| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# math-image --path=TriangularHypot |
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
# A034017 - loeschian primatives xx+xy+yy, primes 3k+1 and a factor of 3 |
|
22
|
|
|
|
|
|
|
# which is when x^2-x+1 mod n has a solution |
|
23
|
|
|
|
|
|
|
# |
|
24
|
|
|
|
|
|
|
# A092572 - all x^2+3*y^2 |
|
25
|
|
|
|
|
|
|
# A158937 - all x^2+3*y^2 with repetitions x>0,y>0 |
|
26
|
|
|
|
|
|
|
# |
|
27
|
|
|
|
|
|
|
# A092572 - 6n+1 primes |
|
28
|
|
|
|
|
|
|
# A055664 - norms of Eisenstein-Jacobi primes |
|
29
|
|
|
|
|
|
|
# A008458 - hex coordination sequence, 1 and multiples of 6 |
|
30
|
|
|
|
|
|
|
# |
|
31
|
|
|
|
|
|
|
# A2 centred at lattice point: |
|
32
|
|
|
|
|
|
|
# A014201 - x*x+x*y+y*y solutions excluding 0,0 |
|
33
|
|
|
|
|
|
|
# A038589 - lattice sizes, =A014201+1 |
|
34
|
|
|
|
|
|
|
# A038590 - sizes, uniques of A038589 |
|
35
|
|
|
|
|
|
|
# A038591 - 3fold symmetry, union A038588 and A038590 |
|
36
|
|
|
|
|
|
|
# |
|
37
|
|
|
|
|
|
|
# A2 centred at hole |
|
38
|
|
|
|
|
|
|
# A038587 - centred deep hole |
|
39
|
|
|
|
|
|
|
# A038588 - centred deep hole uniques of A038587 |
|
40
|
|
|
|
|
|
|
# A005882 - theta relative hole |
|
41
|
|
|
|
|
|
|
# 3,3,6,0,6,3,6,0,3,6,6,0,6,0,6,0,9,6,0,0,6,3,6,0,6,6,6,0,0,0,12, |
|
42
|
|
|
|
|
|
|
# A033685 - theta series of hexagonal lattice A_2 with respect to deep hole. |
|
43
|
|
|
|
|
|
|
# 1/3 steps of norm, so extra zeros |
|
44
|
|
|
|
|
|
|
# 0,3,0,0,3,0,0,6,0,0,0,0,0,6,0,0,3,0,0,6,0,0,0,0,0,3,0,0,6,0,0,6, |
|
45
|
|
|
|
|
|
|
# |
|
46
|
|
|
|
|
|
|
# A005929 Theta series of hexagonal net with respect to mid-point of edge. |
|
47
|
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
# [27] [28] [31] |
|
49
|
|
|
|
|
|
|
# [12] [13] [16] [21] [28] |
|
50
|
|
|
|
|
|
|
# [7] [4] [3] [4] [7] [12] [19] [28] |
|
51
|
|
|
|
|
|
|
# [25] [16] [9] [4] [1] [0] [1] [4] [9] [16] [25] [36] |
|
52
|
|
|
|
|
|
|
# [7] [4] [3] [4] [7] |
|
53
|
|
|
|
|
|
|
# [12] |
|
54
|
|
|
|
|
|
|
# [27] |
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
# mirror across +60 |
|
57
|
|
|
|
|
|
|
# (X,Y) = ((X+3Y)/2, (Y-X)/2); # rotate -60 |
|
58
|
|
|
|
|
|
|
# Y = -Y; # mirror |
|
59
|
|
|
|
|
|
|
# (X,Y) = ((X-3Y)/2, (X+Y)/2); # rotate +60 |
|
60
|
|
|
|
|
|
|
# |
|
61
|
|
|
|
|
|
|
# (X,Y) = ((X+3Y)/2, (Y-X)/2); # rotate -60 |
|
62
|
|
|
|
|
|
|
# (X,Y) = ((X+3Y)/2, (X-Y)/2); |
|
63
|
|
|
|
|
|
|
# |
|
64
|
|
|
|
|
|
|
# (X,Y) = (((X+3Y)/2+3(Y-X)/2)/2, ((X+3Y)/2-(Y-X)/2)/2); |
|
65
|
|
|
|
|
|
|
# = (((X+3Y)+3(Y-X))/4, ((X+3Y)-(Y-X))/4); |
|
66
|
|
|
|
|
|
|
# = ((X + 3Y + 3Y - 3X)/4, (X + 3Y - Y + X)/4); |
|
67
|
|
|
|
|
|
|
# = ((-2X + 6Y)/4, (2X + 2Y)/4); |
|
68
|
|
|
|
|
|
|
# = ((-X + 3Y)/2, (X+Y)/2); |
|
69
|
|
|
|
|
|
|
# # eg X=6,Y=0 -> X=-6/2=-3 Y=(6+0)/2=3 |
|
70
|
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
package Math::PlanePath::TriangularHypot; |
|
73
|
1
|
|
|
1
|
|
1126
|
use 5.004; |
|
|
1
|
|
|
|
|
2
|
|
|
74
|
1
|
|
|
1
|
|
5
|
use strict; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
18
|
|
|
75
|
1
|
|
|
1
|
|
3
|
use Carp 'croak'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
37
|
|
|
76
|
|
|
|
|
|
|
|
|
77
|
1
|
|
|
1
|
|
4
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
53
|
|
|
78
|
|
|
|
|
|
|
$VERSION = 128; |
|
79
|
1
|
|
|
1
|
|
578
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
32
|
|
|
80
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
81
|
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
83
|
1
|
|
|
|
|
57
|
'is_infinite', |
|
84
|
1
|
|
|
1
|
|
5
|
'round_nearest'; |
|
|
1
|
|
|
|
|
2
|
|
|
85
|
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
87
|
|
|
|
|
|
|
# use Smart::Comments; |
|
88
|
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
|
|
90
|
1
|
|
|
|
|
2113
|
use constant parameter_info_array => |
|
91
|
|
|
|
|
|
|
[ { name => 'points', |
|
92
|
|
|
|
|
|
|
share_type => 'points_eoahrc', |
|
93
|
|
|
|
|
|
|
display => 'Points', |
|
94
|
|
|
|
|
|
|
type => 'enum', |
|
95
|
|
|
|
|
|
|
