line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# n_start=>0 to include N=0 at the origin, but that not a documented feature |
20
|
|
|
|
|
|
|
# yet. |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
# http://algorithmicbotany.org/papers/#abop |
23
|
|
|
|
|
|
|
# |
24
|
|
|
|
|
|
|
# http://www.sciencedirect.com/science/article/pii/0025556479900804 |
25
|
|
|
|
|
|
|
# http://dx.doi.org/10.1016/0025-5564(79)90080-4 Helmut Vogel, "A Better Way |
26
|
|
|
|
|
|
|
# to Construct the Sunflower Head", Volume 44, Issues 3-4, June 1979, Pages |
27
|
|
|
|
|
|
|
# 179-189 |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
# http://artemis.wszib.edu.pl/~sloot/2_1.html |
30
|
|
|
|
|
|
|
# |
31
|
|
|
|
|
|
|
# http://www.csse.monash.edu.au/publications/2003/tr-2003-149-full.pdf |
32
|
|
|
|
|
|
|
# on 3D surfaces of revolution or some such maybe |
33
|
|
|
|
|
|
|
# 14 Mbytes (or preview with google) |
34
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
# Count of Zeckendorf bits plotted on Vogel floret. |
36
|
|
|
|
|
|
|
# Zeckendorf/Fibbinary with N bits makes radial spokes. cf FibbinaryBitCount |
37
|
|
|
|
|
|
|
# http://www.ms.unimelb.edu.au/~segerman/papers/sunflower_spiral_fibonacci_metric.pdf |
38
|
|
|
|
|
|
|
# private copy ? |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
# closest two for phi are 1 and 4 |
41
|
|
|
|
|
|
|
# n=1 r=sqrt(1) = 1 |
42
|
|
|
|
|
|
|
# t=1/phi^2 = 0.381 around |
43
|
|
|
|
|
|
|
# x=-.72 y=.68 |
44
|
|
|
|
|
|
|
# n=4 r=sqrt(4) = 2 |
45
|
|
|
|
|
|
|
# t=4/phi^2 = 1.527 = .527 around |
46
|
|
|
|
|
|
|
# x=-1.97 y=-.337 |
47
|
|
|
|
|
|
|
# diff angle=4/phi^2 - 1/phi^2 = 3/phi^2 = 3*(2-phi) = 1.14 = .14 |
48
|
|
|
|
|
|
|
# diff dx=1.25 dy=1.017 hypot=1.61 |
49
|
|
|
|
|
|
|
# dang = 2*PI()*(5-3*phi) |
50
|
|
|
|
|
|
|
# y = sin() |
51
|
|
|
|
|
|
|
# x = sin(2*PI()*(5-3*phi)) |
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
# Continued fraction |
54
|
|
|
|
|
|
|
# 1 |
55
|
|
|
|
|
|
|
# x = k + ------ |
56
|
|
|
|
|
|
|
# k + 1 |
57
|
|
|
|
|
|
|
# ------ |
58
|
|
|
|
|
|
|
# k + 1 |
59
|
|
|
|
|
|
|
# --- |
60
|
|
|
|
|
|
|
# k + ... |
61
|
|
|
|
|
|
|
# |
62
|
|
|
|
|
|
|
# x = k + 1/x |
63
|
|
|
|
|
|
|
# (x-k/2)^2 = 1 + (k^2)/4 |
64
|
|
|
|
|
|
|
# |
65
|
|
|
|
|
|
|
# k + sqrt(4+k^2) |
66
|
|
|
|
|
|
|
# x = --------------- |
67
|
|
|
|
|
|
|
# 2 |
68
|
|
|
|
|
|
|
# |
69
|
|
|
|
|
|
|
# k x |
70
|
|
|
|
|
|
|
# 1 (1+sqrt(5)) / 2 |
71
|
|
|
|
|
|
|
# 2 1 + sqrt(2) |
72
|
|
|
|
|
|
|
# 3 (3+sqrt(13)) / 2 |
73
|
|
|
|
|
|
|
# 4 2 + sqrt(5) |
74
