line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# http://www.cisl.ucar.edu/css/papers/sfc3.pdf |
20
|
|
|
|
|
|
|
# Hilbert + Peano-meander |
21
|
|
|
|
|
|
|
# |
22
|
|
|
|
|
|
|
# http://oceans11.lanl.gov/svn/POP/trunk/pop/source/distribution.F90 |
23
|
|
|
|
|
|
|
# |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
package Math::PlanePath::CincoCurve; |
26
|
1
|
|
|
1
|
|
9190
|
use 5.004; |
|
1
|
|
|
|
|
10
|
|
27
|
1
|
|
|
1
|
|
5
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
66
|
|
28
|
|
|
|
|
|
|
#use List::Util 'min', 'max'; |
29
|
|
|
|
|
|
|
*min = \&Math::PlanePath::_min; |
30
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
31
|
|
|
|
|
|
|
|
32
|
1
|
|
|
1
|
|
7
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
70
|
|
33
|
|
|
|
|
|
|
$VERSION = 129; |
34
|
1
|
|
|
1
|
|
694
|
use Math::PlanePath; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
30
|
|
35
|
1
|
|
|
1
|
|
425
|
use Math::PlanePath::Base::NSEW; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
41
|
|
36
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath::Base::NSEW', |
37
|
|
|
|
|
|
|
'Math::PlanePath'); |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
40
|
1
|
|
|
|
|
107
|
'is_infinite', |
41
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
1
|
|
|
|
|
1
|
|
42
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
43
|
1
|
|
|
|
|
68
|
'round_down_pow', |
44
|
|
|
|
|
|
|
'digit_split_lowtohigh', |
45
|
1
|
|
|
1
|
|
490
|
'digit_join_lowtohigh'; |
|
1
|
|
|
|
|
3
|
|
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
|
48
|
1
|
|
|
1
|
|
7
|
use constant n_start => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
48
|
|
49
|
1
|
|
|
1
|
|
5
|
use constant class_x_negative => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
39
|
|
50
|
1
|
|
|
1
|
|
5
|
use constant class_y_negative => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
1753
|
|
51
|
|
|
|
|
|
|
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1; |
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
55
|
|
|
|
|
|
|
# tables generated by tools/dekking-curve-table.pl |
56
|
|
|
|
|
|
|
# |
57
|
|
|
|
|
|
|
my @next_state = ( 0, 0,50,50,50, # 0 |
58
|
|
|
|
|
|
|
75,25,25,50,50, |
59
|
|
|
|
|
|
|
0, 0,75,50, 0, |
60
|
|
|
|
|
|
|
0, 0,25,75,75, |
61
|
|
|
|
|
|
|
0,25,75,75, 0, |
62
|
|
|
|
|
|
|
25,25,75,75,75, # 25 |
63
|
|
|
|
|
|
|
50, 0, 0,75,75, |
64
|
|
|
|
|
|
|
25,25,50,75,25, |
65
|
|
|
|
|
|
|
25,25, 0,50,50, |
66
|
|
|
|
|
|
|
25, 0,50,50,25, |
67
|
|
|
|
|
|
|
50,50, 0, 0, 0, # 50 |
68
|
|
|
|
|
|
|
25,75,75, 0, 0, |
69
|
|
|
|
|
|
|
50,50,25, 0,50, |
70
|
|
|
|
|
|
|
50,50,75,25,25, |
71
|
|
|
|
|
|
|
50,75,25,25,50, |
72
|
|
|
|
|
|
|
75,75,25,25,25, # 75 |
73
|
|
|
|
|
|
|
0,50,50,25,25, |
74
|
|
|
|
|
|
|
75,75, 0,25,75, |
75
|
|
|
|
|
|
|
75,75,50, 0, 0, |
76
|
|
|
|
|
|
|
75,50, 0, 0,75); |
77
|
|
|
|
|
|
|
my @digit_to_x = (0,1,2,2,2, 1,1,0,0,0, 0,1,1,2,2, 3,4,4,3,3, 4,4,3,3,4, |
78
|
|
|
|
|
|
|
4,3,2,2,2, 3,3,4,4,4, 4,3,3,2,2, 1,0,0,1,1, 0,0,1,1,0, |
79
|
|
|
|
|
|
|
0,0,0,1,2, 2,1,1,2,3, 4,4,3,3,4, 4,4,3,3,2, 2,1,1,0,0, |
80
|
|
|
|
|
|
|
4,4,4,3,2, 2,3,3,2,1, 0,0,1,1,0, 0,0,1,1,2, 2,3,3,4,4); |