default => 'even', |
|
96
|
|
|
|
|
|
|
choices => ['even','odd', 'all', |
|
97
|
|
|
|
|
|
|
'hex','hex_rotated','hex_centred', |
|
98
|
|
|
|
|
|
|
], |
|
99
|
|
|
|
|
|
|
choices_display => ['Even','Odd', 'All', |
|
100
|
|
|
|
|
|
|
'Hex','Hex Rotated','Hex Centred', |
|
101
|
|
|
|
|
|
|
], |
|
102
|
|
|
|
|
|
|
description => 'Which X,Y points visit, either X+Y even or odd, or all points, or hexagonal grid points.', |
|
103
|
|
|
|
|
|
|
}, |
|
104
|
|
|
|
|
|
|
Math::PlanePath::Base::Generic::parameter_info_nstart1(), |
|
105
|
1
|
|
|
1
|
|
4
|
]; |
|
|
1
|
|
|
|
|
2
|
|
|
106
|
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
{ |
|
108
|
|
|
|
|
|
|
my %x_negative_at_n = (even => 3, |
|
109
|
|
|
|
|
|
|
odd => 1, |
|
110
|
|
|
|
|
|
|
all => 2, |
|
111
|
|
|
|
|
|
|
hex => 2, |
|
112
|
|
|
|
|
|
|
hex_rotated => 2, |
|
113
|
|
|
|
|
|
|
hex_centred => 2, |
|
114
|
|
|
|
|
|
|
); |
|
115
|
|
|
|
|
|
|
sub x_negative_at_n { |
|
116
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
117
|
0
|
|
|
|
|
0
|
return $self->n_start + $x_negative_at_n{$self->{'points'}}; |
|
118
|
|
|
|
|
|
|
} |
|
119
|
|
|
|
|
|
|
} |
|
120
|
|
|
|
|
|
|
{ |
|
121
|
|
|
|
|
|
|
my %y_negative_at_n = (even => 5, |
|
122
|
|
|
|
|
|
|
odd => 3, |
|
123
|
|
|
|
|
|
|
all => 4, |
|
124
|
|
|
|
|
|
|
hex => 3, |
|
125
|
|
|
|
|
|
|
hex_rotated => 3, |
|
126
|
|
|
|
|
|
|
hex_centred => 4, |
|
127
|
|
|
|
|
|
|
); |
|
128
|
|
|
|
|
|
|
sub y_negative_at_n { |
|
129
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
130
|
0
|
|
|
|
|
0
|
return $self->n_start + $y_negative_at_n{$self->{'points'}}; |
|
131
|
|
|
|
|
|
|
} |
|
132
|
|
|
|
|
|
|
} |
|
133
|
|
|
|
|
|
|
sub rsquared_minimum { |
|
134
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
135
|
|
|
|
|
|
|
return ($self->{'points'} eq 'odd' ? 1 # at X=1,Y=0 |
|
136
|
0
|
0
|
|
|
|
0
|
: $self->{'points'} eq 'hex_centred' ? 2 # at X=1,Y=1 |
|
|
|
0
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
: 0); # even,all,hex,hex_rotated at X=0,Y=0 |
|
138
|
|
|
|
|
|
|
} |
|
139
|
|
|
|
|
|
|
*sumabsxy_minimum = \&rsquared_minimum; |
|
140
|
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
sub absdiffxy_minimum { |
|
142
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
143
|
0
|
0
|
|
|
|
0
|
return ($self->{'points'} eq 'odd' |
|
144
|
|
|
|
|
|
|
? 1 # odd, line X=Y not included |
|
145
|
|
|
|
|
|
|
: 0); # even,all includes X=Y |
|
146
|
|
|
|
|
|
|
} |
|
147
|
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
{ |
|
149
|
|
|
|
|
|
|
my %_UNDOCUMENTED__turn_any_left_at_n |
|
150
|
|
|
|
|
|
|
= (even => 1, |
|
151
|
|
|
|
|
|
|
odd => 3, |
|
152
|
|
|
|
|
|
|
all => 4, |
|
153
|
|
|
|
|
|
|
hex => 1, |
|
154
|
|
|
|
|
|
|
hex_rotated => 1, |
|
155
|
|
|
|
|
|
|
hex_centred => 1, |
|
156
|
|
|
|
|
|
|
); |
|
157
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_left_at_n { |
|
158
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
159
|
0
|
|
|
|
|
0
|
my $n = $_UNDOCUMENTED__turn_any_left_at_n{$self->{'points'}}; |
|
160
|
0
|
0
|
|
|
|
0
|
return (defined $n ? $self->n_start + $n : undef); |
|
161
|
|
|
|
|
|
|
} |
|
162
|
|
|
|
|
|
|
} |
|
163
|
|
|
|
|
|
|
{ |
|
164
|
|
|
|
|
|
|
# even,hex, left or straight only |
|
165
|
|
|
|
|
|
|
# odd,all both left or right |
|
166
|
|
|
|
|
|
|
my %turn_any_right = (# even => 0, |
|
167
|
|
|
|
|
|
|
odd => 1, |
|
168
|
|
|
|
|
|
|
all => 1, |
|
169
|
|
|
|
|
|
|
# hex => 0, |
|
170
|
|
|
|
|
|
|
# hex_rotated => 0, |
|
171
|
|
|
|
|
|
|
# hex_centred => 0, |
|
172
|
|
|
|
|
|
|
); |
|
173
|
|
|
|
|
|
|
sub turn_any_right { |
|
174
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
175
|
0
|
|
|
|
|
0
|
return $turn_any_right{$self->{'points'}}; |
|
176
|
|
|
|
|
|
|
} |
|
177
|
|
|
|
|
|
|
} |
|
178
|
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
sub turn_any_straight { |
|
180
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
181
|
|
|
|
|
|
|
return ($self->{'points'} eq 'hex' |
|
182
|
0
|
0
|
0
|
|
|
0
|
|| $self->{'points'} eq 'odd' ? 0 # never straight |
|
183