|
|
|
|
|
|
|
# 5 (5 + sqrt(29)) / 2 |
75
|
|
|
|
|
|
|
# 6 3 + sqrt(10) |
76
|
|
|
|
|
|
|
# 2e e + sqrt(1+e^2) even |
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
package Math::PlanePath::VogelFloret; |
81
|
2
|
|
|
2
|
|
1774
|
use 5.004; |
|
2
|
|
|
|
|
9
|
|
82
|
2
|
|
|
2
|
|
12
|
use strict; |
|
2
|
|
|
|
|
14
|
|
|
2
|
|
|
|
|
60
|
|
83
|
2
|
|
|
2
|
|
11
|
use Carp 'croak'; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
96
|
|
84
|
2
|
|
|
2
|
|
891
|
use Math::Libm 'hypot'; |
|
2
|
|
|
|
|
6863
|
|
|
2
|
|
|
|
|
148
|
|
85
|
|
|
|
|
|
|
|
86
|
2
|
|
|
2
|
|
24
|
use vars '$VERSION', '@ISA'; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
101
|
|
87
|
|
|
|
|
|
|
$VERSION = 128; |
88
|
2
|
|
|
2
|
|
698
|
use Math::PlanePath; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
93
|
|
89
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
92
|
2
|
|
|
2
|
|
15
|
'is_infinite'; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
88
|
|
93
|
2
|
|
|
2
|
|
944
|
use Math::PlanePath::SacksSpiral; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
84
|
|
94
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
96
|
|
|
|
|
|
|
#use Smart::Comments '###'; |
97
|
|
|
|
|
|
|
|
98
|
2
|
|
|
2
|
|
14
|
use constant figure => 'circle'; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
117
|
|
99
|
|
|
|
|
|
|
|
100
|
2
|
|
|
2
|
|
11
|
use constant 1.02; # for leading underscore |
|
2
|
|
|
|
|
30
|
|
|
2
|
|
|
|
|
64
|
|
101
|
2
|
|
|
2
|
|
10
|
use constant _PHI => (1 + sqrt(5)) / 2; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
110
|
|
102
|
2
|
|
|
2
|
|
10
|
use constant _TWO_PI => 4*atan2(1,0); |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
180
|
|
103
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
# not documented yet ... |
105
|
2
|
|
|
|
|
305
|
use constant rotation_types => |
106
|
|
|
|
|
|
|
{ phi => { rotation_factor => 2 - _PHI(), |
107
|
|
|
|
|
|
|
radius_factor => 0.624239116809924, |
108
|
|
|
|
|
|
|
# closest_Ns => [ 1,4 ], |
109
|
|
|
|
|
|
|
# continued_frac => [ 1,1,1,1,1,... ], |
110
|
|
|
|
|
|
|
}, |
111
|
|
|
|
|
|
|
sqrt2 => { rotation_factor => sqrt(2)-1, |
112
|
|
|
|
|
|
|
radius_factor => 0.679984167849259, |
113
|
|
|
|
|
|
|
# closest_Ns => [ 3,8 ], |
114
|
|
|
|
|
|
|
# continued_frac => [ 2,2,2,2,2,... ], |
115
|
|
|
|
|
|
|
}, |
116
|
|
|
|
|
|
|
sqrt3 => { rotation_factor => sqrt(3)-1, |
117
|
|
|
|
|
|
|
radius_factor => 0.755560810248419, |
118
|
|
|
|
|
|
|
# closest_Ns => [ 3,7 ], |
119
|
|
|
|
|
|
|
