| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
# math-image --path=ComplexPlus --all --scale=5 |
|
21
|
|
|
|
|
|
|
# |
|
22
|
|
|
|
|
|
|
# math-image --path=ComplexPlus --expression='i<128?i:0' --output=numbers --size=132x40 |
|
23
|
|
|
|
|
|
|
# |
|
24
|
|
|
|
|
|
|
# Realpart: |
|
25
|
|
|
|
|
|
|
# math-image --path=ComplexPlus,realpart=2 --expression='i<50?i:0' --output=numbers --size=180 |
|
26
|
|
|
|
|
|
|
# |
|
27
|
|
|
|
|
|
|
# Arms: |
|
28
|
|
|
|
|
|
|
# math-image --path=ComplexPlus,arms=2 --expression='i<64?i:0' --output=numbers --size=79 |
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
package Math::PlanePath::ComplexPlus; |
|
33
|
1
|
|
|
1
|
|
9590
|
use 5.004; |
|
|
1
|
|
|
|
|
10
|
|
|
34
|
1
|
|
|
1
|
|
7
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
52
|
|
|
35
|
|
|
|
|
|
|
#use List::Util 'max'; |
|
36
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
37
|
|
|
|
|
|
|
|
|
38
|
1
|
|
|
1
|
|
6
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
71
|
|
|
39
|
|
|
|
|
|
|
$VERSION = 129; |
|
40
|
|
|
|
|
|
|
|
|
41
|
1
|
|
|
1
|
|
707
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
50
|
|
|
42
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
43
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
|
44
|
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
46
|
1
|
|
|
|
|
46
|
'is_infinite', |
|
47
|
1
|
|
|
1
|
|
7
|
'round_nearest'; |
|
|
1
|
|
|
|
|
2
|
|
|
48
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
49
|
1
|
|
|
|
|
68
|
'round_up_pow', |
|
50
|
|
|
|
|
|
|
'digit_split_lowtohigh', |
|
51
|
1
|
|
|
1
|
|
470
|
'digit_join_lowtohigh'; |
|
|
1
|
|
|
|
|
2
|
|
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
54
|
|
|
|
|
|
|
#use Smart::Comments; |
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
|
|
57
|
1
|
|
|
1
|
|
7
|
use constant n_start => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
93
|
|
|
58
|
1
|
|
|
|
|
1229
|
use constant parameter_info_array => |
|
59
|
|
|
|
|
|
|
[ { name => 'realpart', |
|
60
|
|
|
|
|
|
|
display => 'Real Part', |
|
61
|
|
|
|
|
|
|
type => 'integer', |
|
62
|
|
|
|
|
|
|
default => 1, |
|
63
|
|
|
|
|
|
|
minimum => 1, |
|
64
|
|
|
|
|
|
|
width => 2, |
|
65
|
|
|
|
|
|
|
description => 'Real part r in the i+r complex base.', |
|
66
|
|
|
|
|
|
|
}, |
|
67
|
|
|
|
|
|
|
{ name => 'arms', |
|
68
|
|
|
|
|
|
|
share_key => 'arms_2', |
|
69
|
|
|
|
|
|
|
display => 'Arms', |
|
70
|
|
|
|
|
|
|
type => 'integer', |
|
71
|
|
|
|
|
|
|
minimum => 1, |
|
72
|
|
|
|
|
|
|
maximum => 2, |
|
73
|
|
|
|
|
|
|
default => 1, |
|
74
|
|
|
|
|
|
|
width => 1, |
|
75
|
|
|
|
|
|
|
description => 'Arms', |
|
76
|
|
|
|
|
|
|
when_name => 'realpart', |
|
77
|
|
|
|
|
|
|
when_value => '1', |
|
78
|
|
|
|
|
|
|
}, |
|
79
|
1
|
|
|
1
|
|
14
|
]; |
|
|
1
|
|
|
|
|
4
|
|
|
80
|
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
# b=i+r |
|
82
|
|
|
|
|
|
|
# theta = atan(1/r) |
|
83
|
|
|
|
|
|
|
sub x_negative_at_n { |
|
84
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
85
|
0
|
0
|
|
|
|
0
|
if ($self->{'realpart'} == 1) { return 8; } |
|
|
0
|
|
|
|
|
0
|
|
|
86
|
0
|
|
|
|
|
0
|
return $self->{'norm'} ** _ceil((2*atan2(1,1)) / atan2(1,$self->{'realpart'})); |
