| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::PlanePath::UlamWarburtonQuarter; |
|
20
|
2
|
|
|
2
|
|
1360
|
use 5.004; |
|
|
2
|
|
|
|
|
6
|
|
|
21
|
2
|
|
|
2
|
|
10
|
use strict; |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
41
|
|
|
22
|
2
|
|
|
2
|
|
9
|
use Carp 'croak'; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
88
|
|
|
23
|
2
|
|
|
2
|
|
11
|
use List::Util 'sum'; |
|
|
2
|
|
|
|
|
5
|
|
|
|
2
|
|
|
|
|
155
|
|
|
24
|
|
|
|
|
|
|
|
|
25
|
2
|
|
|
2
|
|
12
|
use vars '$VERSION', '@ISA'; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
102
|
|
|
26
|
|
|
|
|
|
|
$VERSION = 128; |
|
27
|
2
|
|
|
2
|
|
786
|
use Math::PlanePath; |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
105
|
|
|
28
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
29
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
32
|
2
|
|
|
|
|
92
|
'is_infinite', |
|
33
|
2
|
|
|
2
|
|
11
|
'round_nearest'; |
|
|
2
|
|
|
|
|
4
|
|
|
34
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
35
|
2
|
|
|
|
|
168
|
'round_down_pow', |
|
36
|
|
|
|
|
|
|
'bit_split_lowtohigh', |
|
37
|
|
|
|
|
|
|
'digit_split_lowtohigh', |
|
38
|
2
|
|
|
2
|
|
543
|
'digit_join_lowtohigh'; |
|
|
2
|
|
|
|
|
5
|
|
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
41
|
|
|
|
|
|
|
# use Smart::Comments; |
|
42
|
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
|
|
44
|
2
|
|
|
|
|
121
|
use constant parameter_info_array => |
|
45
|
|
|
|
|
|
|
[ |
|
46
|
|
|
|
|
|
|
{ name => 'parts', |
|
47
|
|
|
|
|
|
|
share_key => 'parts_ulamwarburton_quarter', |
|
48
|
|
|
|
|
|
|
display => 'Parts', |
|
49
|
|
|
|
|
|
|
type => 'enum', |
|
50
|
|
|
|
|
|
|
default => '1', |
|
51
|
|
|
|
|
|
|
choices => ['1','octant','octant_up' ], |
|
52
|
|
|
|
|
|
|
choices_display => ['1','Octant','Octant Up' ], |
|
53
|
|
|
|
|
|
|
description => 'Which parts of the plane to fill.', |
|
54
|
|
|
|
|
|
|
}, |
|
55
|
|
|
|
|
|
|
Math::PlanePath::Base::Generic::parameter_info_nstart1(), |
|
56
|
2
|
|
|
2
|
|
13
|
]; |
|
|
2
|
|
|
|
|
4
|
|
|
57
|
|
|
|
|
|
|
|
|
58
|
2
|
|
|
2
|
|
14
|
use constant class_x_negative => 0; |
|
|
2
|
|
|
|
|
2
|
|
|
|
2
|
|
|
|
|
85
|
|
|
59
|
2
|
|
|
2
|
|
9
|
use constant class_y_negative => 0; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
2097
|
|
|
60
|
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
sub diffxy_minimum { |
|
62
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
63
|
0
|
0
|
|
|
|
0
|
return ($self->{'parts'} eq 'octant' ? 0 : undef); |
|
64
|
|
|
|
|
|
|
} |
|
65
|
|
|
|
|
|
|
sub diffxy_maximum { |
|
66
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
67
|
0
|
0
|
|
|
|
0
|
return ($self->{'parts'} eq 'octant_up' ? 0 : undef); |
|
68
|
|
|
|
|
|
|
} |
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
# Minimum dir=0 at N=13 dX=2,dY=0. |
|
71
|
|
|
|
|
|
|
# Maximum dir seems dX=13,dY=-9 at N=149 going top-left part to new bottom |
|
72
|
|
|
|
|
|
|
# right diagonal. |
|
73
|
|
|
|
|
|
|
my %dir_maximum_dxdy = (1 => [13,-9], |
|
74
|
|
|
|
|
|
|
octant => [1,-1], # South-East |
|