81
|
|
|
|
|
|
|
my @digit_to_y = (0,0,0,1,2, 2,1,1,2,3, 4,4,3,3,4, 4,4,3,3,2, 2,1,1,0,0, |
82
|
|
|
|
|
|
|
4,4,4,3,2, 2,3,3,2,1, 0,0,1,1,0, 0,0,1,1,2, 2,3,3,4,4, |
83
|
|
|
|
|
|
|
0,1,2,2,2, 1,1,0,0,0, 0,1,1,2,2, 3,4,4,3,3, 4,4,3,3,4, |
84
|
|
|
|
|
|
|
4,3,2,2,2, 3,3,4,4,4, 4,3,3,2,2, 1,0,0,1,1, 0,0,1,1,0); |
85
|
|
|
|
|
|
|
my @yx_to_digit = ( 0, 1, 2,23,24, # 0 |
86
|
|
|
|
|
|
|
7, 6, 3,22,21, |
87
|
|
|
|
|
|
|
8, 5, 4,19,20, |
88
|
|
|
|
|
|
|
9,12,13,18,17, |
89
|
|
|
|
|
|
|
10,11,14,15,16, |
90
|
|
|
|
|
|
|
16,15,14,11,10, # 25 |
91
|
|
|
|
|
|
|
17,18,13,12, 9, |
92
|
|
|
|
|
|
|
20,19, 4, 5, 8, |
93
|
|
|
|
|
|
|
21,22, 3, 6, 7, |
94
|
|
|
|
|
|
|
24,23, 2, 1, 0, |
95
|
|
|
|
|
|
|
0, 7, 8, 9,10, # 50 |
96
|
|
|
|
|
|
|
1, 6, 5,12,11, |
97
|
|
|
|
|
|
|
2, 3, 4,13,14, |
98
|
|
|
|
|
|
|
23,22,19,18,15, |
99
|
|
|
|
|
|
|
24,21,20,17,16, |
100
|
|
|
|
|
|
|
16,17,20,21,24, # 75 |
101
|
|
|
|
|
|
|
15,18,19,22,23, |
102
|
|
|
|
|
|
|
14,13, 4, 3, 2, |
103
|
|
|
|
|
|
|
11,12, 5, 6, 1, |
104
|
|
|
|
|
|
|
10, 9, 8, 7, 0); |
105
|
|
|
|
|
|
|
my @min_digit = ( 0, 0, 0, 0, 0, # 0 |
106
|
|
|
|
|
|
|
7, 7, 7, 7, 8, |
107
|
|
|
|
|
|
|
8, 8, 9, 9,10, |
108
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
109
|
|
|
|
|
|
|
6, 5, 5, 5, 5, |
110
|
|
|
|
|
|
|
5, 5, 9, 9,10, # 25 |
111
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
112
|
|
|
|
|
|
|
3, 3, 3, 3, 4, |
113
|
|
|
|
|
|
|
4, 4, 9, 9,10, |
114
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
115
|
|
|
|
|
|
|
3, 3, 3, 3, 4, # 50 |
116
|
|
|
|
|
|
|
4, 4, 9, 9,10, |
117
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
118
|
|
|
|
|
|
|
3, 3, 3, 3, 4, |
119
|
|
|
|
|
|
|
4, 4, 9, 9,10, |
120
|
|
|
|
|
|
|
1, 1, 1, 1, 1, # 75 |
121
|
|
|
|
|
|
|
6, 5, 5, 5, 5, |
122
|
|
|
|
|
|
|
5, 5,12,11,11, |
123
|
|
|
|
|
|
|
1, 1, 1, 1, 1, |
124
|
|
|
|
|
|
|
3, 3, 3, 3, 4, |
125
|
|
|
|
|
|
|
4, 4,12,11,11, # 100 |
126
|
|
|
|
|
|
|
1, 1, 1, 1, 1, |
127
|
|
|
|
|
|
|
3, 3, 3, 3, 4, |
128
|
|
|
|
|
|
|
4, 4,12,11,11, |
129
|
|
|
|
|
|
|
1, 1, 1, 1, 1, |
130
|
|
|
|
|
|
|
3, 3, 3, 3, 4, # 125 |
131
|
|
|
|
|
|
|
4, 4,12,11,11, |
132
|
|
|
|
|
|
|
2, 2, 2, 2, 2, |
133
|
|
|
|
|
|
|
3, 3, 3, 3, 4, |
134
|
|
|
|
|
|
|
4, 4,13,13,14, |
135
|
|
|
|
|
|
|
2, 2, 2, 2, 2, # 150 |
136
|
|
|
|
|
|
|
3, 3, 3, 3, 4, |
137
|
|
|
|
|
|
|
4, 4,13,13,14, |
138
|
|
|
|
|
|
|
2, 2, 2, 2, 2, |
139
|
|
|
|
|
|
|
3, 3, 3, 3, 4, |
140
|
|
|
|
|
|
|
4, 4,13,13,14, # 175 |
141
|
|
|
|
|
|
|
23,22,19,18,15, |
142
|
|
|
|
|
|
|
22,19,18,15,19, |
143
|
|
|
|
|
|
|
18,15,18,15,15, |
144
|
|
|
|
|
|
|
23,21,19,17,15, |
145
|
|
|
|
|
|
|
21,19,17,15,19, # 200 |
146
|
|
|
|
|
|
|
17,15,17,15,15, |
147
|
|
|
|
|
|
|
24,21,20,17,16, |
148
|
|
|
|
|
|
|
21,20,17,16,20, |
149
|
|
|
|
|
|
|
17,16,17,16,16, |
150
|
|
|
|
|
|
|
16,16,16,16,16, # 225 |
151
|
|
|
|
|
|
|
17,17,17,17,20, |
152
|
|
|
|
|
|
|
20,20,21,21,24, |
153
|
|
|
|
|
|
|
15,15,15,15,15, |
154
|
|
|
|
|
|
|
17,17,17,17,19, |
155
|
|
|
|
|
|
|
19,19,21,21,23, # 250 |
156
|
|
|
|
|
|
|
14,13, 4, 3, 2, |
157
|
|
|
|
|
|
|
13, 4, 3, 2, 4, |
158
|
|
|
|
|
|
|
3, 2, 3, 2, 2, |
159
|
|
|
|
|
|
|
11,11, 4, 3, 1, |