|
87
|
|
|
|
|
|
|
} |
|
88
|
|
|
|
|
|
|
sub y_negative_at_n { |
|
89
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
90
|
0
|
0
|
|
|
|
0
|
if ($self->{'realpart'} == 1) { return 32; } |
|
|
0
|
|
|
|
|
0
|
|
|
91
|
0
|
|
|
|
|
0
|
return $self->{'norm'} ** _ceil((4*atan2(1,1)) / atan2(1,$self->{'realpart'})); |
|
92
|
|
|
|
|
|
|
} |
|
93
|
|
|
|
|
|
|
sub _ceil { |
|
94
|
0
|
|
|
0
|
|
0
|
my ($x) = @_; |
|
95
|
0
|
|
|
|
|
0
|
my $int = int($x); |
|
96
|
0
|
0
|
|
|
|
0
|
return ($x > $int ? $int+1 : $int); |
|
97
|
|
|
|
|
|
|
} |
|
98
|
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
sub absdx_minimum { |
|
100
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
101
|
0
|
0
|
|
|
|
0
|
return ($self->{'realpart'} == 1 |
|
102
|
|
|
|
|
|
|
? 0 # i+1 N=1 dX=0,dY=1 |
|
103
|
|
|
|
|
|
|
: 1); # i+r otherwise always diff |
|
104
|
|
|
|
|
|
|
} |
|
105
|
|
|
|
|
|
|
# use constant dir_maximum_dxdy => (0,0); # supremum, almost full way |
|
106
|
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
sub turn_any_straight { |
|
108
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
109
|
0
|
|
|
|
|
0
|
return ($self->{'realpart'} != 1); # realpart=1 never straight |
|
110
|
|
|
|
|
|
|
} |
|
111
|
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
114
|
|
|
|
|
|
|
sub new { |
|
115
|
5
|
|
|
5
|
1
|
1366
|
my $self = shift->SUPER::new(@_); |
|
116
|
|
|
|
|
|
|
|
|
117
|
5
|
|
|
|
|
14
|
my $realpart = $self->{'realpart'}; |
|
118
|
5
|
100
|
66
|
|
|
20
|
if (! defined $realpart || $realpart < 1) { |
|
119
|
4
|
|
|
|
|
10
|
$self->{'realpart'} = $realpart = 1; |
|
120
|
|
|
|
|
|
|
} |
|
121
|
5
|
|
|
|
|
13
|
$self->{'norm'} = $realpart*$realpart + 1; |
|
122
|
|
|
|
|
|
|
|
|
123
|
5
|
|
|
|
|
81
|
my $arms = $self->{'arms'}; |
|
124
|
5
|
100
|
66
|
|
|
28
|
if (! defined $arms || $arms <= 0 || $realpart != 1) { $arms = 1; } |
|
|
4
|
50
|
66
|
|
|
8
|
|
|
125
|
0
|
|
|
|
|
0
|
elsif ($arms > 2) { $arms = 2; } |
|
126
|
5
|
|
|
|
|
8
|
$self->{'arms'} = $arms; |
|
127
|
|
|
|
|
|
|
|
|
128
|
5
|
|
|
|
|
14
|
return $self; |
|
129
|
|
|
|
|
|
|
} |
|
130
|
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
sub n_to_xy { |
|
132
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
133
|
|
|
|
|
|
|
### ComplexPlus n_to_xy(): $n |
|
134
|
|
|
|
|
|
|
|
|
135
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
136
|
0
|
0
|
|
|
|
0
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
137
|
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
{ |
|
139
|
0
|
|
|
|
|
0
|
my $int = int($n); |
|
|
0
|
|
|
|
|
0
|
|
|
140
|
|
|
|
|
|
|
### $int |
|
141
|
|
|
|
|
|
|
### $n |
|
142
|
0
|
0
|
|
|
|
0
|
if ($n != $int) { |
|
143
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
|
144
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'}); |
|
145
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat |
|
146
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
|
147
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
|
148
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
|
149
|
|
|
|
|
|
|
} |
|
150
|
0
|
|
|
|
|
0
|
$n = $int; # BigFloat int() gives BigInt, use that |
|
151
|
|
|
|
|
|
|
} |
|
152
|
|
|
|