# continued_frac => [ 1,2,1,2,1,2,1,2,... ], |
120
|
|
|
|
|
|
|
}, |
121
|
|
|
|
|
|
|
sqrt5 => { rotation_factor => sqrt(5)-2, |
122
|
|
|
|
|
|
|
radius_factor => 0.853488207169303, |
123
|
|
|
|
|
|
|
# closest_Ns => [ 4,8 ], |
124
|
|
|
|
|
|
|
# continued_frac => [ 4,4,4,4,4,4,... ], |
125
|
|
|
|
|
|
|
}, |
126
|
2
|
|
|
2
|
|
14
|
}; |
|
2
|
|
|
|
|
4
|
|
127
|
|
|
|
|
|
|
|
128
|
2
|
|
|
|
|
469
|
use constant parameter_info_array => |
129
|
|
|
|
|
|
|
[ |
130
|
|
|
|
|
|
|
{ |
131
|
|
|
|
|
|
|
name => 'rotation_type', |
132
|
|
|
|
|
|
|
type => 'enum', |
133
|
|
|
|
|
|
|
display => 'Rotation Type', |
134
|
|
|
|
|
|
|
share_key => 'vogel_rotation_type', |
135
|
|
|
|
|
|
|
choices => ['phi', 'sqrt2', 'sqrt3', 'sqrt5', 'custom'], |
136
|
|
|
|
|
|
|
default => 'phi', |
137
|
|
|
|
|
|
|
}, |
138
|
|
|
|
|
|
|
{ |
139
|
|
|
|
|
|
|
name => 'rotation_factor', |
140
|
|
|
|
|
|
|
type => 'float', |
141
|
|
|
|
|
|
|
type_hint => 'expression', |
142
|
|
|
|
|
|
|
display => 'Rotation Factor', |
143
|
|
|
|
|
|
|
description => 'Rotation factor. If you have Math::Symbolic then this can be an expression like pi+2*e-phi (constants phi,e,gam,pi), otherwise it should be a plain number.', |
144
|
|
|
|
|
|
|
default => - (1 + sqrt(5)) / 2, |
145
|
|
|
|
|
|
|
default_expression => '-phi', |
146
|
|
|
|
|
|
|
width => 10, |
147
|
|
|
|
|
|
|
when_name => 'rotation_type', |
148
|
|
|
|
|
|
|
when_value => 'custom', |
149
|
|
|
|
|
|
|
}, |
150
|
|
|
|
|
|
|
{ name => 'radius_factor', |
151
|
|
|
|
|
|
|
display => 'Radius Factor', |
152
|
|
|
|
|
|
|
description => 'Radius factor, spreading points out to make them non-overlapping. 0 means the default factor.', |
153
|
|
|
|
|
|
|
type => 'float', |
154
|
|
|
|
|
|
|
minimum => 0, |
155
|
|
|
|
|
|
|
maximum => 999, |
156
|
|
|
|
|
|
|
page_increment => 1, |
157
|
|
|
|
|
|
|
step_increment => .1, |
158
|
|
|
|
|
|
|
decimals => 2, |
159
|
|
|
|
|
|
|
default => 1, |
160
|
|
|
|
|
|
|
when_name => 'rotation_type', |
161
|
|
|
|
|
|
|
when_value => 'custom', |
162
|
|
|
|
|
|
|
}, |
163
|
2
|
|
|
2
|
|
14
|
]; |
|
2
|
|
|
|
|
4
|
|
164
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
sub x_negative_at_n { |
166
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
167
|
0
|
|
|
|
|
0
|
return int(.25 / $self->{'rotation_factor'}) + 1; |
168
|
|
|
|
|
|
|
} |
169
|
|
|
|
|
|
|
sub y_negative_at_n { |
170
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
171
|
0
|
|
|
|
|
0
|
return int(.5 / $self->{'rotation_factor'}) + 1; |
172
|
|
|
|
|
|
|
} |
173
|
|
|
|
|
|
|