75
|
|
|
|
|
|
|
octant_up => [0,-1], # South |
|
76
|
|
|
|
|
|
|
); |
|
77
|
|
|
|
|
|
|
sub dir_maximum_dxdy { |
|
78
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
79
|
0
|
|
|
|
|
0
|
return @{$dir_maximum_dxdy{$self->{'parts'}}}; |
|
|
0
|
|
|
|
|
0
|
|
|
80
|
|
|
|
|
|
|
} |
|
81
|
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
sub tree_num_children_list { |
|
83
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
84
|
0
|
0
|
|
|
|
0
|
return ($self->{'parts'} =~ /octant/ |
|
85
|
|
|
|
|
|
|
? (0, 1, 2, 3) |
|
86
|
|
|
|
|
|
|
: (0, 1, 3)); |
|
87
|
|
|
|
|
|
|
} |
|
88
|
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
90
|
|
|
|
|
|
|
sub new { |
|
91
|
12
|
|
|
12
|
1
|
1413
|
my $self = shift->SUPER::new(@_); |
|
92
|
12
|
100
|
|
|
|
42
|
if (! defined $self->{'n_start'}) { |
|
93
|
8
|
|
|
|
|
32
|
$self->{'n_start'} = $self->default_n_start; |
|
94
|
|
|
|
|
|
|
} |
|
95
|
12
|
|
50
|
|
|
52
|
my $parts = ($self->{'parts'} ||= '1'); |
|
96
|
12
|
50
|
|
|
|
27
|
if (! exists $dir_maximum_dxdy{$parts}) { |
|
97
|
0
|
|
|
|
|
0
|
croak "Unrecognised parts option: ", $parts; |
|
98
|
|
|
|
|
|
|
} |
|
99
|
12
|
|
|
|
|
25
|
return $self; |
|
100
|
|
|
|
|
|
|
} |
|
101
|
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
# 7 7 7 7 |
|
103
|
|
|
|
|
|
|
# 6 6 |
|
104
|
|
|
|
|
|
|
# 7 5 5 7 |
|
105
|
|
|
|
|
|
|
# 4 |
|
106
|
|
|
|
|
|
|
# 3 3 5 7 |
|
107
|
|
|
|
|
|
|
# 2 6 |
|
108
|
|
|
|
|
|
|
# 1 3 7 7 |
|
109
|
|
|
|
|
|
|
# |
|
110
|
|
|
|
|
|
|
# 1+1+3=5 |
|
111
|
|
|
|
|
|
|
# 5+1+3*5=21 |
|
112
|
|
|
|
|
|
|
# 1+3 = 4 |
|
113
|
|
|
|
|
|
|
# 1+3+3+9 = 16 |
|
114
|
|
|
|
|
|
|
# |
|
115
|
|
|
|
|
|
|
# 0 |
|
116
|
|
|
|
|
|
|
# 1 0 +1 |
|
117
|
|
|
|
|
|
|
# 2 1 +1 <- 1 |
|
118
|
|
|
|
|
|
|
# 3 2 +3 |
|
119
|
|
|
|
|
|
|
# 4 5 +1 <- 1 + 4 = 5 |
|
120
|
|
|
|
|
|
|
# 5 6 +3 |
|
121
|
|
|
|
|
|
|
# 6 9 +3 |
|
122
|
|
|
|
|
|
|
# 7 12 +9 |
|
123
|
|
|
|
|
|
|
# 8 21 <- 1 + 4 + 16 = 21 |
|
124
|
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
# 1+3 = 4 power 2 |
|
126
|
|
|
|
|
|
|
# 1+3+3+9 = 16 power 3 |
|
127
|
|
|
|
|
|
|
# 1+3+3+9+3+9+9+27 = 64 power 4 |
|
128
|
|
|
|
|
|
|
# |
|
129
|
|
|
|
|
|
|
# (1+4+16+...+4^(l-1)) = (4^l-1)/3 |
|
130
|
|
|
|
|
|
|
# l=1 total=(4-1)/3 = 1 |
|
131
|
|
|
|
|
|
|
# l=2 total=(16-1)/3 = 5 |
|
132
|
|
|
|
|
|
|
# l=3 total=(64-1)/3=63/3 = 21 |
|
133
|
|
|
|
|
|
|
# |
|
134
|
|
|
|
|
|
|
# n = 1 + (4^l-1)/3 |
|
135
|
|
|
|
|
|
|
# n-1 = (4^l-1)/3 |
|
136
|
|
|
|
|
|
|
# 3n-3 = (4^l-1) |
|
137
|
|
|
|
|
|
|
# 3n-2 = 4^l |
|
138
|
|
|
|
|
|
|
# |
|
139
|
|
|
|
|
|
|
# 3^0+3^1+3^1+3^2 = 1+3+3+9=16 |
|
140
|
|
|
|
|
|
|
# x+3x+3x+9x = 16x = 256 |
|
141
|
|
|
|
|
|
|
# |
|
142
|
|
|
|
|
|
|
# 22 |
|
143
|
|
|
|
|
|
|
# 20 19 18 17 |
|
144
|
|
|
|
|
|
|
# 12 11 |
|
145
|
|
|
|
|
|
|
# 21 9 8 16 |
|
146
|
|
|
|
|
|
|
# 6 |
|
147
|
|
|
|
|
|
|
# 5 4 7 15 |
|
148
|
|
|
|
|
|
|
# 2 10 |
|
149
|
|
|
|
|
|
|
# 1 3 13 14 |
|
150
|
|
|
|
|
|
|
# |
|
151
|
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
sub n_to_xy { |
|
153
|
117
|
|
|
117
|
1
|
6545
|