|
|
|
|
|
|
|
: 1); |
|
184
|
|
|
|
|
|
|
} |
|
185
|
|
|
|
|
|
|
{ |
|
186
|
|
|
|
|
|
|
my %_UNDOCUMENTED__turn_any_straight_at_n |
|
187
|
|
|
|
|
|
|
= (even => 30, |
|
188
|
|
|
|
|
|
|
# odd => undef, # never straight |
|
189
|
|
|
|
|
|
|
all => 1, |
|
190
|
|
|
|
|
|
|
# hex => undef, # never straight |
|
191
|
|
|
|
|
|
|
hex_rotated => 57, |
|
192
|
|
|
|
|
|
|
hex_centred => 23, |
|
193
|
|
|
|
|
|
|
); |
|
194
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_straight_at_n { |
|
195
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
196
|
0
|
|
|
|
|
0
|
my $n = $_UNDOCUMENTED__turn_any_straight_at_n{$self->{'points'}}; |
|
197
|
0
|
0
|
|
|
|
0
|
return (defined $n ? $self->n_start + $n : undef); |
|
198
|
|
|
|
|
|
|
} |
|
199
|
|
|
|
|
|
|
} |
|
200
|
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
sub new { |
|
204
|
|
|
|
|
|
|
### TriangularHypot new() ... |
|
205
|
13
|
|
|
13
|
1
|
3604
|
my $self = shift->SUPER::new(@_); |
|
206
|
|
|
|
|
|
|
|
|
207
|
13
|
50
|
|
|
|
44
|
if (! defined $self->{'n_start'}) { |
|
208
|
13
|
|
|
|
|
46
|
$self->{'n_start'} = $self->default_n_start; |
|
209
|
|
|
|
|
|
|
} |
|
210
|
|
|
|
|
|
|
|
|
211
|
13
|
|
100
|
|
|
38
|
my $points = ($self->{'points'} ||= 'even'); |
|
212
|
13
|
100
|
|
|
|
56
|
if ($points eq 'all') { |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
213
|
2
|
|
|
|
|
6
|
$self->{'n_to_x'} = [0]; |
|
214
|
2
|
|
|
|
|
5
|
$self->{'n_to_y'} = [0]; |
|
215
|
2
|
|
|
|
|
6
|
$self->{'hypot_to_n'} = [0]; # N=0 at X=0,Y=0 |
|
216
|
2
|
|
|
|
|
4
|
$self->{'y_next_x'} = [1-1]; |
|
217
|
2
|
|
|
|
|
5
|
$self->{'y_next_hypot'} = [3*0**2 + 1**2]; |
|
218
|
2
|
|
|
|
|
7
|
$self->{'x_inc'} = 1; |
|
219
|
2
|
|
|
|
|
4
|
$self->{'x_inc_factor'} = 2; # ((x+1)^2 - x^2) = 2*x+1 |
|
220
|
2
|
|
|
|
|
4
|
$self->{'x_inc_squared'} = 1; |
|
221
|
2
|
|
|
|
|
5
|
$self->{'symmetry'} = 4; |
|
222
|
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
} elsif ($points eq 'even') { |
|
224
|
4
|
|
|
|
|
9
|
$self->{'n_to_x'} = [0]; |
|
225
|
4
|
|
|
|
|
8
|
$self->{'n_to_y'} = [0]; |
|
226
|
4
|
|
|
|
|
5
|
$self->{'hypot_to_n'} = [0]; # N=0 at X=0,Y=0 |
|
227
|
4
|
|
|
|
|
7
|
$self->{'y_next_x'} = [2-2]; |
|
228
|
4
|
|
|
|
|
6
|
$self->{'y_next_hypot'} = [3*0**2 + 2**2]; |
|
229
|
4
|
|
|
|
|
10
|
$self->{'x_inc'} = 2; |
|
230
|
4
|
|
|
|
|
6
|
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4 |
|
231
|
4
|
|
|
|
|
7
|
$self->{'x_inc_squared'} = 4; |
|
232
|
4
|
|
|
|
|
5
|
$self->{'skip_parity'} = 1; |
|
233
|
4
|
|
|
|
|
6
|
$self->{'symmetry'} = 12; |
|
234
|
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
} elsif ($points eq 'odd') { |
|
236
|
2
|
|
|
|
|
4
|
$self->{'n_to_x'} = []; |
|
237
|
2
|
|
|
|
|
17
|
$self->{'n_to_y'} = []; |
|
238
|
2
|
|
|
|
|
4
|
$self->{'hypot_to_n'} = []; |
|
239
|
2
|
|
|
|
|
4
|
$self->{'y_next_x'} = [1-2]; |
|
240
|
2
|
|
|
|
|
5
|
$self->{'y_next_hypot'} = [1]; |
|
241
|
2
|
|
|
|
|
5
|
$self->{'x_inc'} = 2; |
|
242
|
2
|
|
|
|
|
4
|
$self->{'x_inc_factor'} = 4; |
|
243
|
2
|
|
|
|
|
4
|
$self->{'x_inc_squared'} = 4; |
|
244
|
2
|
|
|
|
|
2
|
$self->{'skip_parity'} = 0; |
|
245
|
2
|
|
|
|
|
4
|
$self->{'symmetry'} = 4; |
|
246
|
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
} elsif ($points eq 'hex') { |
|
248
|
2
|
|
|
|
|
6
|
$self->{'n_to_x'} = [0]; # N=0 at X=0,Y=0 |
|
249
|
2
|
|
|
|
|
4
|
$self->{'n_to_y'} = [0]; |
|
250
|
2
|
|
|
|
|
4
|
$self->{'hypot_to_n'} = [0]; # N=0 at X=0,Y=0 |
|
251
|
2
|
|
|
|
|
4
|
$self->{'y_next_x'} = [2-2]; |
|
252
|
2
|
|
|
|
|
3
|
$self->{'y_next_hypot'} = [2**2 + 3*0**2]; # next at X=2,Y=0 |
|
253
|
2
|
|
|
|
|
7
|
$self->{'x_inc'} = 2; |
|
254
|
2
|
|
|
|
|
5
|
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4 |
|
255
|
2
|
|
|
|
|
3
|
$self->{'x_inc_squared'} = 4; |
|
256
|
2
|
|
|
|
|
4
|
$self->{'skip_parity'} = 1; # should be even |
|
257
|
2
|
|
|
|
|
3
|
$self->{'skip_hex'} = 4; # x+3y==0,2 only |
|
258
|
2
|
|
|
|
|
3
|
$self->{'symmetry'} = 6; |
|
259
|
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