160
|
|
|
|
|
|
|
12, 4, 3, 1, 4, # 275 |
161
|
|
|
|
|
|
|
3, 1, 3, 1, 1, |
162
|
|
|
|
|
|
|
10, 9, 4, 3, 0, |
163
|
|
|
|
|
|
|
9, 4, 3, 0, 4, |
164
|
|
|
|
|
|
|
3, 0, 3, 0, 0, |
165
|
|
|
|
|
|
|
15,15,15,15,15, # 300 |
166
|
|
|
|
|
|
|
18,18,18,18,19, |
167
|
|
|
|
|
|
|
19,19,22,22,23, |
168
|
|
|
|
|
|
|
14,13, 4, 3, 2, |
169
|
|
|
|
|
|
|
13, 4, 3, 2, 4, |
170
|
|
|
|
|
|
|
3, 2, 3, 2, 2, # 325 |
171
|
|
|
|
|
|
|
11,11, 4, 3, 1, |
172
|
|
|
|
|
|
|
12, 4, 3, 1, 4, |
173
|
|
|
|
|
|
|
3, 1, 3, 1, 1, |
174
|
|
|
|
|
|
|
10, 9, 4, 3, 0, |
175
|
|
|
|
|
|
|
9, 4, 3, 0, 4, # 350 |
176
|
|
|
|
|
|
|
3, 0, 3, 0, 0, |
177
|
|
|
|
|
|
|
14,13, 4, 3, 2, |
178
|
|
|
|
|
|
|
13, 4, 3, 2, 4, |
179
|
|
|
|
|
|
|
3, 2, 3, 2, 2, |
180
|
|
|
|
|
|
|
11,11, 4, 3, 1, # 375 |
181
|
|
|
|
|
|
|
12, 4, 3, 1, 4, |
182
|
|
|
|
|
|
|
3, 1, 3, 1, 1, |
183
|
|
|
|
|
|
|
10, 9, 4, 3, 0, |
184
|
|
|
|
|
|
|
9, 4, 3, 0, 4, |
185
|
|
|
|
|
|
|
3, 0, 3, 0, 0, # 400 |
186
|
|
|
|
|
|
|
11,11, 5, 5, 1, |
187
|
|
|
|
|
|
|
12, 5, 5, 1, 5, |
188
|
|
|
|
|
|
|
5, 1, 6, 1, 1, |
189
|
|
|
|
|
|
|
10, 9, 5, 5, 0, |
190
|
|
|
|
|
|
|
9, 5, 5, 0, 5, # 425 |
191
|
|
|
|
|
|
|
5, 0, 6, 0, 0, |
192
|
|
|
|
|
|
|
10, 9, 8, 7, 0, |
193
|
|
|
|
|
|
|
9, 8, 7, 0, 8, |
194
|
|
|
|
|
|
|
7, 0, 7, 0, 0, |
195
|
|
|
|
|
|
|
0, 0, 0, 0, 0, # 450 |
196
|
|
|
|
|
|
|
1, 1, 1, 1, 2, |
197
|
|
|
|
|
|
|
2, 2,23,23,24, |
198
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
199
|
|
|
|
|
|
|
1, 1, 1, 1, 2, |
200
|
|
|
|
|
|
|
2, 2,22,21,21, # 475 |
201
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
202
|
|
|
|
|
|
|
1, 1, 1, 1, 2, |
203
|
|
|
|
|
|
|
2, 2,19,19,20, |
204
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
205
|
|
|
|
|
|
|
1, 1, 1, 1, 2, # 500 |
206
|
|
|
|
|
|
|
2, 2,18,17,17, |
207
|
|
|
|
|
|
|
0, 0, 0, 0, 0, |
208
|
|
|
|
|
|
|
1, 1, 1, 1, 2, |
209
|
|
|
|
|
|
|
2, 2,15,15,16, |
210
|
|
|
|
|
|
|
7, 6, 3, 3, 3, # 525 |
211
|
|
|
|
|
|
|
6, 3, 3, 3, 3, |
212
|
|
|
|
|
|
|
3, 3,22,21,21, |
213
|
|
|
|
|
|
|
7, 5, 3, 3, 3, |
214
|
|
|
|
|
|
|
5, 3, 3, 3, 3, |
215
|
|
|
|
|
|
|
3, 3,19,19,20, # 550 |
216
|
|
|
|
|
|
|
7, 5, 3, 3, 3, |
217
|
|
|
|
|
|
|
5, 3, 3, 3, 3, |
218
|
|
|
|
|
|
|
3, 3,18,17,17, |
219
|
|
|
|
|
|
|
7, 5, 3, 3, 3, |
220
|
|
|
|
|
|
|
5, 3, 3, 3, 3, # 575 |
221
|
|
|
|
|
|
|
3, 3,15,15,16, |
222
|
|
|
|
|
|
|
8, 5, 4, 4, 4, |
223
|
|
|
|
|
|
|
5, 4, 4, 4, 4, |
224
|
|
|
|
|
|
|
4, 4,19,19,20, |
225
|
|
|
|
|
|
|
8, 5, 4, 4, 4, # 600 |
226
|
|
|
|
|
|
|
5, 4, 4, 4, 4, |
227
|
|
|
|
|
|
|
4, 4,18,17,17, |
228
|
|
|
|
|
|
|
8, 5, 4, 4, 4, |
229
|
|
|
|
|
|
|
5, 4, 4, 4, 4, |
230
|
|
|
|
|
|
|
4, 4,15,15,16, # 625 |
231
|
|
|
|
|
|
|
9, 9, 9, 9, 9, |
232
|
|
|
|
|
|
|
12,12,12,12,13, |
233
|
|
|
|
|
|
|
13,13,18,17,17, |
234
|
|
|
|
|
|
|
9, 9, 9, 9, 9, |
235
|
|
|
|
|
|
|
11,11,11,11,13, # 650 |
236
|
|
|
|
|
|
|
13,13,15,15,16, |
237
|
|
|
|
|
|
|
10,10,10,10,10, |
238
|
|
|
|
|
|
|
11,11,11,11,14, |
239
|
|
|
|
|
|
|
14,14,15,15,16, |
240
|
|
|
|
|
|
|
16,15,14,11,10, # 675 |
241
|
|
|
|
|
|
|
15,14,11,10,14, |
242
|
|
|
|
|
|
|
11,10,11,10,10, |
243
|
|
|
|
|
|
|
16,15,13,11, 9, |
244
|
|
|
|
|
|
|
15,13,11, 9,13, |