my ($self, $n) = @_; |
|
154
|
|
|
|
|
|
|
### UlamWarburtonQuarter n_to_xy(): $n |
|
155
|
|
|
|
|
|
|
|
|
156
|
117
|
50
|
|
|
|
274
|
if ($n < $self->{'n_start'}) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
157
|
117
|
50
|
|
|
|
264
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
158
|
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
{ |
|
160
|
117
|
|
|
|
|
201
|
my $int = int($n); |
|
|
117
|
|
|
|
|
188
|
|
|
161
|
|
|
|
|
|
|
### $int |
|
162
|
|
|
|
|
|
|
### $n |
|
163
|
117
|
50
|
|
|
|
229
|
if ($n != $int) { |
|
164
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
|
165
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
|
166
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat |
|
167
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
|
168
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
|
169
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
|
170
|
|
|
|
|
|
|
} |
|
171
|
117
|
|
|
|
|
184
|
$n = $int; # BigFloat int() gives BigInt, use that |
|
172
|
|
|
|
|
|
|
} |
|
173
|
|
|
|
|
|
|
|
|
174
|
117
|
|
|
|
|
215
|
$n = $n - $self->{'n_start'} + 1; # N=1 basis |
|
175
|
117
|
100
|
|
|
|
222
|
if ($n == 1) { return (0,0); } |
|
|
8
|
|
|
|
|
22
|
|
|
176
|
|
|
|
|
|
|
|
|
177
|
109
|
50
|
|
|
|
233
|
my ($depthsum, $nrem, $rowwidth) = _n1_to_depthsum_rem_width($self,$n) |
|
178
|
|
|
|
|
|
|
or return ($n,$n); # N==nan or N==+inf |
|
179
|
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
### assert: $nrem >= 0 |
|
181
|
|
|
|
|
|
|
### assert: $nrem < $width |
|
182
|
109
|
50
|
|
|
|
266
|
if ($self->{'parts'} eq 'octant_up') { |
|
183
|
0
|
|
|
|
|
0
|
$nrem += ($rowwidth-1)/2; |
|
184
|
|
|
|
|
|
|
### assert: $nrem < $width |
|
185
|
|
|
|
|
|
|
} |
|
186
|
|
|
|
|
|
|
|
|
187
|
109
|
|
|
|
|
265
|
my @ndigits = digit_split_lowtohigh($nrem,3); |
|
188
|
109
|
|
|
|
|
236
|
my $dhigh = shift(@$depthsum) - 1; # highest term |
|
189
|
109
|
|
|
|
|
166
|
my $x = 0; |
|
190
|
109
|
|
|
|
|
143
|
my $y = 0; |
|
191
|
109
|
|
|
|
|
223
|
foreach my $depthsum (reverse @$depthsum) { # depth terms low to high |
|
192
|
234
|
|
|
|
|
350
|
my $ndigit = shift @ndigits; # N digits low to high |
|
193
|
|
|
|
|
|
|
### $depthsum |
|
194
|
|
|
|
|
|
|
### $ndigit |
|
195
|
|
|
|
|
|
|
|
|
196
|
234
|
|
|
|
|
346
|
$x += $depthsum; |
|
197
|
234
|
|
|
|
|
315
|
$y += $depthsum; |
|
198
|
|
|
|
|
|
|
### depthsum to xy: "$x,$y" |
|
199
|
|
|
|
|
|
|
|
|
200
|
234
|
100
|
|
|
|
365
|
if ($ndigit) { |
|
201
|
149
|
100
|
|
|
|
269
|
if ($ndigit == 2) { |
|
202
|
77
|
|
|
|
|
172
|
($x,$y) = (-$y,$x); # rotate +90 |
|
203
|
|
|
|
|
|
|
} |
|
204
|
|
|
|
|
|
|
} else { |
|
205
|
|
|
|
|
|
|
# digit==0 (or undef when run out of @ndigits) |
|
206
|
85
|
|
|
|
|
164
|
($x,$y) = ($y,-$x); # rotate -90 |
|
207
|
|
|
|
|
|
|
} |
|
208
|
|
|
|
|
|
|
### rotate to: "$x,$y" |
|
209
|
|
|
|
|
|
|
} |
|
210
|
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
### final: "$x,$y" |
|
212
|
109
|
|
|
|
|
297
|
return ($dhigh + $x, $dhigh + $y); |
|
213
|
|
|
|
|
|
|
} |
|
214
|