} elsif ($points eq 'hex_rotated') { |
|
261
|
1
|
|
|
|
|
2
|
$self->{'n_to_x'} = [0]; # N=0 at X=0,Y=0 |
|
262
|
1
|
|
|
|
|
3
|
$self->{'n_to_y'} = [0]; |
|
263
|
1
|
|
|
|
|
2
|
$self->{'hypot_to_n'} = [0]; # N=0 at X=0,Y=0 |
|
264
|
1
|
|
|
|
|
2
|
$self->{'y_next_x'} = [4-2, |
|
265
|
|
|
|
|
|
|
1-2]; |
|
266
|
1
|
|
|
|
|
2
|
$self->{'y_next_hypot'} = [4**2 + 3*0**2, # next at X=4,Y=0 |
|
267
|
|
|
|
|
|
|
1**2 + 3*1**2]; # next at X=1,Y=1 |
|
268
|
1
|
|
|
|
|
3
|
$self->{'x_inc'} = 2; |
|
269
|
1
|
|
|
|
|
2
|
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4 |
|
270
|
1
|
|
|
|
|
2
|
$self->{'x_inc_squared'} = 4; |
|
271
|
1
|
|
|
|
|
1
|
$self->{'skip_parity'} = 1; # should be even |
|
272
|
1
|
|
|
|
|
2
|
$self->{'skip_hex'} = 2; # x+3y==0,4 only |
|
273
|
1
|
|
|
|
|
1
|
$self->{'symmetry'} = 6; |
|
274
|
|
|
|
|
|
|
|
|
275
|
|
|
|
|
|
|
} elsif ($points eq 'hex_centred') { |
|
276
|
2
|
|
|
|
|
4
|
$self->{'n_to_x'} = []; |
|
277
|
2
|
|
|
|
|
4
|
$self->{'n_to_y'} = []; |
|
278
|
2
|
|
|
|
|
3
|
$self->{'hypot_to_n'} = []; |
|
279
|
2
|
|
|
|
|
4
|
$self->{'y_next_x'} = [2-2]; # for first at X=2 |
|
280
|
2
|
|
|
|
|
4
|
$self->{'y_next_hypot'} = [2**2 + 3*0**2]; # at X=2,Y=0 |
|
281
|
2
|
|
|
|
|
5
|
$self->{'x_inc'} = 2; |
|
282
|
2
|
|
|
|
|
4
|
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4 |
|
283
|
2
|
|
|
|
|
3
|
$self->{'x_inc_squared'} = 4; |
|
284
|
2
|
|
|
|
|
3
|
$self->{'skip_parity'} = 1; # should be even |
|
285
|
2
|
|
|
|
|
4
|
$self->{'skip_hex'} = 0; # x+3y==2,4 only |
|
286
|
2
|
|
|
|
|
3
|
$self->{'symmetry'} = 12; |
|
287
|
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
} else { |
|
289
|
0
|
|
|
|
|
0
|
croak "Unrecognised points option: ", $points; |
|
290
|
|
|
|
|
|
|
} |
|
291
|
|
|
|
|
|
|
|
|
292
|
|
|
|
|
|
|
### $self |
|
293
|
|
|
|
|
|
|
### assert: $self->{'y_next_hypot'}->[0] == (3 * 0**2 + ($self->{'y_next_x'}->[0]+$self->{'x_inc'})**2) |
|
294
|
|
|
|
|
|
|
|
|
295
|
13
|
|
|
|
|
26
|
return $self; |
|
296
|
|
|
|
|
|
|
} |
|
297
|
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
sub _extend { |
|
299
|
3724
|
|
|
3724
|
|
4723
|
my ($self) = @_; |
|
300
|
|
|
|
|
|
|
### _extend() ... |
|
301
|
|
|
|
|
|
|
|
|
302
|
3724
|
|
|
|
|
4192
|
my $n_to_x = $self->{'n_to_x'}; |
|
303
|
3724
|
|
|
|
|
4112
|
my $n_to_y = $self->{'n_to_y'}; |
|
304
|
3724
|
|
|
|
|
4322
|
my $hypot_to_n = $self->{'hypot_to_n'}; |
|
305
|
3724
|
|
|
|
|
4059
|
my $y_next_x = $self->{'y_next_x'}; |
|
306
|
3724
|
|
|
|
|
4122
|
my $y_next_hypot = $self->{'y_next_hypot'}; |
|
307
|
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
### $y_next_x |
|
309
|
|
|
|
|
|
|
### $y_next_hypot |
|
310
|
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
# set @y to the Y with the smallest $y_next_hypot->[$y], and if there's some |
|
312
|
|
|
|
|
|
|
# Y's with equal smallest hypot then all those Y's in ascending order |
|
313
|
3724
|
|
|
|
|
4642
|
my @y = (0); |
|
314
|
3724
|
|
|
|
|
4127
|
my $hypot = $y_next_hypot->[0]; |
|
315
|
3724
|
|
|
|
|
5922
|
for (my $i = 1; $i < @$y_next_x; $i++) { |
|
316
|
85696
|
100
|
|
|
|
160445
|
if ($hypot == $y_next_hypot->[$i]) { |
|
|
|
100
|
|
|
|
|
|
|
317
|
2443
|
|
|
|
|
4076
|
push @y, $i; |
|
318
|
|
|
|
|
|
|
} elsif ($hypot > $y_next_hypot->[$i]) { |
|
319
|
7689
|
|
|
|
|
9328
|
@y = ($i); |
|
320
|
7689
|
|
|
|
|
12001
|
$hypot = $y_next_hypot->[$i]; |
|
321
|
|
|
|
|
|
|
} |
|
322
|
|
|
|
|
|
|
} |
|
323
|
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
### chosen y list: @y |
|
325
|
|
|
|
|
|
|
|
|
326
|
|
|
|
|
|
|
# if the endmost of the @$y_next_x, @y_next_hypot arrays are used then |
|
327
|
|
|
|
|
|
|
# extend them by one |
|
328
|
3724
|
100
|
|
|
|
5606
|
if ($y[-1] == $#$y_next_x) { |
|
329
|
259
|
|
|
|
|
303
|
my $y = scalar(@$y_next_x); # new Y value |
|
330
|
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
### highest y: $y[-1] |
|
332
|
|
|
|
|
|
|
### so grow y: $y |
|
333
|
|
|
|
|
|
|
|
|
334
|
259
|
|
|
|
|
324
|
my $points = $self->{'points'}; |
|