sub sumabsxy_minimum { |
174
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
175
|
0
|
|
|
|
|
0
|
my ($x,$y) = $self->n_to_xy($self->n_start); |
176
|
0
|
|
|
|
|
0
|
return abs($x)+abs($y); |
177
|
|
|
|
|
|
|
} |
178
|
|
|
|
|
|
|
sub rsquared_minimum { |
179
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
180
|
|
|
|
|
|
|
# starting N=1 at R=radius_factor*sqrt(1), theta=something |
181
|
0
|
|
|
|
|
0
|
return $self->{'radius_factor'} ** 2; |
182
|
|
|
|
|
|
|
} |
183
|
2
|
|
|
2
|
|
14
|
use constant gcdxy_maximum => 0; |
|
2
|
|
|
|
|
15
|
|
|
2
|
|
|
|
|
250
|
|
184
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
sub turn_any_left { # always left if rot<=0.5 |
186
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
187
|
0
|
|
|
|
|
0
|
return ($self->{'rotation_factor'} <= 0.5); |
188
|
|
|
|
|
|
|
} |
189
|
|
|
|
|
|
|
sub turn_any_right { # always left if rot<=0.5 |
190
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
191
|
0
|
|
|
|
|
0
|
return ($self->{'rotation_factor'} > 0.5); |
192
|
|
|
|
|
|
|
} |
193
|
2
|
|
|
2
|
|
15
|
use constant turn_any_straight => 0; # never straight |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
2025
|
|
194
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
sub new { |
199
|
11
|
|
|
11
|
1
|
1666
|
my $self = shift->SUPER::new (@_); |
200
|
|
|
|
|
|
|
### $self |
201
|
|
|
|
|
|
|
|
202
|
11
|
|
100
|
|
|
58
|
my $rotation_type = ($self->{'rotation_type'} ||= 'phi'); |
203
|
11
|
|
33
|
|
|
32
|
my $defaults = rotation_types()->{$rotation_type} |
204
|
|
|
|
|
|
|
|| croak 'Unrecognised rotation_type: "',$rotation_type,'"'; |
205
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
$self->{'radius_factor'} ||= ($self->{'rotation_factor'} |
207
|
|
|
|
|
|
|
? 1.0 |
208
|
11
|
100
|
66
|
|
|
43
|
: $defaults->{'radius_factor'}); |
209
|
11
|
|
66
|
|
|
42
|
$self->{'rotation_factor'} ||= $defaults->{'rotation_factor'}; |
210
|
11
|
|
|
|
|
27
|
return $self; |
211
|
|
|
|
|
|
|
} |
212
|
|
|
|
|
|
|
|
213
|
|
|
|
|
|
|
# R=radius_factor*sqrt($n) |
214
|
|
|
|
|
|
|
# R^2 = radius_factor^2 * $n |
215
|
|
|
|
|
|
|
# avoids sqrt and sin/cos in the main n_to_xy() |
216
|
|
|
|
|
|
|
# |
217
|
|
|
|
|
|
|
sub n_to_rsquared { |
218
|
8
|
|
|
8
|
1
|
127
|
my ($self, $n) = @_; |
219
|
|
|
|
|
|
|
### VogelFloret RSquared: $i, $seq->{'planepath_object'} |
220
|
|
|
|
|
|
|
|
221
|
8
|
50
|
|
|
|
22
|
if ($n < 0) { return undef; } |
|
0
|
|
|
|
|
0
|
|
222
|
8
|
|
|
|
|
408
|
my $rf = $self->{'radius_factor'}; |
223
|
8
|
|
|
|
|
15
|