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
sub xy_to_n { |
|
216
|
560
|
|
|
560
|
1
|
8091
|
my ($self, $x, $y) = @_; |
|
217
|
|
|
|
|
|
|
### UlamWarburtonQuarter xy_to_n(): "$x, $y" |
|
218
|
|
|
|
|
|
|
|
|
219
|
560
|
|
|
|
|
1133
|
$x = round_nearest ($x); |
|
220
|
560
|
|
|
|
|
1117
|
$y = round_nearest ($y); |
|
221
|
560
|
|
|
|
|
982
|
my $parts = $self->{'parts'}; |
|
222
|
560
|
50
|
100
|
|
|
1793
|
if ($y < 0 |
|
|
|
100
|
33
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
223
|
|
|
|
|
|
|
|| $x < ($parts eq 'octant' ? $y : 0) |
|
224
|
|
|
|
|
|
|
|| ($parts eq 'octant_up' && $x > $y)) { |
|
225
|
329
|
|
|
|
|
603
|
return undef; |
|
226
|
|
|
|
|
|
|
} |
|
227
|
231
|
100
|
100
|
|
|
495
|
if ($x == 0 && $y == 0) { |
|
228
|
9
|
|
|
|
|
23
|
return $self->{'n_start'}; |
|
229
|
|
|
|
|
|
|
} |
|
230
|
222
|
|
|
|
|
317
|
$x += 1; # pushed away by 1 ... |
|
231
|
222
|
|
|
|
|
293
|
$y += 1; |
|
232
|
|
|
|
|
|
|
|
|
233
|
222
|
|
|
|
|
509
|
my ($len, $exp) = round_down_pow ($x + $y, 2); |
|
234
|
222
|
50
|
|
|
|
489
|
if (is_infinite($exp)) { return $exp; } |
|
|
0
|
|
|
|
|
0
|
|
|
235
|
|
|
|
|
|
|
|
|
236
|
222
|
|
|
|
|
435
|
my $depth |
|
237
|
|
|
|
|
|
|
= my $n |
|
238
|
|
|
|
|
|
|
= ($x * 0 * $y); # inherit bignum 0 |
|
239
|
222
|
|
|
|
|
334
|
my $rowwidth = $depth + 1; |
|
240
|
|
|
|
|
|
|
|
|
241
|
222
|
|
|
|
|
418
|
while ($exp-- >= 0) { |
|
242
|
|
|
|
|
|
|
### at: "$x,$y n=$n len=$len" |
|
243
|
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
# first quadrant square |
|
245
|
|
|
|
|
|
|
### assert: $x >= 0 |
|
246
|
|
|
|
|
|
|
### assert: $y >= 0 |
|
247
|
|
|
|
|
|
|
# ### assert: $x < 2*$len |
|
248
|
|
|
|
|
|
|
# ### assert: $y < 2*$len |
|
249
|
|
|
|
|
|
|
|
|
250
|
831
|
100
|
100
|
|
|
1992
|
if ($x >= $len || $y >= $len) { |
|
251
|
|
|
|
|
|
|
# one of three quarters away from origin |
|
252
|
|
|
|
|
|
|
# +---+---+ |
|
253
|
|
|
|
|
|
|
# | 2 | 1 | |
|
254
|
|
|
|
|
|
|
# +---+---+ |
|
255
|
|
|
|
|
|
|
# | | 0 | |
|
256
|
|
|
|
|
|
|
# +---+---+ |
|
257
|
|
|
|
|
|
|
|
|
258
|
519
|
|
|
|
|
739
|
$x -= $len; |
|
259
|
519
|
|
|
|
|
670
|
$y -= $len; |
|
260
|
|
|
|
|
|
|
### shift to: "$x,$y" |
|
261
|
|
|
|
|
|
|
|
|
262
|
519
|
100
|
|
|
|
798
|
if ($x) { |
|
263
|
343
|
100
|
|
|
|
594
|
unless ($y) { |
|
264
|
46
|
|
|
|
|
119
|
return undef; # x==0, y!=0, nothing |
|
265
|
|
|
|
|
|
|
} |
|
266
|
|
|
|
|
|
|
} else { |
|
267
|
176
|
100
|
|
|
|
314
|
if ($y) { |
|
268
|
45
|
|
|
|
|
119
|
return undef; # x!=0, y-=0, nothing |
|
269
|
|
|
|
|
|
|
} |
|
270
|
|
|
|
|
|
|
} |
|
271
|
|
|
|
|
|
|
|
|
272
|
428
|
|
|
|
|
588
|
$depth += $len; |
|
273
|
428
|
100
|
66
|
|
|
961
|
if ($x || $y) { |
|
274
|
297
|
|
|
|
|
413
|
$rowwidth *= 3; |
|
275
|
297
|
|
|
|
|
374
|
$n *= 3; |
|
276
|
297
|
100
|
|
|
|
529
|
if ($y < 0) { |
|
|
|
100
|
|
|
|
|
|
|
277
|
|
|
|
|
|
|
### bottom right, digit 0 ... |
|
278
|
105
|
|
|
|
|
237
|
($x,$y) = (-$y,$x); # rotate +90 |
|
279
|
|
|
|
|
|
|
} elsif ($x >= 0) { |
|
280
|
|
|
|
|
|
|
### top right, digit 1 ... |
|
281
|
88
|
|
|
|
|
