line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# math-image --path=TriangularHypot |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
# A034017 - loeschian primatives xx+xy+yy, primes 3k+1 and a factor of 3 |
22
|
|
|
|
|
|
|
# which is when x^2-x+1 mod n has a solution |
23
|
|
|
|
|
|
|
# |
24
|
|
|
|
|
|
|
# A092572 - all x^2+3*y^2 |
25
|
|
|
|
|
|
|
# A158937 - all x^2+3*y^2 with repetitions x>0,y>0 |
26
|
|
|
|
|
|
|
# |
27
|
|
|
|
|
|
|
# A092572 - 6n+1 primes |
28
|
|
|
|
|
|
|
# A055664 - norms of Eisenstein-Jacobi primes |
29
|
|
|
|
|
|
|
# A008458 - hex coordination sequence, 1 and multiples of 6 |
30
|
|
|
|
|
|
|
# |
31
|
|
|
|
|
|
|
# A2 centred at lattice point: |
32
|
|
|
|
|
|
|
# A014201 - x*x+x*y+y*y solutions excluding 0,0 |
33
|
|
|
|
|
|
|
# A038589 - lattice sizes, =A014201+1 |
34
|
|
|
|
|
|
|
# A038590 - sizes, uniques of A038589 |
35
|
|
|
|
|
|
|
# A038591 - 3fold symmetry, union A038588 and A038590 |
36
|
|
|
|
|
|
|
# |
37
|
|
|
|
|
|
|
# A2 centred at hole |
38
|
|
|
|
|
|
|
# A038587 - centred deep hole |
39
|
|
|
|
|
|
|
# A038588 - centred deep hole uniques of A038587 |
40
|
|
|
|
|
|
|
# A005882 - theta relative hole |
41
|
|
|
|
|
|
|
# 3,3,6,0,6,3,6,0,3,6,6,0,6,0,6,0,9,6,0,0,6,3,6,0,6,6,6,0,0,0,12, |
42
|
|
|
|
|
|
|
# A033685 - theta series of hexagonal lattice A_2 with respect to deep hole. |
43
|
|
|
|
|
|
|
# 1/3 steps of norm, so extra zeros |
44
|
|
|
|
|
|
|
# 0,3,0,0,3,0,0,6,0,0,0,0,0,6,0,0,3,0,0,6,0,0,0,0,0,3,0,0,6,0,0,6, |
45
|
|
|
|
|
|
|
# |
46
|
|
|
|
|
|
|
# A005929 Theta series of hexagonal net with respect to mid-point of edge. |
47
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
# [27] [28] [31] |
49
|
|
|
|
|
|
|
# [12] [13] [16] [21] [28] |
50
|
|
|
|
|
|
|
# [7] [4] [3] [4] [7] [12] [19] [28] |
51
|
|
|
|
|
|
|
# [25] [16] [9] [4] [1] [0] [1] [4] [9] [16] [25] [36] |
52
|
|
|
|
|
|
|
# [7] [4] [3] [4] [7] |
53
|
|
|
|
|
|
|
# [12] |
54
|
|
|
|
|
|
|
# [27] |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
# mirror across +60 |
57
|
|
|
|
|
|
|
# (X,Y) = ((X+3Y)/2, (Y-X)/2); # rotate -60 |
58
|
|
|
|
|
|
|
# Y = -Y; # mirror |
59
|
|
|
|
|
|
|
# (X,Y) = ((X-3Y)/2, (X+Y)/2); # rotate +60 |
60
|
|
|
|
|
|
|
# |
61
|
|
|
|
|
|
|
# (X,Y) = ((X+3Y)/2, (Y-X)/2); # rotate -60 |
62
|
|
|
|
|
|
|
# (X,Y) = ((X+3Y)/2, (X-Y)/2); |
63
|
|
|
|
|
|
|
# |
64
|
|
|
|
|
|
|
# (X,Y) = (((X+3Y)/2+3(Y-X)/2)/2, ((X+3Y)/2-(Y-X)/2)/2); |
65
|
|
|
|
|
|
|
# = (((X+3Y)+3(Y-X))/4, ((X+3Y)-(Y-X))/4); |
66
|
|
|
|
|
|
|
# = ((X + 3Y + 3Y - 3X)/4, (X + 3Y - Y + X)/4); |
67
|
|
|
|
|
|
|
# = ((-2X + 6Y)/4, (2X + 2Y)/4); |
68