245
|
|
|
|
|
|
|
11, 9,11, 9, 9, # 700 |
246
|
|
|
|
|
|
|
16,15, 4, 4, 4, |
247
|
|
|
|
|
|
|
15, 4, 4, 4, 4, |
248
|
|
|
|
|
|
|
4, 4, 5, 5, 8, |
249
|
|
|
|
|
|
|
16,15, 3, 3, 3, |
250
|
|
|
|
|
|
|
15, 3, 3, 3, 3, # 725 |
251
|
|
|
|
|
|
|
3, 3, 5, 5, 7, |
252
|
|
|
|
|
|
|
16,15, 2, 1, 0, |
253
|
|
|
|
|
|
|
15, 2, 1, 0, 2, |
254
|
|
|
|
|
|
|
1, 0, 1, 0, 0, |
255
|
|
|
|
|
|
|
17,17,13,12, 9, # 750 |
256
|
|
|
|
|
|
|
18,13,12, 9,13, |
257
|
|
|
|
|
|
|
12, 9,12, 9, 9, |
258
|
|
|
|
|
|
|
17,17, 4, 4, 4, |
259
|
|
|
|
|
|
|
18, 4, 4, 4, 4, |
260
|
|
|
|
|
|
|
4, 4, 5, 5, 8, # 775 |
261
|
|
|
|
|
|
|
17,17, 3, 3, 3, |
262
|
|
|
|
|
|
|
18, 3, 3, 3, 3, |
263
|
|
|
|
|
|
|
3, 3, 5, 5, 7, |
264
|
|
|
|
|
|
|
17,17, 2, 1, 0, |
265
|
|
|
|
|
|
|
18, 2, 1, 0, 2, # 800 |
266
|
|
|
|
|
|
|
1, 0, 1, 0, 0, |
267
|
|
|
|
|
|
|
20,19, 4, 4, 4, |
268
|
|
|
|
|
|
|
19, 4, 4, 4, 4, |
269
|
|
|
|
|
|
|
4, 4, 5, 5, 8, |
270
|
|
|
|
|
|
|
20,19, 3, 3, 3, # 825 |
271
|
|
|
|
|
|
|
19, 3, 3, 3, 3, |
272
|
|
|
|
|
|
|
3, 3, 5, 5, 7, |
273
|
|
|
|
|
|
|
20,19, 2, 1, 0, |
274
|
|
|
|
|
|
|
19, 2, 1, 0, 2, |
275
|
|
|
|
|
|
|
1, 0, 1, 0, 0, # 850 |
276
|
|
|
|
|
|
|
21,21, 3, 3, 3, |
277
|
|
|
|
|
|
|
22, 3, 3, 3, 3, |
278
|
|
|
|
|
|
|
3, 3, 6, 6, 7, |
279
|
|
|
|
|
|
|
21,21, 2, 1, 0, |
280
|
|
|
|
|
|
|
22, 2, 1, 0, 2, # 875 |
281
|
|
|
|
|
|
|
1, 0, 1, 0, 0, |
282
|
|
|
|
|
|
|
24,23, 2, 1, 0, |
283
|
|
|
|
|
|
|
23, 2, 1, 0, 2, |
284
|
|
|
|
|
|
|
1, 0, 1, 0, 0); |
285
|
|
|
|
|
|
|
my @max_digit = ( 0, 7, 8, 9,10, # 0 |
286
|
|
|
|
|
|
|
7, 8, 9,10, 8, |
287
|
|
|
|
|
|
|
9,10, 9,10,10, |
288
|
|
|
|
|
|
|
1, 7, 8,12,12, |
289
|
|
|
|
|
|
|
7, 8,12,12, 8, |
290
|
|
|
|
|
|
|
12,12,12,12,11, # 25 |
291
|
|
|
|
|
|
|
2, 7, 8,13,14, |
292
|
|
|
|
|
|
|
7, 8,13,14, 8, |
293
|
|
|
|
|
|
|
13,14,13,14,14, |
294
|
|
|
|
|
|
|
23,23,23,23,23, |
295
|
|
|
|
|
|
|
22,22,22,22,19, # 50 |
296
|
|
|
|
|
|
|
19,19,18,18,15, |
297
|
|
|
|
|
|
|
24,24,24,24,24, |
298
|
|
|
|
|
|
|
22,22,22,22,20, |
299
|
|
|
|
|
|
|
20,20,18,18,16, |
300
|
|
|
|
|
|
|
1, 6, 6,12,12, # 75 |
301
|
|
|
|
|
|
|
6, 6,12,12, 5, |
302
|
|
|
|
|
|
|
12,12,12,12,11, |
303
|
|
|
|
|
|
|
2, 6, 6,13,14, |
304
|
|
|
|
|
|
|
6, 6,13,14, 5, |
305
|
|
|
|
|
|
|
13,14,13,14,14, # 100 |
306
|
|
|
|
|
|
|
23,23,23,23,23, |
307
|
|
|
|
|
|
|
22,22,22,22,19, |
308
|
|
|
|
|
|
|
19,19,18,18,15, |
309
|
|
|
|
|
|
|
24,24,24,24,24, |
310
|
|
|
|
|
|
|
22,22,22,22,20, # 125 |
311
|
|
|
|
|
|
|
20,20,18,18,16, |
312
|
|
|
|
|
|
|
2, 3, 4,13,14, |
313
|
|
|
|
|
|
|
3, 4,13,14, 4, |
314
|
|
|
|
|
|
|
13,14,13,14,14, |
315
|
|
|
|
|
|
|
23,23,23,23,23, # 150 |
316
|
|
|
|
|
|
|
22,22,22,22,19, |
317
|
|
|
|
|
|
|
19,19,18,18,15, |
318
|
|
|
|
|
|
|
24,24,24,24,24, |
319
|
|
|
|
|
|
|
22,22,22,22,20, |
320
|
|
|
|
|
|
|
20,20,18,18,16, # 175 |
321
|
|
|
|
|
|
|
23,23,23,23,23, |
322
|
|
|
|
|
|
|
22,22,22,22,19, |
323
|
|
|
|
|
|
|
19,19,18,18,15, |
324
|
|
|
|
|
|
|
24,24,24,24,24, |
325
|
|
|
|
|
|
|
22,22,22,22,20, # 200 |
326
|
|
|
|
|
|
|
20,20,18,18,16, |
327
|
|
|
|
|
|
|
24,24,24,24,24, |
328
|
|
|
|
|
|
|
21,21,21,21,20, |
329
|
|
|
|
|
|
|
20,20,17,17,16, |
330
|
|
|
|
|
|
|
16,17,20,21,24, # 225 |