335
|
259
|
100
|
|
|
|
568
|
if ($points eq 'even') { |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
336
|
|
|
|
|
|
|
# h = (3 * $y**2 + $x**2) |
|
337
|
|
|
|
|
|
|
# = (3 * $y**2 + ($3*y)**2) |
|
338
|
|
|
|
|
|
|
# = (3*$y*$y + 9*$y*$y) |
|
339
|
|
|
|
|
|
|
# = (12*$y*$y) |
|
340
|
28
|
|
|
|
|
53
|
$y_next_x->[$y] = 3*$y - $self->{'x_inc'}; # X=3*Y, so X-2=3*Y-2 |
|
341
|
28
|
|
|
|
|
51
|
$y_next_hypot->[$y] = 12*$y*$y; |
|
342
|
|
|
|
|
|
|
|
|
343
|
|
|
|
|
|
|
} elsif ($points eq 'odd') { |
|
344
|
55
|
|
|
|
|
89
|
my $odd = ! ($y%2); |
|
345
|
55
|
|
|
|
|
85
|
$y_next_x->[$y] = $odd - $self->{'x_inc'}; |
|
346
|
55
|
|
|
|
|
90
|
$y_next_hypot->[$y] = 3*$y*$y + $odd; |
|
347
|
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
} elsif ($points eq 'hex') { |
|
349
|
56
|
100
|
|
|
|
113
|
my $x = $y_next_x->[$y] = (($y % 3) == 1 ? $y : $y-2); |
|
350
|
56
|
|
|
|
|
65
|
$x += 2; |
|
351
|
56
|
|
|
|
|
97
|
$y_next_hypot->[$y] = $x*$x + 3*$y*$y; |
|
352
|
|
|
|
|
|
|
### assert: (($x+$y*3) % 6 == 0 || ($x+$y*3) % 6 == 2) |
|
353
|
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
} elsif ($points eq 'hex_rotated') { |
|
355
|
45
|
100
|
|
|
|
174
|
my $x = $y_next_x->[$y] = (($y % 3) == 2 ? $y : $y-2); |
|
356
|
45
|
|
|
|
|
58
|
$x += 2; |
|
357
|
45
|
|
|
|
|
82
|
$y_next_hypot->[$y] = $x*$x + 3*$y*$y; |
|
358
|
|
|
|
|
|
|
### assert: (($x+$y*3) % 6 == 4 || ($x+$y*3) % 6 == 0) |
|
359
|
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
} elsif ($points eq 'hex_centred') { |
|
361
|
32
|
|
|
|
|
58
|
my $x = $y_next_x->[$y] = 3*$y; |
|
362
|
32
|
|
|
|
|
36
|
$x += 2; |
|
363
|
32
|
|
|
|
|
53
|
$y_next_hypot->[$y] = $x*$x + 3*$y*$y; |
|
364
|
|
|
|
|
|
|
### assert: (($x+$y*3) % 6 == 2 || ($x+$y*3) % 6 == 4) |
|
365
|
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
} else { |
|
367
|
|
|
|
|
|
|
### assert: $points eq 'all' |
|
368
|
43
|
|
|
|
|
70
|
$y_next_x->[$y] = - $self->{'x_inc'}; # X=0, so X-1=0 |
|
369
|
43
|
|
|
|
|
72
|
$y_next_hypot->[$y] = 3*$y*$y; |
|
370
|
|
|
|
|
|
|
} |
|
371
|
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
### new y_next_x (with adjustment): $y_next_x->[$y]+$self->{'x_inc'} |
|
373
|
|
|
|
|
|
|
### new y_next_hypot: $y_next_hypot->[$y] |
|
374
|
|
|
|
|
|
|
|
|
375
|
|
|
|
|
|
|
### assert: ($points ne 'even' || (($y ^ ($y_next_x->[$y]+$self->{'x_inc'})) & 1) == 0) |
|
376
|
|
|
|
|
|
|
### assert: $y_next_hypot->[$y] == (3 * $y**2 + ($y_next_x->[$y]+$self->{'x_inc'})**2) |
|
377
|
|
|
|
|
|
|
} |
|
378
|
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
# @x is the $y_next_x->[$y] for each of the @y smallests, and step those |
|
380
|
|
|
|
|
|
|
# selected elements next X and hypot for that new X,Y |
|
381
|
|
|
|
|
|
|
my @x = map { |
|
382
|
|
|
|
|
|
|
### assert: (3 * $_**2 + ($y_next_x->[$_]+$self->{'x_inc'})**2) == $y_next_hypot->[$_] |
|
383
|
|
|
|
|
|
|
|
|
384
|
3724
|
|
|
|
|
5203
|
my $x = ($y_next_x->[$_] += $self->{'x_inc'}); |
|
|
5580
|
|
|
|
|
6886
|
|
|
385
|
|
|
|
|
|
|
### map y _: $_ |
|
386
|
|
|
|
|
|
|
### map inc x to: $x |
|
387
|
5580
|
100
|
100
|
|
|
11011
|
if (defined $self->{'skip_hex'} |
|
388
|
|
|
|
|
|
|
&& ($x+2 + 3*$_) % 6 == $self->{'skip_hex'}) { |
|
389
|
|
|
|
|
|
|
### extra inc for hex ... |
|
390
|
1110
|
|
|
|
|
1342
|
$y_next_x->[$_] += 2; |
|
391
|
1110
|
|
|
|
|
1268
|
$y_next_hypot->[$_] += 8*$x+16; # (X+4)^2-X^2 = 8X+16 |
|
392
|
|
|
|
|
|
|
} else { |
|
393
|
|
|
|
|
|
|
$y_next_hypot->[$_] |
|
394
|
4470
|
|
|
|
|
5708
|
+= $self->{'x_inc_factor'}*$x + $self->{'x_inc_squared'}; |
|
395
|
|
|
|
|
|
|
} |
|
396
|
|
|
|
|
|
|
|
|
397
|
|
|
|
|
|
|
### $x |
|
398
|
|
|
|
|
|
|
### y_next_x (including adjust): $y_next_x->[$_]+$self->{'x_inc'} |
|
399
|
|
|
|
|
|
|
### y_next_hypot[]: $y_next_hypot->[$_] |
|
400
|
|
|
|
|
|
|
|
|
401
|
|
|
|
|
|
|
### assert: $y_next_hypot->[$_] == (3 * $_**2 + ($y_next_x->[$_]+$self->{'x_inc'})**2) |
|
402
|
|
|
|
|
|
|
### assert: $self->{'points'} ne 'hex' || (($x+3*$_) % 6 == 0 || ($x+3*$_) % 6 == 2) |
|
403
|
|
|
|