|
|
|
|
|
|
|
# = ((-X + 3Y)/2, (X+Y)/2); |
69
|
|
|
|
|
|
|
# # eg X=6,Y=0 -> X=-6/2=-3 Y=(6+0)/2=3 |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
package Math::PlanePath::TriangularHypot; |
73
|
1
|
|
|
1
|
|
1126
|
use 5.004; |
|
1
|
|
|
|
|
2
|
|
74
|
1
|
|
|
1
|
|
5
|
use strict; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
18
|
|
75
|
1
|
|
|
1
|
|
3
|
use Carp 'croak'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
37
|
|
76
|
|
|
|
|
|
|
|
77
|
1
|
|
|
1
|
|
4
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
53
|
|
78
|
|
|
|
|
|
|
$VERSION = 128; |
79
|
1
|
|
|
1
|
|
578
|
use Math::PlanePath; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
32
|
|
80
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
83
|
1
|
|
|
|
|
57
|
'is_infinite', |
84
|
1
|
|
|
1
|
|
5
|
'round_nearest'; |
|
1
|
|
|
|
|
2
|
|
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
87
|
|
|
|
|
|
|
# use Smart::Comments; |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
|
90
|
1
|
|
|
|
|
2113
|
use constant parameter_info_array => |
91
|
|
|
|
|
|
|
[ { name => 'points', |
92
|
|
|
|
|
|
|
share_type => 'points_eoahrc', |
93
|
|
|
|
|
|
|
display => 'Points', |
94
|
|
|
|
|
|
|
type => 'enum', |
95
|
|
|
|
|
|
|
default => 'even', |
96
|
|
|
|
|
|
|
choices => ['even','odd', 'all', |
97
|
|
|
|
|
|
|
'hex','hex_rotated','hex_centred', |
98
|
|
|
|
|
|
|
], |
99
|
|
|
|
|
|
|
choices_display => ['Even','Odd', 'All', |
100
|
|
|
|
|
|
|
'Hex','Hex Rotated','Hex Centred', |
101
|
|
|
|
|
|
|
], |
102
|
|
|
|
|
|
|
description => 'Which X,Y points visit, either X+Y even or odd, or all points, or hexagonal grid points.', |
103
|
|
|
|
|
|
|
}, |
104
|
|
|
|
|
|
|
Math::PlanePath::Base::Generic::parameter_info_nstart1(), |
105
|
1
|
|
|
1
|
|
4
|
]; |
|
1
|
|
|
|
|
2
|
|
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
{ |
108
|
|
|
|
|
|
|
my %x_negative_at_n = (even => 3, |
109
|
|
|
|
|
|
|
odd => 1, |
110
|
|
|
|
|
|
|
all => 2, |
111
|
|
|
|
|
|
|
hex => 2, |
112
|
|
|
|
|
|
|
hex_rotated => 2, |
113
|
|
|
|
|
|
|
hex_centred => 2, |
114
|
|
|
|
|
|
|
); |
115
|
|
|
|
|
|
|
sub x_negative_at_n { |
116
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
117
|
0
|
|
|
|
|
0
|
return $self->n_start + $x_negative_at_n{$self->{'points'}}; |
118
|
|
|
|
|
|
|
} |
119
|
|
|
|
|
|
|
} |
120
|
|
|
|
|
|
|
{ |
121
|
|
|
|
|
|
|
my %y_negative_at_n = (even => 5, |
122
|
|
|
|
|
|
|
odd => 3, |
123
|
|
|
|
|
|
|
all => 4, |
124
|
|
|
|
|
|
|
hex => 3, |
125
|
|
|
|
|
|
|
hex_rotated => 3, |
126
|
|
|
|
|
|
|
hex_centred => 4, |
127
|
|
|
|
|
|
|
); |