155
|
$n += 1; |
|
282
|
|
|
|
|
|
|
} else { |
|
283
|
|
|
|
|
|
|
### top left, digit 2 ... |
|
284
|
104
|
|
|
|
|
175
|
($x,$y) = ($y,-$x); # rotate -90 |
|
285
|
104
|
|
|
|
|
161
|
$n += 2; |
|
286
|
|
|
|
|
|
|
} |
|
287
|
|
|
|
|
|
|
} |
|
288
|
|
|
|
|
|
|
} |
|
289
|
|
|
|
|
|
|
|
|
290
|
740
|
|
|
|
|
1354
|
$len /= 2; |
|
291
|
|
|
|
|
|
|
} |
|
292
|
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
### $n |
|
294
|
|
|
|
|
|
|
### $depth |
|
295
|
|
|
|
|
|
|
|
|
296
|
131
|
50
|
|
|
|
269
|
if ($self->{'parts'} eq 'octant_up') { |
|
297
|
0
|
|
|
|
|
0
|
$n -= ($rowwidth-1)/2; |
|
298
|
|
|
|
|
|
|
} |
|
299
|
|
|
|
|
|
|
|
|
300
|
131
|
|
|
|
|
317
|
return $n + $self->tree_depth_to_n($depth-1); |
|
301
|
|
|
|
|
|
|
} |
|
302
|
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
# not exact |
|
304
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
305
|
50
|
|
|
50
|
1
|
4060
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
306
|
|
|
|
|
|
|
### UlamWarburtonQuarter rect_to_n_range(): "$x1,$y1 $x2,$y2" |
|
307
|
|
|
|
|
|
|
|
|
308
|
50
|
|
|
|
|
162
|
$x1 = round_nearest ($x1); |
|
309
|
50
|
|
|
|
|
111
|
$y1 = round_nearest ($y1); |
|
310
|
50
|
|
|
|
|
104
|
$x2 = round_nearest ($x2); |
|
311
|
50
|
|
|
|
|
103
|
$y2 = round_nearest ($y2); |
|
312
|
|
|
|
|
|
|
|
|
313
|
50
|
50
|
|
|
|
114
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
|
314
|
50
|
50
|
|
|
|
99
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
|
315
|
|
|
|
|
|
|
|
|
316
|
50
|
50
|
33
|
|
|
180
|
if ($x2 < 0 || $y2 < 0) { |
|
317
|
0
|
|
|
|
|
0
|
return (1, 0); # all outside first quadrant |
|
318
|
|
|
|
|
|
|
} |
|
319
|
|
|
|
|
|
|
|
|
320
|
50
|
50
|
|
|
|
124
|
if ($x1 < 0) { $x1 *= 0; } |
|
|
0
|
|
|
|
|
0
|
|
|
321
|
50
|
50
|
|
|
|
81
|
if ($y1 < 0) { $y1 *= 0; } |
|
|
0
|
|
|
|
|
0
|
|
|
322
|
|
|
|
|
|
|
|
|
323
|
|
|
|
|
|
|
# level numbers |
|
324
|
50
|
100
|
|
|
|
102
|
my $dlo = ($x1 > $y1 ? $x1 : $y1)+1; |
|
325
|
50
|
100
|
|
|
|
100
|
my $dhi = ($x2 > $y2 ? $x2 : $y2); |
|
326
|
|
|
|
|
|
|
### $dlo |
|
327
|
|
|
|
|
|
|
### $dhi |
|
328
|
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
# round down to level=2^k numbers |
|
330
|
50
|
50
|
|
|
|
98
|
if ($dlo) { |
|
331
|
50
|
|
|
|
|
148
|
($dlo) = round_down_pow ($dlo,2); |
|
332
|
|
|
|
|
|
|
} |
|
333
|
50
|
|
|
|
|
114
|
($dhi) = round_down_pow ($dhi,2); |
|
334
|
|
|
|
|
|
|
|
|
335
|
|
|
|
|
|
|
### rounded to pow2: "$dlo ".(2*$dhi) |
|
336
|
|
|
|
|
|
|
|
|
337
|
50
|
|
|
|
|
138
|
return ($self->tree_depth_to_n($dlo-1), |
|
338
|
|
|
|
|
|
|
$self->tree_depth_to_n(2*$dhi-1)); |
|
339
|
|
|
|
|
|
|
} |
|
340
|
|
|
|
|
|
|
|
|
341
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
342
|
2
|
|
|
2
|
|
15
|
use constant tree_num_roots => 1; |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
2002
|
|
|
343
|
|
|
|
|
|
|
|
|
344
|
|
|
|
|
|
|
# ENHANCE-ME: step by the bits, not by X,Y |
|
345
|
|
|
|
|
|
|
sub tree_n_children { |
|
346
|
9
|
|
|
9
|
1
|
728
|
my ($self, $n) = @_; |
|
347
|
9
|
50
|
|
|
|
27
|
if ($n < $self->{'n_start'}) { |