|
|
|
|
|
153
|
0
|
|
|
|
|
0
|
my $realpart = $self->{'realpart'}; |
|
154
|
0
|
|
|
|
|
0
|
my $norm = $self->{'norm'}; |
|
155
|
|
|
|
|
|
|
### $norm |
|
156
|
|
|
|
|
|
|
### $realpart |
|
157
|
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
# for i+1, arm=0 start X=0,Y=0, arm=1 start X=0,Y=1 |
|
159
|
0
|
|
|
|
|
0
|
my $x = 0; |
|
160
|
0
|
|
|
|
|
0
|
my $y = _divrem_mutate ($n, $self->{'arms'}); |
|
161
|
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
# for i+1, arm=0 start dX=1,dY=0, arm=1 start dX=-1,dY=0 |
|
163
|
0
|
|
|
|
|
0
|
my $dy = ($n * 0); # 0, inheriting bignum from $n |
|
164
|
0
|
0
|
|
|
|
0
|
my $dx = ($y ? -1 : 1) + $dy; # inheriting bignum from $n |
|
165
|
|
|
|
|
|
|
|
|
166
|
0
|
|
|
|
|
0
|
foreach my $digit (digit_split_lowtohigh($n,$norm)) { |
|
167
|
|
|
|
|
|
|
### at: "$x,$y digit=$digit dxdy=$dx,$dy" |
|
168
|
|
|
|
|
|
|
|
|
169
|
0
|
|
|
|
|
0
|
$x += $dx * $digit; |
|
170
|
0
|
|
|
|
|
0
|
$y += $dy * $digit; |
|
171
|
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
# multiply i+r, ie. (dx,dy) = (dx + i*dy)*(i+$realpart) |
|
173
|
0
|
|
|
|
|
0
|
($dx,$dy) = ($realpart*$dx - $dy, $dx + $realpart*$dy); |
|
174
|
|
|
|
|
|
|
} |
|
175
|
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
### final: "$x,$y" |
|
177
|
0
|
|
|
|
|
0
|
return ($x,$y); |
|
178
|
|
|
|
|
|
|
} |
|
179
|
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
sub xy_to_n { |
|
181
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x, $y) = @_; |
|
182
|
|
|
|
|
|
|
### ComplexPlus xy_to_n(): "$x, $y" |
|
183
|
|
|
|
|
|
|
|
|
184
|
0
|
|
|
|
|
0
|
$x = round_nearest ($x); |
|
185
|
0
|
|
|
|
|
0
|
$y = round_nearest ($y); |
|
186
|
|
|
|
|
|
|
|
|
187
|
0
|
|
|
|
|
0
|
my $realpart = $self->{'realpart'}; |
|
188
|
|
|
|
|
|
|
{ |
|
189
|
0
|
|
|
|
|
0
|
my $rx = $realpart*$x; |
|
|
0
|
|
|
|
|
0
|
|
|
190
|
0
|
|
|
|
|
0
|
my $ry = $realpart*$y; |
|
191
|
0
|
|
|
|
|
0
|
foreach my $overflow ($rx+$ry, $rx-$ry) { |
|
192
|
0
|
0
|
|
|
|
0
|
if (is_infinite($overflow)) { return $overflow; } |
|
|
0
|
|
|
|
|
0
|
|
|
193
|
|
|
|
|
|
|
} |
|
194
|
|
|
|
|
|
|
} |
|
195
|
|
|
|
|
|
|
|
|
196
|
0
|
|
|
|
|
0
|
my $orig_x = $x; |
|
197
|
0
|
|
|
|
|
0
|
my $orig_y = $y; |
|
198
|
|
|
|
|
|
|
|
|
199
|
0
|
|
|
|
|
0
|
my $norm = $self->{'norm'}; |
|
200
|
0
|
|
|
|
|
0
|
my $zero = ($x * 0 * $y); # inherit bignum 0 |
|
201
|
0
|
|
|
|
|
0
|
my @n; # digits low to high |
|
202
|
|
|
|
|
|
|
|
|
203
|
0
|
|
|
|
|
0
|
my $prev_x = 0; |
|
204
|
0
|
|
|
|
|
0
|
my $prev_y = 0; |
|
205
|
0
|
|
0
|
|
|
0
|
while ($x || $y) { |
|
206
|
0
|
|
|
|
|
0
|
my $neg_y = $x - $y*$realpart; |
|
207
|
0
|
|
|
|
|
0
|
my $digit = $neg_y % $norm; |
|
208
|
|
|
|
|
|
|
### at: "$x,$y n=$n digit $digit" |
|
209
|
|
|
|
|
|
|
|
|
210
|
0
|
|
|
|
|
0
|
push @n, $digit; |
|
211
|
0
|
|
|
|
|
0
|
$x -= $digit; |
|
212
|
0
|
|
|
|
|
0
|
$neg_y -= $digit; |
|
213
|
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
### assert: ($neg_y % $norm) == 0 |
|
215
|
|
|
|
|
|
|
### assert: (($x * $realpart + $y) % $norm) == 0 |
|
216
|
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
# divide i+r = mul (i-r)/(i^2 - r^2) |
|
218
|
|
|
|
|
|
|
# = mul (i-r)/-norm |
|