$rf *= $rf; # squared |
224
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
# don't round BigInt*flonum if radius_factor is not an integer, promote to |
226
|
|
|
|
|
|
|
# BigFloat instead |
227
|
8
|
100
|
66
|
|
|
36
|
if (ref $n && $n->isa('Math::BigInt') && $rf != int($rf)) { |
|
|
|
100
|
|
|
|
|
228
|
1
|
|
|
|
|
1030
|
require Math::BigFloat; |
229
|
1
|
|
|
|
|
26899
|
$n = Math::BigFloat->new($n); |
230
|
|
|
|
|
|
|
} |
231
|
8
|
|
|
|
|
981
|
return $n * $rf; |
232
|
|
|
|
|
|
|
} |
233
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
sub n_to_xy { |
236
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
237
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
238
|
|
|
|
|
|
|
|
239
|
0
|
|
|
|
|
0
|
my $two_pi = _TWO_PI(); |
240
|
|
|
|
|
|
|
|
241
|
0
|
0
|
|
|
|
0
|
if (ref $n) { |
242
|
0
|
0
|
|
|
|
0
|
if ($n->isa('Math::BigInt')) { |
243
|
0
|
|
|
|
|
0
|
$n = Math::PlanePath::SacksSpiral::_bigfloat()->new($n); |
244
|
|
|
|
|
|
|
} |
245
|
0
|
0
|
|
|
|
0
|
if ($n->isa('Math::BigRat')) { |
246
|
0
|
|
|
|
|
0
|
$n = $n->as_float; |
247
|
|
|
|
|
|
|
} |
248
|
0
|
0
|
|
|
|
0
|
if ($n->isa('Math::BigFloat')) { |
249
|
0
|
|
|
|
|
0
|
$two_pi = 2 * Math::BigFloat->bpi; |
250
|
|
|
|
|
|
|
} |
251
|
|
|
|
|
|
|
} |
252
|
|
|
|
|
|
|
|
253
|
0
|
|
|
|
|
0
|
my $r = sqrt($n) * $self->{'radius_factor'}; |
254
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
# take the frac part of 1==circle and then convert to radians, so as not |
256
|
|
|
|
|
|
|
# to lose precision in an fmod(...,2*pi) |
257
|
|
|
|
|
|
|
# |
258
|
0
|
|
|
|
|
0
|
my $theta = $n * $self->{'rotation_factor'}; # 1==full circle |
259
|
0
|
|
|
|
|
0
|
$theta = $two_pi * ($theta - int($theta)); # radians 0 to 2*pi |
260
|
0
|
|
|
|
|
0
|
return ($r * cos($theta), |
261
|
|
|
|
|
|
|
$r * sin($theta)); |
262
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
# cylindrical_to_cartesian() is only perl code, so may as well sin/cos |
264
|
|
|
|
|
|
|
# here directly |
265
|
|
|
|
|
|
|
# return (Math::Trig::cylindrical_to_cartesian($r, $theta, 0))[0,1]; |
266
|
|
|
|
|
|
|
} |
267
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
sub xy_to_n { |
269
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x, $y) = @_; |
270
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
# Slack approach just trying all the N values between r-.5 and r+.5. |
272
|
|
|
|
|
|
|
# |
273
|
|
|
|
|
|
|
# r = sqrt(n)*FACTOR |
274
|
|
|
|
|
|
|
# n = (r/FACTOR)^2 |
275
|
|
|
|
|
|
|
# |
276
|
|
|
|
|
|
|