331
|
|
|
|
|
|
|
17,20,21,24,20, |
332
|
|
|
|
|
|
|
21,24,21,24,24, |
333
|
|
|
|
|
|
|
16,18,20,22,24, |
334
|
|
|
|
|
|
|
18,20,22,24,20, |
335
|
|
|
|
|
|
|
22,24,22,24,24, # 250 |
336
|
|
|
|
|
|
|
16,18,20,22,24, |
337
|
|
|
|
|
|
|
18,20,22,24,20, |
338
|
|
|
|
|
|
|
22,24,22,24,24, |
339
|
|
|
|
|
|
|
16,18,20,22,24, |
340
|
|
|
|
|
|
|
18,20,22,24,20, # 275 |
341
|
|
|
|
|
|
|
22,24,22,24,24, |
342
|
|
|
|
|
|
|
16,18,20,22,24, |
343
|
|
|
|
|
|
|
18,20,22,24,20, |
344
|
|
|
|
|
|
|
22,24,22,24,24, |
345
|
|
|
|
|
|
|
15,18,19,22,23, # 300 |
346
|
|
|
|
|
|
|
18,19,22,23,19, |
347
|
|
|
|
|
|
|
22,23,22,23,23, |
348
|
|
|
|
|
|
|
15,18,19,22,23, |
349
|
|
|
|
|
|
|
18,19,22,23,19, |
350
|
|
|
|
|
|
|
22,23,22,23,23, # 325 |
351
|
|
|
|
|
|
|
15,18,19,22,23, |
352
|
|
|
|
|
|
|
18,19,22,23,19, |
353
|
|
|
|
|
|
|
22,23,22,23,23, |
354
|
|
|
|
|
|
|
15,18,19,22,23, |
355
|
|
|
|
|
|
|
18,19,22,23,19, # 350 |
356
|
|
|
|
|
|
|
22,23,22,23,23, |
357
|
|
|
|
|
|
|
14,14,14,14,14, |
358
|
|
|
|
|
|
|
13,13,13,13, 4, |
359
|
|
|
|
|
|
|
4, 4, 3, 3, 2, |
360
|
|
|
|
|
|
|
14,14,14,14,14, # 375 |
361
|
|
|
|
|
|
|
13,13,13,13, 5, |
362
|
|
|
|
|
|
|
6, 6, 6, 6, 2, |
363
|
|
|
|
|
|
|
14,14,14,14,14, |
364
|
|
|
|
|
|
|
13,13,13,13, 8, |
365
|
|
|
|
|
|
|
8, 8, 7, 7, 2, # 400 |
366
|
|
|
|
|
|
|
11,12,12,12,12, |
367
|
|
|
|
|
|
|
12,12,12,12, 5, |
368
|
|
|
|
|
|
|
6, 6, 6, 6, 1, |
369
|
|
|
|
|
|
|
11,12,12,12,12, |
370
|
|
|
|
|
|
|
12,12,12,12, 8, # 425 |
371
|
|
|
|
|
|
|
8, 8, 7, 7, 1, |
372
|
|
|
|
|
|
|
10,10,10,10,10, |
373
|
|
|
|
|
|
|
9, 9, 9, 9, 8, |
374
|
|
|
|
|
|
|
8, 8, 7, 7, 0, |
375
|
|
|
|
|
|
|
0, 1, 2,23,24, # 450 |
376
|
|
|
|
|
|
|
1, 2,23,24, 2, |
377
|
|
|
|
|
|
|
23,24,23,24,24, |
378
|
|
|
|
|
|
|
7, 7, 7,23,24, |
379
|
|
|
|
|
|
|
6, 6,23,24, 3, |
380
|
|
|
|
|
|
|
23,24,23,24,24, # 475 |
381
|
|
|
|
|
|
|
8, 8, 8,23,24, |
382
|
|
|
|
|
|
|
6, 6,23,24, 4, |
383
|
|
|
|
|
|
|
23,24,23,24,24, |
384
|
|
|
|
|
|
|
9,12,13,23,24, |
385
|
|
|
|
|
|
|
12,13,23,24,13, # 500 |
386
|
|
|
|
|
|
|
23,24,23,24,24, |
387
|
|
|
|
|
|
|
10,12,14,23,24, |
388
|
|
|
|
|
|
|
12,14,23,24,14, |
389
|
|
|
|
|
|
|
23,24,23,24,24, |
390
|
|
|
|
|
|
|
7, 7, 7,22,22, # 525 |
391
|
|
|
|
|
|
|
6, 6,22,22, 3, |
392
|
|
|
|
|
|
|
22,22,22,22,21, |
393
|
|
|
|
|
|
|
8, 8, 8,22,22, |
394
|
|
|
|
|
|
|
6, 6,22,22, 4, |
395
|
|
|
|
|
|
|
22,22,22,22,21, # 550 |
396
|
|
|
|
|
|
|
9,12,13,22,22, |
397
|
|
|
|
|
|
|
12,13,22,22,13, |
398
|
|
|
|
|
|
|
22,22,22,22,21, |
399
|
|
|
|
|
|
|
10,12,14,22,22, |
400
|
|
|
|
|
|
|
12,14,22,22,14, # 575 |
401
|
|
|
|
|
|
|
22,22,22,22,21, |
402
|
|
|
|
|
|
|
8, 8, 8,19,20, |
403
|
|
|
|
|
|
|
5, 5,19,20, 4, |
404
|
|
|
|
|
|
|
19,20,19,20,20, |
405
|
|
|
|
|
|
|
9,12,13,19,20, # 600 |
406
|
|
|
|
|
|
|
12,13,19,20,13, |
407
|
|
|
|
|
|
|
19,20,19,20,20, |
408
|
|
|
|
|
|
|
10,12,14,19,20, |
409
|
|
|
|
|
|
|
12,14,19,20,14, |
410
|
|
|
|
|
|
|
19,20,19,20,20, # 625 |
411
|
|
|
|
|
|
|
9,12,13,18,18, |
412
|
|
|
|
|
|
|
12,13,18,18,13, |
413
|
|
|
|
|
|
|
18,18,18,18,17, |
414
|
|
|
|
|
|
|
10,12,14,18,18, |
415
|
|
|
|
|
|
|
12,14,18,18,14, # 650 |
416
|
|
|
|
|
|
|
18,18,18,18,17, |