|
348
|
0
|
|
|
|
|
0
|
return; |
|
349
|
|
|
|
|
|
|
} |
|
350
|
9
|
|
|
|
|
24
|
my ($x,$y) = $self->n_to_xy($n); |
|
351
|
9
|
|
|
|
|
13
|
my @ret; |
|
352
|
9
|
|
|
|
|
14
|
my $dx = 1; |
|
353
|
9
|
|
|
|
|
13
|
my $dy = 1; |
|
354
|
9
|
|
|
|
|
20
|
foreach (1 .. 4) { |
|
355
|
36
|
100
|
|
|
|
78
|
if (defined (my $n_child = $self->xy_to_n($x+$dx,$y+$dy))) { |
|
356
|
19
|
100
|
|
|
|
36
|
if ($n_child > $n) { |
|
357
|
11
|
|
|
|
|
19
|
push @ret, $n_child; |
|
358
|
|
|
|
|
|
|
} |
|
359
|
|
|
|
|
|
|
} |
|
360
|
36
|
|
|
|
|
460
|
($dx,$dy) = (-$dy,$dx); # rotate +90 |
|
361
|
|
|
|
|
|
|
} |
|
362
|
9
|
|
|
|
|
38
|
return sort {$a<=>$b} @ret; |
|
|
4
|
|
|
|
|
14
|
|
|
363
|
|
|
|
|
|
|
} |
|
364
|
|
|
|
|
|
|
sub tree_n_parent { |
|
365
|
12
|
|
|
12
|
1
|
902
|
my ($self, $n) = @_; |
|
366
|
12
|
100
|
|
|
|
31
|
if ($n <= $self->{'n_start'}) { |
|
367
|
1
|
|
|
|
|
2
|
return undef; |
|
368
|
|
|
|
|
|
|
} |
|
369
|
11
|
|
|
|
|
30
|
my ($x,$y) = $self->n_to_xy($n); |
|
370
|
11
|
|
|
|
|
17
|
my $dx = 1; |
|
371
|
11
|
|
|
|
|
17
|
my $dy = 1; |
|
372
|
11
|
|
|
|
|
22
|
foreach (1 .. 4) { |
|
373
|
33
|
100
|
|
|
|
75
|
if (defined (my $n_parent = $self->xy_to_n($x+$dx,$y+$dy))) { |
|
374
|
24
|
100
|
|
|
|
52
|
if ($n_parent < $n) { |
|
375
|
11
|
|
|
|
|
27
|
return $n_parent; |
|
376
|
|
|
|
|
|
|
} |
|
377
|
|
|
|
|
|
|
} |
|
378
|
22
|
|
|
|
|
57
|
($dx,$dy) = (-$dy,$dx); # rotate +90 |
|
379
|
|
|
|
|
|
|
} |
|
380
|
0
|
|
|
|
|
0
|
return undef; |
|
381
|
|
|
|
|
|
|
} |
|
382
|
|
|
|
|
|
|
|
|
383
|
|
|
|
|
|
|
# level = depth+1 = 2^a + 2^b + 2^c + 2^d ... a>b>c>d... |
|
384
|
|
|
|
|
|
|
# Ndepth = 1 + (-1 |
|
385
|
|
|
|
|
|
|
# + 4^a |
|
386
|
|
|
|
|
|
|
# + 3 * 4^b |
|
387
|
|
|
|
|
|
|
# + 3^2 * 4^c |
|
388
|
|
|
|
|
|
|
# + 3^3 * 4^d + ...) / 3 |
|
389
|
|
|
|
|
|
|
sub tree_depth_to_n { |
|
390
|
898
|
|
|
898
|
1
|
1845
|
my ($self, $depth) = @_; |
|
391
|
|
|
|
|
|
|
### tree_depth_to_n(): $depth |
|
392
|
898
|
50
|
|
|
|
1708
|
if (is_infinite($depth)) { |
|
393
|
0
|
|
|
|
|
0
|
return $depth; |
|
394
|
|
|
|
|
|
|
} |
|
395
|
898
|
50
|
|
|
|
2145
|
unless ($depth >= 0) { |
|
396
|
0
|
|
|
|
|
0
|
return undef; |
|
397
|
|
|
|
|
|
|
} |
|
398
|
898
|
|
|
|
|
1223
|
my $n = $depth*0; # inherit bignum 0 |
|
399
|
898
|
|
|
|
|
1234
|
my $pow3 = 1 + $n; # inherit bignum 1 |
|
400
|
898
|
|
|
|
|
1924
|
foreach my $bit (reverse bit_split_lowtohigh($depth+1)) { # high to low |
|
401
|
3766
|
|
|
|
|
4572
|
$n *= 4; |
|
402
|
3766
|
100
|
|
|
|
5771
|
if ($bit) { |
|
403
|
1956
|
|
|
|
|
2246
|
$n += $pow3; |
|
404
|
1956
|
|
|
|
|
2536
|
$pow3 *= 3; |
|
405
|
|
|
|
|
|
|
} |
|
406
|
|
|
|
|
|
|
} |
|
407
|
898
|
50
|
|
|
|
2055
|
if ($self->{'parts'} =~ /octant/) { |
|
408
|
0
|
|
|
|
|
0
|
$n = ($n + (3*$depth-1))/6; |
|
409
|
|
|
|
|
|
|
} else { |
|
410
|
898
|
|
|
|
|
1363
|
$n = ($n-1)/3; |
|
411
|
|
|
|
|
|
|
} |
|
412
|
898
|
|
|
|
|
2071
|
return $n + $self->{'n_start'}; |
|
413
|
|
|
|
|
|
|
} |
|
414
|
|
|
|
|
|
|
|
|
415
|
|
|
|
|
|
|
sub tree_n_to_depth { |
|
416