128
|
|
|
|
|
|
|
sub y_negative_at_n { |
129
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
130
|
0
|
|
|
|
|
0
|
return $self->n_start + $y_negative_at_n{$self->{'points'}}; |
131
|
|
|
|
|
|
|
} |
132
|
|
|
|
|
|
|
} |
133
|
|
|
|
|
|
|
sub rsquared_minimum { |
134
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
135
|
|
|
|
|
|
|
return ($self->{'points'} eq 'odd' ? 1 # at X=1,Y=0 |
136
|
0
|
0
|
|
|
|
0
|
: $self->{'points'} eq 'hex_centred' ? 2 # at X=1,Y=1 |
|
|
0
|
|
|
|
|
|
137
|
|
|
|
|
|
|
: 0); # even,all,hex,hex_rotated at X=0,Y=0 |
138
|
|
|
|
|
|
|
} |
139
|
|
|
|
|
|
|
*sumabsxy_minimum = \&rsquared_minimum; |
140
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
sub absdiffxy_minimum { |
142
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
143
|
0
|
0
|
|
|
|
0
|
return ($self->{'points'} eq 'odd' |
144
|
|
|
|
|
|
|
? 1 # odd, line X=Y not included |
145
|
|
|
|
|
|
|
: 0); # even,all includes X=Y |
146
|
|
|
|
|
|
|
} |
147
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
{ |
149
|
|
|
|
|
|
|
my %_UNDOCUMENTED__turn_any_left_at_n |
150
|
|
|
|
|
|
|
= (even => 1, |
151
|
|
|
|
|
|
|
odd => 3, |
152
|
|
|
|
|
|
|
all => 4, |
153
|
|
|
|
|
|
|
hex => 1, |
154
|
|
|
|
|
|
|
hex_rotated => 1, |
155
|
|
|
|
|
|
|
hex_centred => 1, |
156
|
|
|
|
|
|
|
); |
157
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_left_at_n { |
158
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
159
|
0
|
|
|
|
|
0
|
my $n = $_UNDOCUMENTED__turn_any_left_at_n{$self->{'points'}}; |
160
|
0
|
0
|
|
|
|
0
|
return (defined $n ? $self->n_start + $n : undef); |
161
|
|
|
|
|
|
|
} |
162
|
|
|
|
|
|
|
} |
163
|
|
|
|
|
|
|
{ |
164
|
|
|
|
|
|
|
# even,hex, left or straight only |
165
|
|
|
|
|
|
|
# odd,all both left or right |
166
|
|
|
|
|
|
|
my %turn_any_right = (# even => 0, |
167
|
|
|
|
|
|
|
odd => 1, |
168
|
|
|
|
|
|
|
all => 1, |
169
|
|
|
|
|
|
|
# hex => 0, |
170
|
|
|
|
|
|
|
# hex_rotated => 0, |
171
|
|
|
|
|
|
|
# hex_centred => 0, |
172
|
|
|
|
|
|
|
); |
173
|
|
|
|
|
|
|
sub turn_any_right { |
174
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
175
|
0
|
|
|
|
|
0
|
return $turn_any_right{$self->{'points'}}; |
176
|
|
|
|
|
|
|
} |
177
|
|
|
|
|
|
|
} |
178
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
sub turn_any_straight { |
180
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
181
|
|
|
|
|
|
|
return ($self->{'points'} eq 'hex' |
182
|
0
|
0
|
0
|
|
|
0
|
|| $self->{'points'} eq 'odd' ? 0 # never straight |
183
|
|
|
|
|
|
|
: 1); |
184
|
|
|
|
|
|
|
} |
185
|
|
|
|
|
|
|
{ |
186
|
|
|
|
|
|
|