|
|
|
### assert: $self->{'points'} ne 'hex_rotated' || (($x+$_*3) % 6 == 4 || ($x+$_*3) % 6 == 0) |
|
404
|
|
|
|
|
|
|
### assert: $self->{'points'} ne 'hex_centred' || (($x+$_*3) % 6 == 2 || ($x+$_*3) % 6 == 4) |
|
405
|
|
|
|
|
|
|
|
|
406
|
5580
|
|
|
|
|
8970
|
$x |
|
407
|
|
|
|
|
|
|
} @y; |
|
408
|
|
|
|
|
|
|
### $hypot |
|
409
|
|
|
|
|
|
|
|
|
410
|
3724
|
|
|
|
|
4075
|
my $p2; |
|
411
|
3724
|
100
|
|
|
|
6027
|
if ($self->{'symmetry'} == 12) { |
|
|
|
100
|
|
|
|
|
|
|
412
|
|
|
|
|
|
|
### base twelvth: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
|
413
|
765
|
|
|
|
|
1007
|
my $p1 = scalar(@y); |
|
414
|
765
|
|
|
|
|
1048
|
my @base_x = @x; |
|
415
|
765
|
|
|
|
|
921
|
my @base_y = @y; |
|
416
|
765
|
100
|
|
|
|
1124
|
unless ($y[0]) { # no mirror of x,0 |
|
417
|
84
|
|
|
|
|
105
|
shift @base_x; |
|
418
|
84
|
|
|
|
|
94
|
shift @base_y; |
|
419
|
|
|
|
|
|
|
} |
|
420
|
765
|
100
|
|
|
|
1136
|
if ($x[-1] == 3*$y[-1]) { # no mirror of x=3*y line |
|
421
|
26
|
|
|
|
|
34
|
pop @base_x; |
|
422
|
26
|
|
|
|
|
36
|
pop @base_y; |
|
423
|
|
|
|
|
|
|
} |
|
424
|
765
|
|
|
|
|
1895
|
$#x = $#y = ($p1+scalar(@base_x))*6-1; # pre-extend arrays |
|
425
|
765
|
|
|
|
|
1352
|
for (my $i = $#base_x; $i >= 0; $i--) { |
|
426
|
830
|
|
|
|
|
1410
|
$x[$p1] = ($base_x[$i] + 3*$base_y[$i]) / 2; |
|
427
|
830
|
|
|
|
|
1618
|
$y[$p1++] = ($base_x[$i] - $base_y[$i]) / 2; |
|
428
|
|
|
|
|
|
|
} |
|
429
|
|
|
|
|
|
|
### with mirror 30: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p1-1) |
|
430
|
|
|
|
|
|
|
|
|
431
|
765
|
|
|
|
|
888
|
$p2 = 2*$p1; |
|
432
|
765
|
|
|
|
|
1185
|
foreach my $i (0 .. $p1-1) { |
|
433
|
1770
|
|
|
|
|
2725
|
$x[$p1] = ($x[$i] - 3*$y[$i])/2; # rotate +60 |
|
434
|
1770
|
|
|
|
|
2425
|
$y[$p1++] = ($x[$i] + $y[$i])/2; |
|
435
|
|
|
|
|
|
|
|
|
436
|
1770
|
|
|
|
|
2314
|
$x[$p2] = ($x[$i] + 3*$y[$i])/-2; # rotate +120 |
|
437
|
1770
|
|
|
|
|
2599
|
$y[$p2++] = ($x[$i] - $y[$i])/2; |
|
438
|
|
|
|
|
|
|
} |
|
439
|
|
|
|
|
|
|
### with rotates 60,120: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1) |
|
440
|
|
|
|
|
|
|
|
|
441
|
765
|
|
|
|
|
1017
|
foreach my $i (0 .. $p2-1) { |
|
442
|
5310
|
|
|
|
|
6500
|
$x[$p2] = -$x[$i]; # rotate 180 |
|
443
|
5310
|
|
|
|
|
7375
|
$y[$p2++] = -$y[$i]; |
|
444
|
|
|
|
|
|
|
} |
|
445
|
|
|
|
|
|
|
### with rotate 180: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
|
446
|
|
|
|
|
|
|
|
|
447
|
|
|
|
|
|
|
} elsif ($self->{'symmetry'} == 6) { |
|
448
|
1106
|
|
|
|
|
1327
|
my $p1 = scalar(@x); |
|
449
|
1106
|
|
|
|
|
1449
|
my @base_x = @x; |
|
450
|
1106
|
|
|
|
|
1411
|
my @base_y = @y; |
|
451
|
1106
|
100
|
|
|
|
1689
|
unless ($y[0]) { # no mirror of x,0 |
|
452
|
67
|
|
|
|
|
87
|
shift @base_x; |
|
453
|
67
|
|
|
|
|
74
|
shift @base_y; |
|
454
|
|
|
|
|
|
|
} |
|
455
|
1106
|
100
|
|
|
|
1618
|
if ($x[-1] == $y[-1]) { # no mirror of X=Y line |
|
456
|
66
|
|
|
|
|
79
|
pop @base_x; |
|
457
|
66
|
|
|
|
|
72
|
pop @base_y; |
|
458
|
|
|
|
|
|
|
} |
|
459
|
|
|
|
|
|
|
### base xy: join(' ',map{"$base_x[$_],$base_y[$_]"} 0 .. $#base_x) |
|
460
|
|
|
|
|
|
|
|
|
461
|
1106
|
|
|
|
|
1813
|
for (my $i = $#base_x; $i >= 0; $i--) { |
|
462
|
1642
|
|
|
|
|
2520
|
$x[$p1] = ($base_x[$i] - 3*$base_y[$i]) / -2; # mirror +60 |
|
463
|
1642
|
|
|
|
|
3025
|
$y[$p1++] = ($base_x[$i] + $base_y[$i]) / 2; |
|
464
|
|
|
|
|
|
|
} |
|
465
|
|
|
|
|
|
|
### with mirror 60: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p1-1) |
|
466
|
|
|
|
|
|
|
|
|
467
|
1106
|
|
|
|
|
1310
|
$p2 = 2*$p1; |
|
468
|
1106
|
|
|
|
|
1733
|
foreach my $i (0 .. $#x) { |
|
469
|
3417
|
|
|
|
|
4900
|
$x[$p1] = ($x[$i] + 3*$y[$i])/-2; # rotate +120 |
|
470
|
3417
|
|
|
|
|
4369
|
$y[$p1++] = ($x[$i] - $y[$i])/2; |
|
471
|
|
|
|
|
|
|
|
|
472
|
3417
|
|
|
|
|
4229
|
$x[$p2] = ($x[$i] - 3*$y[$i])/-2; # rotate +240 == -120 |
|
473
|
3417
|
|
|
|
|
4890
|
$y[$p2++] = ($x[$i] + $y[$i])/-2; |
|
474
|
|
|
|
|
|
|
|
|
475
|
|
|
|
|
|
|
# should be on correct grid |
|
476
|
|
|
|
|
|
|