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
417
|
|
|
|
|
|
|
|
|
418
|
0
|
|
|
|
|
0
|
$n = int($n - $self->{'n_start'} + 1); # N=1 basis |
|
419
|
0
|
0
|
|
|
|
0
|
if ($n < 1) { |
|
420
|
0
|
|
|
|
|
0
|
return undef; |
|
421
|
|
|
|
|
|
|
} |
|
422
|
0
|
0
|
|
|
|
0
|
(my $depthsum, $n) = _n1_to_depthsum_rem_width($self,$n) |
|
423
|
|
|
|
|
|
|
or return $n; # N==nan or N==+infinity |
|
424
|
0
|
|
|
|
|
0
|
return sum(-1, @$depthsum); |
|
425
|
|
|
|
|
|
|
} |
|
426
|
|
|
|
|
|
|
|
|
427
|
|
|
|
|
|
|
# Return ($aref, $remaining_n). |
|
428
|
|
|
|
|
|
|
# sum(@$aref) = depth starting depth=1 |
|
429
|
|
|
|
|
|
|
# |
|
430
|
|
|
|
|
|
|
# depth+1 = 2^k |
|
431
|
|
|
|
|
|
|
# Ndepth(depth) = (4^k+2)/3 |
|
432
|
|
|
|
|
|
|
# 3N-2 = 4^k |
|
433
|
|
|
|
|
|
|
# NdepthOct(depth) = ((4^k+2)/3 + 2^k)/2 |
|
434
|
|
|
|
|
|
|
# 6N-2 = 4^k + 3*2^k |
|
435
|
|
|
|
|
|
|
# |
|
436
|
|
|
|
|
|
|
sub _n1_to_depthsum_rem_width { |
|
437
|
109
|
|
|
109
|
|
218
|
my ($self, $n) = @_; |
|
438
|
|
|
|
|
|
|
### _n1_to_depthsum_rem_width(): $n |
|
439
|
|
|
|
|
|
|
|
|
440
|
109
|
|
|
|
|
190
|
my $octant = ($self->{'parts'} =~ /octant/); |
|
441
|
109
|
50
|
|
|
|
322
|
my ($power, $exp) = round_down_pow (($octant ? 6 : 3)*$n - 2, 4); |
|
442
|
109
|
50
|
|
|
|
277
|
if (is_infinite($exp)) { |
|
443
|
0
|
|
|
|
|
0
|
return; |
|
444
|
|
|
|
|
|
|
} |
|
445
|
|
|
|
|
|
|
|
|
446
|
|
|
|
|
|
|
### $power |
|
447
|
|
|
|
|
|
|
### $exp |
|
448
|
|
|
|
|
|
|
### pow base: ($power - 1)/3 + 1 |
|
449
|
|
|
|
|
|
|
|
|
450
|
|
|
|
|
|
|
{ |
|
451
|
109
|
|
|
|
|
194
|
my $sub = ($power + 2)/3; # (power-1)/3 + 1 |
|
|
109
|
|
|
|
|
190
|
|
|
452
|
109
|
50
|
|
|
|
210
|
if ($octant) { |
|
453
|
0
|
|
|
|
|
0
|
$sub = ($sub + 2**$exp) / 2; |
|
454
|
|
|
|
|
|
|
### prospective sub: $sub |
|
455
|
|
|
|
|
|
|
### assert: $sub == ($power + 3 * 2 ** $exp + 2)/6 |
|
456
|
|
|
|
|
|
|
|
|
457
|
0
|
0
|
|
|
|
0
|
if ($sub > $n) { |
|
458
|
0
|
|
|
|
|
0
|
$exp -= 1; |
|
459
|
0
|
|
|
|
|
0
|
$power /= 4; |
|
460
|
0
|
|
|
|
|
0
|
$sub = ($power + 3*2**$exp + 2)/6; |
|
461
|
|
|
|
|
|
|
} |
|
462
|
|
|
|
|
|
|
} |
|
463
|
|
|
|
|
|
|
### assert: $sub <= $n |
|
464
|
109
|
|
|
|
|
188
|
$n -= $sub; |
|
465
|
|
|
|
|
|
|
} |
|
466
|
|
|
|
|
|
|
### n less pow base: $n |
|
467
|
|
|
|
|
|
|
|
|
468
|
109
|
|
|
|
|
242
|
my @depthsum = (2**$exp); |
|
469
|
|
|
|
|
|
|
|
|
470
|
|
|
|
|
|
|
# find the cumulative levelpoints total <= $n, being the start of the |
|
471
|
|
|
|
|
|
|
# level containing $n |
|
472
|
|
|
|
|
|
|
# |
|
473
|
109
|
|
|
|
|
167
|
my $factor = 1; |
|
474
|
109
|
|
|
|
|
214
|
while (--$exp >= 0) { |
|
475
|
368
|
|
|
|
|
504
|
$power /= 4; |
|
476
|
368
|
|
|
|
|
540
|
my $sub = $power * $factor; |
|
477
|
368
|
50
|
|
|
|
610
|
if ($octant) { |
|
478
|
0
|
|
|
|
|
0
|
$sub = ($sub + 2**$exp)/2; |
|
479
|
|
|
|
|
|
|
} |
|
480
|
|
|
|
|
|
|
### $sub |
|
481
|
368
|
|
|
|
|
497
|
my $rem = $n - $sub; |
|
482
|
|
|
|
|
|
|
|
|
483
|
|
|
|
|
|
|
### $n |
|
484
|
|
|
|
|
|
|
### $power |
|
485
|
|
|
|
|
|
|
### $factor |
|
486
|
|
|
|
|
|
|