my %_UNDOCUMENTED__turn_any_straight_at_n |
187
|
|
|
|
|
|
|
= (even => 30, |
188
|
|
|
|
|
|
|
# odd => undef, # never straight |
189
|
|
|
|
|
|
|
all => 1, |
190
|
|
|
|
|
|
|
# hex => undef, # never straight |
191
|
|
|
|
|
|
|
hex_rotated => 57, |
192
|
|
|
|
|
|
|
hex_centred => 23, |
193
|
|
|
|
|
|
|
); |
194
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_straight_at_n { |
195
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
196
|
0
|
|
|
|
|
0
|
my $n = $_UNDOCUMENTED__turn_any_straight_at_n{$self->{'points'}}; |
197
|
0
|
0
|
|
|
|
0
|
return (defined $n ? $self->n_start + $n : undef); |
198
|
|
|
|
|
|
|
} |
199
|
|
|
|
|
|
|
} |
200
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
sub new { |
204
|
|
|
|
|
|
|
### TriangularHypot new() ... |
205
|
13
|
|
|
13
|
1
|
3604
|
my $self = shift->SUPER::new(@_); |
206
|
|
|
|
|
|
|
|
207
|
13
|
50
|
|
|
|
44
|
if (! defined $self->{'n_start'}) { |
208
|
13
|
|
|
|
|
46
|
$self->{'n_start'} = $self->default_n_start; |
209
|
|
|
|
|
|
|
} |
210
|
|
|
|
|
|
|
|
211
|
13
|
|
100
|
|
|
38
|
my $points = ($self->{'points'} ||= 'even'); |
212
|
13
|
100
|
|
|
|
56
|
if ($points eq 'all') { |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
213
|
2
|
|
|
|
|
6
|
$self->{'n_to_x'} = [0]; |
214
|
2
|
|
|
|
|
5
|
$self->{'n_to_y'} = [0]; |
215
|
2
|
|
|
|
|
6
|
$self->{'hypot_to_n'} = [0]; # N=0 at X=0,Y=0 |
216
|
2
|
|
|
|
|
4
|
$self->{'y_next_x'} = [1-1]; |
217
|
2
|
|
|
|
|
5
|
$self->{'y_next_hypot'} = [3*0**2 + 1**2]; |
218
|
2
|
|
|
|
|
7
|
$self->{'x_inc'} = 1; |
219
|
2
|
|
|
|
|
4
|
$self->{'x_inc_factor'} = 2; # ((x+1)^2 - x^2) = 2*x+1 |
220
|
2
|
|
|
|
|
4
|
$self->{'x_inc_squared'} = 1; |
221
|
2
|
|
|
|
|
5
|
$self->{'symmetry'} = 4; |
222
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
} elsif ($points eq 'even') { |
224
|
4
|
|
|
|
|
9
|
$self->{'n_to_x'} = [0]; |
225
|
4
|
|
|
|
|
8
|
$self->{'n_to_y'} = [0]; |
226
|
4
|
|
|
|
|
5
|
$self->{'hypot_to_n'} = [0]; # N=0 at X=0,Y=0 |
227
|
4
|
|
|
|
|
7
|
$self->{'y_next_x'} = [2-2]; |
228
|
4
|
|
|
|
|
6
|
$self->{'y_next_hypot'} = [3*0**2 + 2**2]; |
229
|
4
|
|
|
|
|
10
|
$self->{'x_inc'} = 2; |
230
|
4
|
|
|
|
|
6
|
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4 |
231
|
4
|
|
|
|
|
7
|
$self->{'x_inc_squared'} = 4; |
232
|
4
|
|
|
|
|
5
|
$self->{'skip_parity'} = 1; |
233
|
4
|
|
|
|
|
6
|
$self->{'symmetry'} = 12; |
234
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
} elsif ($points eq 'odd') { |
236
|
2
|
|
|
|
|
4
|
$self->{'n_to_x'} = []; |
237
|
2
|
|
|
|
|
17
|
$self->{'n_to_y'} = []; |
238
|
2
|
|
|
|
|
4
|