# The target N satisfies N = K * phi + epsilon for integer K. What's an |
277
|
|
|
|
|
|
|
# easy way to find the first integer N >= (r-.5)**2 satisfying -small <= N |
278
|
|
|
|
|
|
|
# mod .318 <= +small ? |
279
|
|
|
|
|
|
|
# |
280
|
0
|
|
|
|
|
0
|
my $r = sqrt($x*$x + $y*$y); # hypot |
281
|
0
|
|
|
|
|
0
|
my $factor = $self->{'radius_factor'}; |
282
|
0
|
|
|
|
|
0
|
my $n_lo = int( (($r-.6)/$factor)**2 ); |
283
|
0
|
0
|
|
|
|
0
|
if ($n_lo < 0) { $n_lo = 0; } |
|
0
|
|
|
|
|
0
|
|
284
|
0
|
|
|
|
|
0
|
my $n_hi = int( (($r+.6)/$factor)**2 + 1 ); |
285
|
|
|
|
|
|
|
#### $r |
286
|
|
|
|
|
|
|
#### xy: "$x,$y" |
287
|
|
|
|
|
|
|
#### $n_lo |
288
|
|
|
|
|
|
|
#### $n_hi |
289
|
|
|
|
|
|
|
|
290
|
0
|
0
|
0
|
|
|
0
|
if (is_infinite($n_lo) || is_infinite($n_hi)) { |
291
|
|
|
|
|
|
|
### infinite range, r inf or too big |
292
|
0
|
|
|
|
|
0
|
return undef; |
293
|
|
|
|
|
|
|
} |
294
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
# for(;;) loop since "reverse $n_lo..$n_hi" limited to IV range |
296
|
0
|
|
|
|
|
0
|
for (my $n = $n_hi; $n >= $n_lo; $n--) { |
297
|
0
|
|
|
|
|
0
|
my ($nx, $ny) = $self->n_to_xy($n); |
298
|
|
|
|
|
|
|
### hypot: "$n ".hypot($nx-$x,$ny-$y) |
299
|
0
|
0
|
|
|
|
0
|
if (hypot($nx-$x,$ny-$y) <= 0.5) { |
300
|
|
|
|
|
|
|
#### found: $n |
301
|
0
|
|
|
|
|
0
|
return $n; |
302
|
|
|
|
|
|
|
} |
303
|
|
|
|
|
|
|
} |
304
|
0
|
|
|
|
|
0
|
return undef; |
305
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
# my $theta_frac = Math::PlanePath::MultipleRings::_xy_to_angle_frac($x,$y); |
307
|
|
|
|
|
|
|
# ### assert: 0 <= $frac && $frac < 1 |
308
|
|
|
|
|
|
|
# |
309
|
|
|
|
|
|
|
# # seeking integer k where (k+theta)*PHIPHI == $r*$r == $n or nearby |
310
|
|
|
|
|
|
|
# my $k = $r*$r / (PHI*PHI) - $theta; |
311
|
|
|
|
|
|
|
# |
312
|
|
|
|
|
|
|
# ### $x |
313
|
|
|
|
|
|
|
# ### $y |
314
|
|
|
|
|
|
|
# ### $r |
315
|
|
|
|
|
|
|
# ### $theta |
316
|
|
|
|
|
|
|
# ### $k |
317
|
|
|
|
|
|
|
# |
318
|
|
|
|
|
|
|
# foreach my $ki (POSIX::floor($k), POSIX::ceil($k)) { |
319
|
|
|
|
|
|
|
# my $n = int (($ki+$theta)*PHI*PHI + 0.5); |
320
|
|
|
|
|
|
|
# |
321
|
|
|
|
|
|
|
# # look for within 0.5 radius |
322
|
|
|
|
|
|
|
# my ($nx, $ny) = $self->n_to_xy($n); |
323
|
|
|
|
|
|
|
# ### $ki |
324
|
|
|
|
|
|
|
# ### n frac: ($ki+$theta)*PHI*PHI |
325
|
|
|
|
|
|
|
# ### $n |
326
|
|
|
|
|
|
|
# ### hypot: hypot($nx-$x,$ny-$y) |
327
|
|
|
|
|
|
|
# if (hypot($nx-$x,$ny-$y) <= 0.5) { |
328
|
|
|
|
|
|
|
# return $n; |
329
|
|
|
|
|
|
|
# } |
330
|
|
|
|
|
|
|
# } |
331
|
|
|
|
|
|
|
# return; |
332