# ### assert: (($x[$p1-1]+$y[$p1-1]*3) % 6 == 0 || ($x[$p1-1]+$y[$p1-1]*3) % 6 == 2) |
|
477
|
|
|
|
|
|
|
# ### assert: (($x[$p2-1]+$y[$p2-1]*3) % 6 == 0 || ($x[$p2-1]+$y[$p2-1]*3) % 6 == 2) |
|
478
|
|
|
|
|
|
|
} |
|
479
|
|
|
|
|
|
|
### with rotates 120,240: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1) |
|
480
|
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
} else { |
|
482
|
|
|
|
|
|
|
### assert: $self->{'symmetry'} == 4 |
|
483
|
|
|
|
|
|
|
### base quarter: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
|
484
|
1853
|
|
|
|
|
2122
|
my $p1 = $#x; |
|
485
|
1853
|
|
|
|
|
2468
|
push @y, reverse @y; |
|
486
|
1853
|
|
|
|
|
2332
|
push @x, map {-$_} reverse @x; |
|
|
2865
|
|
|
|
|
3810
|
|
|
487
|
1853
|
100
|
|
|
|
2956
|
if ($x[$p1] == 0) { |
|
488
|
68
|
|
|
|
|
104
|
splice @x, $p1, 1; # don't duplicate X=0 in mirror |
|
489
|
68
|
|
|
|
|
76
|
splice @y, $p1, 1; |
|
490
|
|
|
|
|
|
|
} |
|
491
|
1853
|
100
|
|
|
|
2600
|
if ($y[-1] == 0) { |
|
492
|
119
|
|
|
|
|
129
|
pop @y; # omit final Y=0 ready for rotate |
|
493
|
119
|
|
|
|
|
132
|
pop @x; |
|
494
|
|
|
|
|
|
|
} |
|
495
|
1853
|
|
|
|
|
2181
|
$p2 = scalar(@y); |
|
496
|
|
|
|
|
|
|
### with mirror +90: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1) |
|
497
|
|
|
|
|
|
|
|
|
498
|
1853
|
|
|
|
|
2953
|
foreach my $i (0 .. $p2-1) { |
|
499
|
5543
|
|
|
|
|
6340
|
$x[$p2] = -$x[$i]; # rotate 180 |
|
500
|
5543
|
|
|
|
|
7563
|
$y[$p2++] = -$y[$i]; |
|
501
|
|
|
|
|
|
|
} |
|
502
|
|
|
|
|
|
|
### with rotate 180: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
|
503
|
|
|
|
|
|
|
} |
|
504
|
|
|
|
|
|
|
|
|
505
|
|
|
|
|
|
|
### store: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
|
506
|
|
|
|
|
|
|
### at n: scalar(@$n_to_x) |
|
507
|
|
|
|
|
|
|
### hypot_to_n: "h=$hypot n=".scalar(@$n_to_x) |
|
508
|
3724
|
|
|
|
|
6215
|
$hypot_to_n->[$hypot] = scalar(@$n_to_x); |
|
509
|
3724
|
|
|
|
|
7359
|
push @$n_to_x, @x; |
|
510
|
3724
|
|
|
|
|
11499
|
push @$n_to_y, @y; |
|
511
|
|
|
|
|
|
|
|
|
512
|
|
|
|
|
|
|
# ### hypot_to_n now: join(' ',map {defined($hypot_to_n->[$_]) && "h=$_,n=$hypot_to_n->[$_]"} 0 .. $#hypot_to_n) |
|
513
|
|
|
|
|
|
|
} |
|
514
|
|
|
|
|
|
|
|
|
515
|
|
|
|
|
|
|
sub n_to_xy { |
|
516
|
29994
|
|
|
29994
|
1
|
315927
|
my ($self, $n) = @_; |
|
517
|
|
|
|
|
|
|
### TriangularHypot n_to_xy(): $n |
|
518
|
|
|
|
|
|
|
|
|
519
|
29994
|
|
|
|
|
34880
|
$n = $n - $self->{'n_start'}; # starting $n==0, warn if $n==undef |
|
520
|
29994
|
50
|
|
|
|
42056
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
521
|
29994
|
50
|
|
|
|
45152
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
522
|
|
|
|
|
|
|
|
|
523
|
29994
|
|
|
|
|
40609
|
my $int = int($n); |
|
524
|
29994
|
|
|
|
|
33000
|
$n -= $int; # fraction part |
|
525
|
|
|
|
|
|
|
|
|
526
|
29994
|
|
|
|
|
34720
|
my $n_to_x = $self->{'n_to_x'}; |
|
527
|
29994
|
|
|
|
|
31566
|
my $n_to_y = $self->{'n_to_y'}; |
|
528
|
|
|
|
|
|
|
|
|
529
|
29994
|
|
|
|
|
47316
|
while ($int >= $#$n_to_x) { |
|
530
|
3425
|
|
|
|
|
4682
|
_extend($self); |
|
531
|
|
|
|
|
|
|
} |
|
532
|
|
|
|
|
|
|
|
|
533
|
29994
|
|
|
|
|
35521
|
my $x = $n_to_x->[$int]; |
|
534
|
29994
|
|
|
|
|
32831
|
my $y = $n_to_y->[$int]; |
|
535
|
29994
|
|
|
|
|
63124
|
return ($x + $n * ($n_to_x->[$int+1] - $x), |
|
536
|
|
|
|
|
|
|
$y + $n * ($n_to_y->[$int+1] - $y)); |
|
537
|
|
|
|
|
|
|
} |
|
538
|
|
|
|
|
|
|
|
|
539
|
|
|
|
|
|
|
sub xy_is_visited { |
|
540
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x, $y) = @_; |
|
541
|
|
|
|
|
|
|
|
|
542
|
0
|
0
|
|
|
|
0
|
if (defined $self->{'skip_parity'}) { |
|
543
|
0
|
|
|
|
|
0
|
$x = round_nearest ($x); |
|
544
|
0
|
|
|
|
|
0
|
$y = round_nearest ($y); |
|
545
|
0
|
0
|
|
|
|
0
|
if ((($x%2) ^ ($y%2)) == $self->{'skip_parity'}) { |
|
546
|
|
|
|
|
|
|
### XY wrong parity, no point ... |
|
547
|
0
|
|
|
|
|
0
|
return 0; |
|
548
|
|
|
|
|
|
|
} |
|
549
|
|
|
|
|
|
|
} |
|
550
|
0
|
0
|
|
|
|
0
|
if (defined $self->{'skip_hex'}) { |
|
551
|
0
|
|
|
|
|
0
|
$x = round_nearest ($x); |
|
552
|
0
|