$self->{'hypot_to_n'} = []; |
239
|
2
|
|
|
|
|
4
|
$self->{'y_next_x'} = [1-2]; |
240
|
2
|
|
|
|
|
5
|
$self->{'y_next_hypot'} = [1]; |
241
|
2
|
|
|
|
|
5
|
$self->{'x_inc'} = 2; |
242
|
2
|
|
|
|
|
4
|
$self->{'x_inc_factor'} = 4; |
243
|
2
|
|
|
|
|
4
|
$self->{'x_inc_squared'} = 4; |
244
|
2
|
|
|
|
|
2
|
$self->{'skip_parity'} = 0; |
245
|
2
|
|
|
|
|
4
|
$self->{'symmetry'} = 4; |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
} elsif ($points eq 'hex') { |
248
|
2
|
|
|
|
|
6
|
$self->{'n_to_x'} = [0]; # N=0 at X=0,Y=0 |
249
|
2
|
|
|
|
|
4
|
$self->{'n_to_y'} = [0]; |
250
|
2
|
|
|
|
|
4
|
$self->{'hypot_to_n'} = [0]; # N=0 at X=0,Y=0 |
251
|
2
|
|
|
|
|
4
|
$self->{'y_next_x'} = [2-2]; |
252
|
2
|
|
|
|
|
3
|
$self->{'y_next_hypot'} = [2**2 + 3*0**2]; # next at X=2,Y=0 |
253
|
2
|
|
|
|
|
7
|
$self->{'x_inc'} = 2; |
254
|
2
|
|
|
|
|
5
|
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4 |
255
|
2
|
|
|
|
|
3
|
$self->{'x_inc_squared'} = 4; |
256
|
2
|
|
|
|
|
4
|
$self->{'skip_parity'} = 1; # should be even |
257
|
2
|
|
|
|
|
3
|
$self->{'skip_hex'} = 4; # x+3y==0,2 only |
258
|
2
|
|
|
|
|
3
|
$self->{'symmetry'} = 6; |
259
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
} elsif ($points eq 'hex_rotated') { |
261
|
1
|
|
|
|
|
2
|
$self->{'n_to_x'} = [0]; # N=0 at X=0,Y=0 |
262
|
1
|
|
|
|
|
3
|
$self->{'n_to_y'} = [0]; |
263
|
1
|
|
|
|
|
2
|
$self->{'hypot_to_n'} = [0]; # N=0 at X=0,Y=0 |
264
|
1
|
|
|
|
|
2
|
$self->{'y_next_x'} = [4-2, |
265
|
|
|
|
|
|
|
1-2]; |
266
|
1
|
|
|
|
|
2
|
$self->{'y_next_hypot'} = [4**2 + 3*0**2, # next at X=4,Y=0 |
267
|
|
|
|
|
|
|
1**2 + 3*1**2]; # next at X=1,Y=1 |
268
|
1
|
|
|
|
|
3
|
$self->{'x_inc'} = 2; |
269
|
1
|
|
|
|
|
2
|
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4 |
270
|
1
|
|
|
|
|
2
|
$self->{'x_inc_squared'} = 4; |
271
|
1
|
|
|
|
|
1
|
$self->{'skip_parity'} = 1; # should be even |
272
|
1
|
|
|
|
|
2
|
$self->{'skip_hex'} = 2; # x+3y==0,4 only |
273
|
1
|
|
|
|
|
1
|
$self->{'symmetry'} = 6; |
274
|
|
|
|
|
|
|
|
275
|
|
|
|
|
|
|
} elsif ($points eq 'hex_centred') { |
276
|
2
|
|
|
|
|
4
|
$self->{'n_to_x'} = []; |
277
|
2
|
|
|
|
|
4
|
$self->{'n_to_y'} = []; |
278
|
2
|
|
|
|
|
3
|
$self->{'hypot_to_n'} = []; |
279
|
2
|
|
|
|
|
4
|
$self->{'y_next_x'} = [2-2]; # for first at X=2 |
280
|
2
|
|
|
|
|
4
|
$self->{'y_next_hypot'} = [2**2 + 3*0**2]; # at X=2,Y=0 |
281
|
2
|
|
|
|
|
5
|
$self->{'x_inc'} = 2; |
282
|
2
|
|
|
|
|
4
|
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4 |
283
|
2
|
|
|
|
|
3
|
$self->{'x_inc_squared'} = 4; |
284
|
2
|
|
|
|
|
3
|
$self->{'skip_parity'} = 1; # should be even |