|
|
|
|
|
|
|
} |
333
|
|
|
|
|
|
|
|
334
|
|
|
|
|
|
|
# max corner at R |
335
|
|
|
|
|
|
|
# R+0.5 = sqrt(N) * radius_factor |
336
|
|
|
|
|
|
|
# sqrt(N) = (R+0.5)/rfactor |
337
|
|
|
|
|
|
|
# N = (R+0.5)^2 / rfactor^2 |
338
|
|
|
|
|
|
|
# = (R^2 + R + 1/4) / rfactor^2 |
339
|
|
|
|
|
|
|
# <= (X^2+Y^2 + X+Y + 1/4) / rfactor^2 |
340
|
|
|
|
|
|
|
# <= (X(X+1) + Y(Y+1) + 1) / rfactor^2 |
341
|
|
|
|
|
|
|
# |
342
|
|
|
|
|
|
|
# min corner at R |
343
|
|
|
|
|
|
|
# R-0.5 = sqrt(N) * radius_factor |
344
|
|
|
|
|
|
|
# sqrt(N) = (R-0.5)/rfactor |
345
|
|
|
|
|
|
|
# N = (R-0.5)^2 / rfactor^2 |
346
|
|
|
|
|
|
|
# = (R^2 - R + 1/4) / rfactor^2 |
347
|
|
|
|
|
|
|
# >= (X^2+Y^2 - (X+Y)) / rfactor^2 because x+y >= r |
348
|
|
|
|
|
|
|
# = (X(X-1) + Y(Y-1)) / rfactor^2 |
349
|
|
|
|
|
|
|
|
350
|
|
|
|
|
|
|
# not exact |
351
|
|
|
|
|
|
|
sub rect_to_n_range { |
352
|
1
|
|
|
1
|
1
|
5
|
my $self = shift; |
353
|
|
|
|
|
|
|
### VogelFloret rect_to_n_range(): @_ |
354
|
1
|
|
|
|
|
4
|
my ($n_lo, $n_hi) = Math::PlanePath::SacksSpiral->rect_to_n_range(@_); |
355
|
|
|
|
|
|
|
|
356
|
1
|
|
|
|
|
2
|
my $rf = $self->{'radius_factor'}; |
357
|
1
|
|
|
|
|
2
|
$rf *= $rf; # squared |
358
|
|
|
|
|
|
|
|
359
|
|
|
|
|
|
|
# avoid BigInt/flonum if radius_factor is not an integer, promote to |
360
|
|
|
|
|
|
|
# BigFloat instead |
361
|
1
|
50
|
|
|
|
5
|
if ($rf == int($rf)) { |
362
|
0
|
|
|
|
|
0
|
$n_hi += $rf-1; # division round upwards |
363
|
|
|
|
|
|
|
} else { |
364
|
1
|
50
|
33
|
|
|
3
|
if (ref $n_lo && $n_lo->isa('Math::BigInt')) { |
365
|
0
|
|
|
|
|
0
|
require Math::BigFloat; |
366
|
0
|
|
|
|
|
0
|
$n_lo = Math::BigFloat->new($n_lo); |
367
|
|
|
|
|
|
|
} |
368
|
1
|
50
|
33
|
|
|
3
|
if (ref $n_hi && $n_lo->isa('Math::BigInt')) { |
369
|
0
|
|
|
|
|
0
|
require Math::BigFloat; |
370
|
0
|
|
|
|
|
0
|
$n_hi = Math::BigFloat->new($n_hi); |
371
|
|
|
|
|
|
|
} |
372
|
|
|
|
|
|
|
} |
373
|
|
|
|
|
|
|
|
374
|
1
|
|
|
|
|
3
|
$n_lo = int($n_lo / $rf); |
375
|
1
|
50
|
|
|
|
2
|
if ($n_lo < 1) { $n_lo = 1; } |
|
1
|
|
|
|
|
2
|
|
376
|
|
|
|
|
|
|
|
377
|
1
|
|
|
|
|
10
|
$n_hi = _ceil($n_hi / $rf); |
378
|
|
|
|
|
|
|
|
379
|
1
|
|
|
|
|
5
|
return ($n_lo, $n_hi); |
380
|
|
|
|
|
|
|
} |
381
|
|
|
|
|
|
|
|
382
|
|
|
|
|
|
|
sub _ceil { |
383
|
1
|
|
|
1
|
|
3
|
my ($x) = @_; |
384
|
1
|
|
|
|
|
2
|
my $int = int($x); |
385
|
1
|
50
|
|
|
|
10
|
return ($x > $int ? $int+1 : $int); |
386
|
|
|
|
|
|
|
} |
387
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
1; |
389
|
|
|
|
|
|
|
__END__ |