
|
403
|
my $y_cmp = $y_min + $len; |
348
|
311
|
100
|
|
|
|
717
|
my $digit = $min_digit[($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0) |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
349
|
|
|
|
|
|
|
+ ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)]; |
350
|
311
|
|
|
|
|
449
|
$n_min = 4*$n_min + $digit; |
351
|
311
|
100
|
|
|
|
523
|
if ($digit_to_x[$digit]) { $x_min += $len; } |
|
166
|
|
|
|
|
214
|
|
352
|
311
|
100
|
|
|
|
528
|
if ($digit_to_y[$digit]) { $y_min += $len; } |
|
129
|
|
|
|
|
197
|
|
353
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
# my $key = ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0) |
355
|
|
|
|
|
|
|
# + ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0); |
356
|
|
|
|
|
|
|
### min ... |
357
|
|
|
|
|
|
|
### len: sprintf "%#X", $len |
358
|
|
|
|
|
|
|
### $x_cmp |
359
|
|
|
|
|
|
|
### $y_cmp |
360
|
|
|
|
|
|
|
# ### $key |
361
|
|
|
|
|
|
|
### $digit |
362
|
|
|
|
|
|
|
### n_min: sprintf "%#X", $n_min |
363
|
|
|
|
|
|
|
### $x_min |
364
|
|
|
|
|
|
|
### $y_min |
365
|
|
|
|
|
|
|
} |
366
|
311
|
|
|
|
|
548
|
$len /= 2; |
367
|
|
|
|
|
|
|
} |
368
|
|
|
|
|
|
|
|
369
|
83
|
|
|
|
|
210
|
return ($n_min, $n_max); |
370
|
|
|
|
|
|
|
} |
371
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
373
|
|
|
|
|
|
|
# levels |
374
|
|
|
|
|
|
|
|
375
|
1
|
|
|
1
|
|
567
|
use Math::PlanePath::HilbertCurve; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
63
|
|
376
|
|
|
|
|
|
|
*level_to_n_range = \&Math::PlanePath::HilbertCurve::level_to_n_range; |
377
|
|
|
|
|
|
|
*n_to_level = \&Math::PlanePath::HilbertCurve::n_to_level; |
378
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
380
|
|
|
|
|
|
|
1; |
381
|
|
|
|
|
|
|
__END__ |