417
|
|
|
|
|
|
|
10,11,14,15,16, |
418
|
|
|
|
|
|
|
11,14,15,16,14, |
419
|
|
|
|
|
|
|
15,16,15,16,16, |
420
|
|
|
|
|
|
|
16,16,16,16,16, # 675 |
421
|
|
|
|
|
|
|
15,15,15,15,14, |
422
|
|
|
|
|
|
|
14,14,11,11,10, |
423
|
|
|
|
|
|
|
17,18,18,18,18, |
424
|
|
|
|
|
|
|
18,18,18,18,14, |
425
|
|
|
|
|
|
|
14,14,12,12,10, # 700 |
426
|
|
|
|
|
|
|
20,20,20,20,20, |
427
|
|
|
|
|
|
|
19,19,19,19,14, |
428
|
|
|
|
|
|
|
14,14,12,12,10, |
429
|
|
|
|
|
|
|
21,22,22,22,22, |
430
|
|
|
|
|
|
|
22,22,22,22,14, # 725 |
431
|
|
|
|
|
|
|
14,14,12,12,10, |
432
|
|
|
|
|
|
|
24,24,24,24,24, |
433
|
|
|
|
|
|
|
23,23,23,23,14, |
434
|
|
|
|
|
|
|
14,14,12,12,10, |
435
|
|
|
|
|
|
|
17,18,18,18,18, # 750 |
436
|
|
|
|
|
|
|
18,18,18,18,13, |
437
|
|
|
|
|
|
|
13,13,12,12, 9, |
438
|
|
|
|
|
|
|
20,20,20,20,20, |
439
|
|
|
|
|
|
|
19,19,19,19,13, |
440
|
|
|
|
|
|
|
13,13,12,12, 9, # 775 |
441
|
|
|
|
|
|
|
21,22,22,22,22, |
442
|
|
|
|
|
|
|
22,22,22,22,13, |
443
|
|
|
|
|
|
|
13,13,12,12, 9, |
444
|
|
|
|
|
|
|
24,24,24,24,24, |
445
|
|
|
|
|
|
|
23,23,23,23,13, # 800 |
446
|
|
|
|
|
|
|
13,13,12,12, 9, |
447
|
|
|
|
|
|
|
20,20,20,20,20, |
448
|
|
|
|
|
|
|
19,19,19,19, 4, |
449
|
|
|
|
|
|
|
5, 8, 5, 8, 8, |
450
|
|
|
|
|
|
|
21,22,22,22,22, # 825 |
451
|
|
|
|
|
|
|
22,22,22,22, 4, |
452
|
|
|
|
|
|
|
6, 8, 6, 8, 8, |
453
|
|
|
|
|
|
|
24,24,24,24,24, |
454
|
|
|
|
|
|
|
23,23,23,23, 4, |
455
|
|
|
|
|
|
|
6, 8, 6, 8, 8, # 850 |
456
|
|
|
|
|
|
|
21,22,22,22,22, |
457
|
|
|
|
|
|
|
22,22,22,22, 3, |
458
|
|
|
|
|
|
|
6, 7, 6, 7, 7, |
459
|
|
|
|
|
|
|
24,24,24,24,24, |
460
|
|
|
|
|
|
|
23,23,23,23, 3, # 875 |
461
|
|
|
|
|
|
|
6, 7, 6, 7, 7, |
462
|
|
|
|
|
|
|
24,24,24,24,24, |
463
|
|
|
|
|
|
|
23,23,23,23, 2, |
464
|
|
|
|
|
|
|
2, 2, 1, 1, 0); |
465
|
|
|
|
|
|
|
# state length 100 in each of 4 tables = 400 |
466
|
|
|
|
|
|
|
# min/max 2 of 900 each = 1800 |
467
|
|
|
|
|
|
|
|
468
|
|
|
|
|
|
|
sub n_to_xy { |
469
|
31363
|
|
|
31363
|
1
|
203433
|
my ($self, $n) = @_; |
470
|
|
|
|
|
|
|
### CincoCurve n_to_xy(): $n |
471
|
|
|
|
|
|
|
|
472
|
31363
|
50
|
|
|
|
55975
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
473
|
31363
|
50
|
|
|
|
56988
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
474
|
|
|
|
|
|
|
|
475
|
31363
|
|
|
|
|
56325
|
my $int = int($n); |
476
|
31363
|
|
|
|
|
43111
|
$n -= $int; # fraction part |
477
|
|
|
|
|
|
|
|
478
|
31363
|
|
|
|
|
59373
|
my @digits = digit_split_lowtohigh($int,25); |
479
|
31363
|
|
|
|
|
55749
|
my $len = ($int*0 + 5) ** scalar(@digits); # inherit bignum |
480
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
### digits: join(', ',@digits)." count ".scalar(@digits) |
482
|
|
|
|
|
|
|
### $len |
483
|
|
|
|
|
|
|
|
484
|
31363
|
|
|
|
|
45098
|
my $state = my $dir = 0; |
485
|
31363
|
|
|
|
|
40667
|
my $x = 0; |
486
|
31363
|
|
|
|
|
39137
|
my $y = 0; |
487
|
|
|
|
|
|
|
|
488
|
31363
|
|
|
|
|
60477
|
while (defined (my $digit = pop @digits)) { |
489
|
92740
|
|
|
|
|
125298
|
$len /= 5; |
490
|
92740
|
|
|
|
|
113868
|
$state += $digit; |
491
|
92740
|
100
|
|
|
|
150176
|
if ($digit != 24) { |
492
|
88984
|
|
|
|
|
116409
|
$dir = $state; |