219
|
|
|
|
|
|
|
# is (i*y + x) * (i-realpart)/-norm |
|
220
|
|
|
|
|
|
|
# x = [ x*-realpart - y ] / -norm |
|
221
|
|
|
|
|
|
|
# = [ x*realpart + y ] / norm |
|
222
|
|
|
|
|
|
|
# y = [ y*-realpart + x ] / -norm |
|
223
|
|
|
|
|
|
|
# = [ y*realpart - x ] / norm |
|
224
|
|
|
|
|
|
|
# |
|
225
|
0
|
|
|
|
|
0
|
($x,$y) = (($x*$realpart+$y)/$norm, -$neg_y/$norm); |
|
226
|
|
|
|
|
|
|
|
|
227
|
0
|
0
|
0
|
|
|
0
|
if ($x == $prev_x && $y == $prev_y) { |
|
228
|
0
|
|
|
|
|
0
|
last; |
|
229
|
|
|
|
|
|
|
} |
|
230
|
0
|
|
|
|
|
0
|
$prev_x = $x; |
|
231
|
0
|
|
|
|
|
0
|
$prev_y = $y; |
|
232
|
|
|
|
|
|
|
} |
|
233
|
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
### final: "$x,$y n=$n cf arms $self->{'arms'}" |
|
235
|
|
|
|
|
|
|
|
|
236
|
0
|
0
|
|
|
|
0
|
if ($y) { |
|
237
|
0
|
0
|
|
|
|
0
|
if ($self->{'arms'} > 1) { |
|
238
|
|
|
|
|
|
|
### not on first arm, re-run as: -$orig_x, 1-$orig_y |
|
239
|
0
|
|
|
|
|
0
|
local $self->{'arms'} = 1; |
|
240
|
0
|
|
|
|
|
0
|
my $n = $self->xy_to_n(-$orig_x,1-$orig_y); |
|
241
|
0
|
0
|
|
|
|
0
|
if (defined $n) { |
|
242
|
0
|
|
|
|
|
0
|
return 1 + 2*$n; # 180 degrees |
|
243
|
|
|
|
|
|
|
} |
|
244
|
|
|
|
|
|
|
} |
|
245
|
|
|
|
|
|
|
### X,Y not visited |
|
246
|
0
|
|
|
|
|
0
|
return undef; |
|
247
|
|
|
|
|
|
|
} |
|
248
|
|
|
|
|
|
|
|
|
249
|
0
|
|
|
|
|
0
|
my $n = digit_join_lowtohigh (\@n, $norm, $zero); |
|
250
|
0
|
0
|
|
|
|
0
|
if ($self->{'arms'} > 1) { |
|
251
|
0
|
|
|
|
|
0
|
$n *= 2; |
|
252
|
|
|
|
|
|
|
} |
|
253
|
0
|
|
|
|
|
0
|
return $n; |
|
254
|
|
|
|
|
|
|
} |
|
255
|
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
# not exact |
|
257
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
258
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
259
|
|
|
|
|
|
|
### ComplexPlus rect_to_n_range(): "$x1,$y1 $x2,$y2" |
|
260
|
|
|
|
|
|
|
|
|
261
|
0
|
|
|
|
|
0
|
my $xm = max(abs($x1),abs($x2)); |
|
262
|
0
|
|
|
|
|
0
|
my $ym = max(abs($y1),abs($y2)); |
|
263
|
0
|
|
|
|
|
0
|
my $n_hi = ($xm*$xm + $ym*$ym) * $self->{'arms'}; |
|
264
|
0
|
0
|
|
|
|
0
|
if ($self->{'realpart'} == 1) { |
|
265
|
0
|
|
|
|
|
0
|
$n_hi *= 16; # 2**4 |
|
266
|
|
|
|
|
|
|
} |
|
267
|
0
|
|
|
|
|
0
|
return (0, int($n_hi)); |
|
268
|
|
|
|
|
|
|
} |
|
269
|
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
271
|
|
|
|
|
|
|
# levels |
|
272
|
|
|
|
|
|
|
|
|
273
|
|
|
|
|
|
|
sub level_to_n_range { |
|
274
|
9
|
|
|
9
|
1
|
805
|
my ($self, $level) = @_; |
|
275
|
9
|
|
|
|
|
35
|
return (0, $self->{'norm'}**$level * $self->{'arms'} - 1); |
|
276
|
|
|
|
|
|
|
} |
|
277
|
|
|
|
|
|
|
sub n_to_level { |
|
278
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
|
279
|
0
|
0
|
|
|
|
|
if ($n < 0) { return undef; } |
|
|
0
|
|
|
|
|
|
|
|
280
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
|
0
|
|
|
|
|
|
|
|
281
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
|
282
|
0
|
|
|
|
|
|
_divrem_mutate ($n, $self->{'arms'}); |
|
283
|
0
|
|
|
|
|
|
my ($pow, $exp) = round_up_pow ($n+1, $self->{'norm'}); |
|
284
|
0
|
|
|
|
|
|
return $exp; |
|
285
|
|
|
|
|
|
|
} |
|
286
|
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
288
|
|
|
|
|
|
|
1; |
|
289
|
|
|
|
|
|
|
__END__ |