### consider subtract: $sub |
|
487
|
|
|
|
|
|
|
### $rem |
|
488
|
|
|
|
|
|
|
|
|
489
|
368
|
100
|
|
|
|
732
|
if ($rem >= 0) { |
|
490
|
234
|
|
|
|
|
308
|
$n = $rem; |
|
491
|
234
|
|
|
|
|
374
|
push @depthsum, 2**$exp; |
|
492
|
234
|
|
|
|
|
422
|
$factor *= 3; |
|
493
|
|
|
|
|
|
|
} |
|
494
|
|
|
|
|
|
|
} |
|
495
|
|
|
|
|
|
|
|
|
496
|
|
|
|
|
|
|
### _n1_to_depthsum_rem_width() result ... |
|
497
|
|
|
|
|
|
|
### @depthsum |
|
498
|
|
|
|
|
|
|
### remaining n: $n |
|
499
|
|
|
|
|
|
|
### assert: $n >= 0 |
|
500
|
|
|
|
|
|
|
### assert: $n < $factor |
|
501
|
|
|
|
|
|
|
|
|
502
|
109
|
|
|
|
|
405
|
return (\@depthsum, $n, $factor); |
|
503
|
|
|
|
|
|
|
} |
|
504
|
|
|
|
|
|
|
|
|
505
|
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
# at 0,2 turn and new height limit |
|
507
|
|
|
|
|
|
|
# at 1 keep existing depth limit |
|
508
|
|
|
|
|
|
|
# N=30 rem=1 = 0,1 depth=11=8+2+1=1011 width=9 |
|
509
|
|
|
|
|
|
|
# |
|
510
|
|
|
|
|
|
|
sub tree_n_to_subheight { |
|
511
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
512
|
|
|
|
|
|
|
### tree_n_to_subheight(): $n |
|
513
|
|
|
|
|
|
|
|
|
514
|
0
|
|
|
|
|
0
|
$n = int($n - $self->{'n_start'} + 1); # N=1 basis |
|
515
|
0
|
0
|
|
|
|
0
|
if ($n < 1) { |
|
516
|
0
|
|
|
|
|
0
|
return undef; |
|
517
|
|
|
|
|
|
|
} |
|
518
|
0
|
0
|
|
|
|
0
|
my ($depthsum, $nrem, $rowwidth) = _n1_to_depthsum_rem_width($self,$n) |
|
519
|
|
|
|
|
|
|
or return $n; # N==nan or N==+infinity |
|
520
|
|
|
|
|
|
|
### $depthsum |
|
521
|
|
|
|
|
|
|
### $nrem |
|
522
|
|
|
|
|
|
|
|
|
523
|
0
|
0
|
|
|
|
0
|
if ($self->{'parts'} eq 'octant_up') { |
|
524
|
0
|
|
|
|
|
0
|
$nrem += ($rowwidth-1)/2; |
|
525
|
|
|
|
|
|
|
} |
|
526
|
|
|
|
|
|
|
|
|
527
|
0
|
|
|
|
|
0
|
my $sub = pop @$depthsum; |
|
528
|
0
|
|
0
|
|
|
0
|
while (@$depthsum && _divrem_mutate($nrem,3) == 1) { |
|
529
|
0
|
|
|
|
|
0
|
$sub += pop @$depthsum; |
|
530
|
|
|
|
|
|
|
} |
|
531
|
0
|
0
|
|
|
|
0
|
if (@$depthsum) { |
|
532
|
0
|
|
|
|
|
0
|
return $depthsum->[-1] - 1 - $sub; |
|
533
|
|
|
|
|
|
|
} else { |
|
534
|
0
|
|
|
|
|
0
|
return undef; # $nrem all 1-digits |
|
535
|
|
|
|
|
|
|
} |
|
536
|
|
|
|
|
|
|
} |
|
537
|
|
|
|
|
|
|
|
|
538
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
539
|
|
|
|
|
|
|
# levels |
|
540
|
|
|
|
|
|
|
|
|
541
|
|
|
|
|
|
|
sub level_to_n_range { |
|
542
|
27
|
|
|
27
|
1
|
1844
|
my ($self, $level) = @_; |
|
543
|
27
|
|
|
|
|
107
|
return ($self->{'n_start'}, |
|
544
|
|
|
|
|
|
|
$self->tree_depth_to_n_end(2**($level+1) - 2)); |
|
545
|
|
|
|
|
|
|
} |
|
546
|
|
|
|
|
|
|
sub n_to_level { |
|
547
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
|
548
|
0
|
|
|
|
|
|
my $depth = $self->tree_n_to_depth($n); |
|
549
|
0
|
0
|
|
|
|
|
if (! defined $depth) { return undef; } |
|
|
0
|
|
|
|
|
|
|
|
550
|
0
|
|
|
|
|
|
my ($pow, $exp) = round_down_pow ($depth+1, 2); |
|
551
|
0
|
|
|
|
|
|
return $exp; |
|
552
|
|
|
|
|
|
|
} |
|
553
|
|
|
|
|
|
|
|
|
554
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
555
|
|
|
|
|
|
|
1; |
|
556
|
|
|
|
|
|
|
__END__ |