493
|
|
|
|
|
|
|
} |
494
|
|
|
|
|
|
|
|
495
|
|
|
|
|
|
|
### $len |
496
|
|
|
|
|
|
|
### $state |
497
|
|
|
|
|
|
|
### digit_to_x: $digit_to_x[$state] |
498
|
|
|
|
|
|
|
### digit_to_y: $digit_to_y[$state] |
499
|
|
|
|
|
|
|
### next_state: $next_state[$state] |
500
|
|
|
|
|
|
|
|
501
|
92740
|
|
|
|
|
128645
|
$x += $len * $digit_to_x[$state]; |
502
|
92740
|
|
|
|
|
121246
|
$y += $len * $digit_to_y[$state]; |
503
|
92740
|
|
|
|
|
174497
|
$state = $next_state[$state]; |
504
|
|
|
|
|
|
|
} |
505
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
### final integer: "$x,$y" |
507
|
|
|
|
|
|
|
### assert: ($dir % 25) != 24 |
508
|
|
|
|
|
|
|
|
509
|
|
|
|
|
|
|
# with $n fractional part |
510
|
31363
|
|
|
|
|
99216
|
return ($n * ($digit_to_x[$dir+1] - $digit_to_x[$dir]) + $x, |
511
|
|
|
|
|
|
|
$n * ($digit_to_y[$dir+1] - $digit_to_y[$dir]) + $y); |
512
|
|
|
|
|
|
|
} |
513
|
|
|
|
|
|
|
|
514
|
|
|
|
|
|
|
sub xy_to_n { |
515
|
0
|
|
|
0
|
1
|
|
my ($self, $x, $y) = @_; |
516
|
|
|
|
|
|
|
### CincoCurve xy_to_n(): "$x, $y" |
517
|
|
|
|
|
|
|
|
518
|
0
|
|
|
|
|
|
$x = round_nearest ($x); |
519
|
0
|
|
|
|
|
|
$y = round_nearest ($y); |
520
|
0
|
0
|
0
|
|
|
|
if ($x < 0 || $y < 0) { |
521
|
0
|
|
|
|
|
|
return undef; |
522
|
|
|
|
|
|
|
} |
523
|
0
|
0
|
|
|
|
|
if (is_infinite($x)) { |
524
|
0
|
|
|
|
|
|
return $x; |
525
|
|
|
|
|
|
|
} |
526
|
0
|
0
|
|
|
|
|
if (is_infinite($y)) { |
527
|
0
|
|
|
|
|
|
return $y; |
528
|
|
|
|
|
|
|
} |
529
|
|
|
|
|
|
|
|
530
|
0
|
|
|
|
|
|
my @xdigits = digit_split_lowtohigh ($x, 5); |
531
|
0
|
|
|
|
|
|
my @ydigits = digit_split_lowtohigh ($y, 5); |
532
|
0
|
|
|
|
|
|
my $state = 0; |
533
|
0
|
|
|
|
|
|
my @ndigits; |
534
|
|
|
|
|
|
|
|
535
|
0
|
|
|
|
|
|
foreach my $i (reverse 0 .. max($#xdigits,$#ydigits)) { # high to low |
536
|
0
|
|
0
|
|
|
|
my $ndigit = $yx_to_digit[$state |
|
|
|
0
|
|
|
|
|
537
|
|
|
|
|
|
|
+ 5*($ydigits[$i]||0) |
538
|
|
|
|
|
|
|
+ ($xdigits[$i]||0)]; |
539
|
0
|
|
|
|
|
|
$ndigits[$i] = $ndigit; |
540
|
0
|
|
|
|
|
|
$state = $next_state[$state+$ndigit]; |
541
|
|
|
|
|
|
|
} |
542
|
|
|
|
|
|
|
|
543
|
0
|
|
|
|
|
|
return digit_join_lowtohigh (\@ndigits, 25, |
544
|
|
|
|
|
|
|
$x * 0 * $y); # bignum zero |
545
|
|
|
|
|
|
|
} |
546
|
|
|
|
|
|
|
|
547
|
|
|
|
|
|
|
# exact |
548
|
|
|
|
|
|
|
sub rect_to_n_range { |
549
|
0
|
|
|
0
|
1
|
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
550
|
|
|
|
|
|
|
### BetaOmega rect_to_n_range(): "$x1,$y1, $x2,$y2" |
551
|
|
|
|
|
|
|
|
552
|
0
|
|
|
|
|
|
$x1 = round_nearest ($x1); |
553
|
0
|
|
|
|
|
|
$x2 = round_nearest ($x2); |
554
|
0
|
|
|
|
|
|
$y1 = round_nearest ($y1); |
555
|
0
|
|
|
|
|
|
$y2 = round_nearest ($y2); |
556
|
0
|
0
|
|
|
|
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
557
|
0
|
0
|
|
|
|
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
558
|
|
|
|
|
|
|
|
559
|
0
|
0
|
0
|
|
|
|
if ($x2 < 0 || $y2 < 0) { |
560
|
0
|
|
|
|
|
|
return (1, 0); |
561
|
|
|
|
|
|
|
} |
562
|
0
|
0
|
|
|
|
|
if ($x1 < 0) { $x1 *= 0; } # "*=" to preserve bigint x1 or y1 |
|
0
|
|
|
|
|
|
|
563
|
0
|
0
|
|
|
|
|
if ($y1 < 0) { $y1 *= 0; } |
|
0
|
|
|
|
|
|
|
564
|
|