|
|
|
|
0
|
$y = round_nearest ($y); |
|
553
|
0
|
0
|
|
|
|
0
|
if ((($x%6) + 3*($y%6)) % 6 == $self->{'skip_hex'}) { |
|
554
|
|
|
|
|
|
|
### XY wrong hex, no point ... |
|
555
|
0
|
|
|
|
|
0
|
return 0; |
|
556
|
|
|
|
|
|
|
} |
|
557
|
|
|
|
|
|
|
} |
|
558
|
0
|
|
|
|
|
0
|
return 1; |
|
559
|
|
|
|
|
|
|
} |
|
560
|
|
|
|
|
|
|
|
|
561
|
|
|
|
|
|
|
sub xy_to_n { |
|
562
|
2205
|
|
|
2205
|
1
|
20673
|
my ($self, $x, $y) = @_; |
|
563
|
|
|
|
|
|
|
### TriangularHypot xy_to_n(): "$x, $y points=$self->{'points'}" |
|
564
|
|
|
|
|
|
|
|
|
565
|
2205
|
|
|
|
|
3260
|
$x = round_nearest ($x); |
|
566
|
2205
|
|
|
|
|
3253
|
$y = round_nearest ($y); |
|
567
|
|
|
|
|
|
|
|
|
568
|
|
|
|
|
|
|
### parity xor: ($x%2) ^ ($y%2) |
|
569
|
|
|
|
|
|
|
### hex modulo: (($x%6) + 3*($y%6)) % 6 |
|
570
|
2205
|
100
|
100
|
|
|
5401
|
if (defined $self->{'skip_parity'} |
|
571
|
|
|
|
|
|
|
&& (($x%2) ^ ($y%2)) == $self->{'skip_parity'}) { |
|
572
|
|
|
|
|
|
|
### XY wrong parity, no point ... |
|
573
|
881
|
|
|
|
|
1437
|
return undef; |
|
574
|
|
|
|
|
|
|
} |
|
575
|
1324
|
100
|
100
|
|
|
2490
|
if (defined $self->{'skip_hex'} |
|
576
|
|
|
|
|
|
|
&& (($x%6) + 3*($y%6)) % 6 == $self->{'skip_hex'}) { |
|
577
|
|
|
|
|
|
|
### XY wrong hex, no point ... |
|
578
|
147
|
|
|
|
|
233
|
return undef; |
|
579
|
|
|
|
|
|
|
} |
|
580
|
|
|
|
|
|
|
|
|
581
|
|
|
|
|
|
|
|
|
582
|
1177
|
|
|
|
|
1540
|
my $hypot = 3*$y*$y + $x*$x; |
|
583
|
1177
|
50
|
|
|
|
1680
|
if (is_infinite($hypot)) { |
|
584
|
|
|
|
|
|
|
# avoid infinite loop extending @hypot_to_n |
|
585
|
0
|
|
|
|
|
0
|
return undef; |
|
586
|
|
|
|
|
|
|
} |
|
587
|
|
|
|
|
|
|
### $hypot |
|
588
|
|
|
|
|
|
|
|
|
589
|
1177
|
|
|
|
|
1961
|
my $hypot_to_n = $self->{'hypot_to_n'}; |
|
590
|
1177
|
|
|
|
|
1288
|
my $n_to_x = $self->{'n_to_x'}; |
|
591
|
1177
|
|
|
|
|
1340
|
my $n_to_y = $self->{'n_to_y'}; |
|
592
|
|
|
|
|
|
|
|
|
593
|
1177
|
|
|
|
|
1844
|
while ($hypot > $#$hypot_to_n) { |
|
594
|
299
|
|
|
|
|
397
|
_extend($self); |
|
595
|
|
|
|
|
|
|
} |
|
596
|
1177
|
|
|
|
|
1473
|
my $n = $hypot_to_n->[$hypot]; |
|
597
|
1177
|
|
|
|
|
1194
|
for (;;) { |
|
598
|
5355
|
100
|
100
|
|
|
9166
|
if ($x == $n_to_x->[$n] && $y == $n_to_y->[$n]) { |
|
599
|
1177
|
|
|
|
|
2279
|
return $n + $self->{'n_start'}; |
|
600
|
|
|
|
|
|
|
} |
|
601
|
4178
|
|
|
|
|
4277
|
$n += 1; |
|
602
|
|
|
|
|
|
|
|
|
603
|
4178
|
50
|
|
|
|
6711
|
if ($n_to_x->[$n]**2 + 3*$n_to_y->[$n]**2 != $hypot) { |
|
604
|
|
|
|
|
|
|
### oops, hypot_to_n no good ... |
|
605
|
0
|
|
|
|
|
0
|
return undef; |
|
606
|
|
|
|
|
|
|
} |
|
607
|
|
|
|
|
|
|
} |
|
608
|
|
|
|
|
|
|
} |
|
609
|
|
|
|
|
|
|
|
|
610
|
|
|
|
|
|
|
# not exact |
|
611
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
612
|
5
|
|
|
5
|
1
|
40
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
613
|
|
|
|
|
|
|
|
|
614
|
5
|
|
|
|
|
11
|
$x1 = abs (round_nearest ($x1)); |
|
615
|
5
|
|
|
|
|
10
|
$y1 = abs (round_nearest ($y1)); |
|
616
|
5
|
|
|
|
|
7
|
$x2 = abs (round_nearest ($x2)); |
|
617
|
5
|
|
|
|
|
19
|
$y2 = abs (round_nearest ($y2)); |
|
618
|
|
|
|
|
|
|
|
|
619
|
5
|
50
|
|
|
|
9
|
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); } |
|
|
0
|
|
|
|
|
0
|
|
|
620
|
5
|
50
|
|
|
|
9
|
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } |
|
|
0
|
|
|
|
|
0
|
|
|
621
|
|
|
|
|
|
|
|
|
622
|
|
|
|
|
|
|
# xyradius r^2 = 1/4 * $x2**2 + 3/4 * $y2**2 |
|
623
|
|
|
|
|
|
|
# (r+1/2)^2 = r^2 + r + 1/4 |
|
624
|
|
|
|
|
|
|
# circlearea = pi*(r+1/2)^2 |
|
625
|
|
|
|
|
|
|
# each hexagon area outradius 1/2 is hexarea = sqrt(27/64) |
|
626
|
|
|
|
|
|
|
|
|
627
|
5
|
|
|
|
|
7
|
my $r2 = $x2*$x2 + 3*$y2*$y2; |
|
628
|
|
|
|
|
|
|
my $n = (3.15 / sqrt(27/64) / 4) * ($r2 + sqrt($r2)) |
|
629
|
5
|
|
|
|
|
16
|
* (3 - $self->{'x_inc'}); # *2 for odd or even, *1 for all |
|
630
|
|
|
|
|
|
|
return ($self->{'n_start'}, |
|
631
|
5
|
|
|
|
|
12
|
$self->{'n_start'} + int($n)); |
|
632
|
|
|
|
|
|
|
} |
|
633
|
|
|
|
|
|
|
|
|
634
|
|
|
|
|
|
|
1; |
|
635
|
|
|
|
|
|
|
__END__ |