|
|
|
|
|
|
565
|
0
|
0
|
|
|
|
|
my ($len, $level) = round_down_pow (($x2 > $y2 ? $x2 : $y2), |
566
|
|
|
|
|
|
|
5); |
567
|
0
|
0
|
|
|
|
|
if (is_infinite($len)) { |
568
|
0
|
|
|
|
|
|
return (0, $len); |
569
|
|
|
|
|
|
|
} |
570
|
|
|
|
|
|
|
|
571
|
|
|
|
|
|
|
# At this point an over-estimate would be: return (0, 25*$len*$len-1); |
572
|
|
|
|
|
|
|
|
573
|
|
|
|
|
|
|
|
574
|
0
|
|
|
|
|
|
my $n_min = my $n_max |
575
|
|
|
|
|
|
|
= my $y_min = my $y_max |
576
|
|
|
|
|
|
|
= my $x_min = my $x_max |
577
|
|
|
|
|
|
|
= my $min_state = my $max_state |
578
|
|
|
|
|
|
|
= 0; |
579
|
|
|
|
|
|
|
### $x_min |
580
|
|
|
|
|
|
|
### $y_min |
581
|
|
|
|
|
|
|
|
582
|
0
|
|
|
|
|
|
while ($level >= 0) { |
583
|
|
|
|
|
|
|
### $level |
584
|
|
|
|
|
|
|
### $len |
585
|
|
|
|
|
|
|
{ |
586
|
0
|
|
|
|
|
|
my $digit = $min_digit[9*$min_state |
587
|
|
|
|
|
|
|
+ _rect_key($x1, $x2, $x_min, $len) * 15 |
588
|
|
|
|
|
|
|
+ _rect_key($y1, $y2, $y_min, $len)]; |
589
|
|
|
|
|
|
|
|
590
|
|
|
|
|
|
|
### $min_state |
591
|
|
|
|
|
|
|
### $x_min |
592
|
|
|
|
|
|
|
### $y_min |
593
|
|
|
|
|
|
|
### $digit |
594
|
|
|
|
|
|
|
|
595
|
0
|
|
|
|
|
|
$n_min = 25*$n_min + $digit; |
596
|
0
|
|
|
|
|
|
$min_state += $digit; |
597
|
0
|
|
|
|
|
|
$x_min += $len * $digit_to_x[$min_state]; |
598
|
0
|
|
|
|
|
|
$y_min += $len * $digit_to_y[$min_state]; |
599
|
0
|
|
|
|
|
|
$min_state = $next_state[$min_state]; |
600
|
|
|
|
|
|
|
} |
601
|
|
|
|
|
|
|
{ |
602
|
0
|
|
|
|
|
|
my $digit = $max_digit[9*$max_state |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
603
|
|
|
|
|
|
|
+ _rect_key($x1, $x2, $x_max, $len) * 15 |
604
|
|
|
|
|
|
|
+ _rect_key($y1, $y2, $y_max, $len)]; |
605
|
|
|
|
|
|
|
|
606
|
0
|
|
|
|
|
|
$n_max = 25*$n_max + $digit; |
607
|
0
|
|
|
|
|
|
$max_state += $digit; |
608
|
0
|
|
|
|
|
|
$x_max += $len * $digit_to_x[$max_state]; |
609
|
0
|
|
|
|
|
|
$y_max += $len * $digit_to_y[$max_state]; |
610
|
0
|
|
|
|
|
|
$max_state = $next_state[$max_state]; |
611
|
|
|
|
|
|
|
} |
612
|
|
|
|
|
|
|
|
613
|
0
|
|
|
|
|
|
$len = int($len/5); |
614
|
0
|
|
|
|
|
|
$level--; |
615
|
|
|
|
|
|
|
} |
616
|
|
|
|
|
|
|
|
617
|
0
|
|
|
|
|
|
return ($n_min, $n_max); |
618
|
|
|
|
|
|
|
} |
619
|
|
|
|
|
|
|
|
620
|
|
|
|
|
|
|
sub _rect_key { |
621
|
0
|
|
|
0
|
|
|
my ($z1, $z2, $zbase, $len) = @_; |
622
|
0
|
|
|
|
|
|
$z1 = max (0, min (4, int (($z1 - $zbase)/$len))); |
623
|
0
|
|
|
|
|
|
$z2 = max (0, min (4, int (($z2 - $zbase)/$len))); |
624
|
|
|
|
|
|
|
### assert: $z1 <= $z2 |
625
|
0
|
|
|
|
|
|
return (9-$z1)*$z1/2 + $z2; |
626
|
|
|
|
|
|
|
} |
627
|
|
|
|
|
|
|
|
628
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
629
|
|
|
|
|
|
|
# levels |
630
|
|
|
|
|
|
|
|
631
|
1
|
|
|
1
|
|
504
|
use Math::PlanePath::DekkingCentres; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
153
|
|
632
|
|
|
|
|
|
|
*level_to_n_range = \&Math::PlanePath::DekkingCentres::level_to_n_range; |
633
|
|
|
|
|
|
|
*n_to_level = \&Math::PlanePath::DekkingCentres::n_to_level; |
634
|
|
|
|
|
|
|
|
635
|
|
|
|
|
|
|
|
636
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
637
|
|
|
|
|
|
|
1; |
638
|
|
|
|
|
|
|
__END__ |