285
|
2
|
|
|
|
|
4
|
$self->{'skip_hex'} = 0; # x+3y==2,4 only |
286
|
2
|
|
|
|
|
3
|
$self->{'symmetry'} = 12; |
287
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
} else { |
289
|
0
|
|
|
|
|
0
|
croak "Unrecognised points option: ", $points; |
290
|
|
|
|
|
|
|
} |
291
|
|
|
|
|
|
|
|
292
|
|
|
|
|
|
|
### $self |
293
|
|
|
|
|
|
|
### assert: $self->{'y_next_hypot'}->[0] == (3 * 0**2 + ($self->{'y_next_x'}->[0]+$self->{'x_inc'})**2) |
294
|
|
|
|
|
|
|
|
295
|
13
|
|
|
|
|
26
|
return $self; |
296
|
|
|
|
|
|
|
} |
297
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
sub _extend { |
299
|
3724
|
|
|
3724
|
|
4723
|
my ($self) = @_; |
300
|
|
|
|
|
|
|
### _extend() ... |
301
|
|
|
|
|
|
|
|
302
|
3724
|
|
|
|
|
4192
|
my $n_to_x = $self->{'n_to_x'}; |
303
|
3724
|
|
|
|
|
4112
|
my $n_to_y = $self->{'n_to_y'}; |
304
|
3724
|
|
|
|
|
4322
|
my $hypot_to_n = $self->{'hypot_to_n'}; |
305
|
3724
|
|
|
|
|
4059
|
my $y_next_x = $self->{'y_next_x'}; |
306
|
3724
|
|
|
|
|
4122
|
my $y_next_hypot = $self->{'y_next_hypot'}; |
307
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
### $y_next_x |
309
|
|
|
|
|
|
|
### $y_next_hypot |
310
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
# set @y to the Y with the smallest $y_next_hypot->[$y], and if there's some |
312
|
|
|
|
|
|
|
# Y's with equal smallest hypot then all those Y's in ascending order |
313
|
3724
|
|
|
|
|
4642
|
my @y = (0); |
314
|
3724
|
|
|
|
|
4127
|
my $hypot = $y_next_hypot->[0]; |
315
|
3724
|
|
|
|
|
5922
|
for (my $i = 1; $i < @$y_next_x; $i++) { |
316
|
85696
|
100
|
|
|
|
160445
|
if ($hypot == $y_next_hypot->[$i]) { |
|
|
100
|
|
|
|
|
|
317
|
2443
|
|
|
|
|
4076
|
push @y, $i; |
318
|
|
|
|
|
|
|
} elsif ($hypot > $y_next_hypot->[$i]) { |
319
|
7689
|
|
|
|
|
9328
|
@y = ($i); |
320
|
7689
|
|
|
|
|
12001
|
$hypot = $y_next_hypot->[$i]; |
321
|
|
|
|
|
|
|
} |
322
|
|
|
|
|
|
|
} |
323
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
### chosen y list: @y |
325
|
|
|
|
|
|
|
|
326
|
|
|
|
|
|
|
# if the endmost of the @$y_next_x, @y_next_hypot arrays are used then |
327
|
|
|
|
|
|
|
# extend them by one |
328
|
3724
|
100
|
|
|
|
5606
|
if ($y[-1] == $#$y_next_x) { |
329
|
259
|
|
|
|
|
303
|
my $y = scalar(@$y_next_x); # new Y value |
330
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
### highest y: $y[-1] |
332
|
|
|
|
|
|
|
### so grow y: $y |
333
|
|
|
|
|
|
|
|
334
|
259
|
|
|
|
|
324
|
my $points = $self->{'points'}; |
335
|
259
|
100
|
|
|
|
568
|
if ($points eq 'even') { |
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
336
|
|
|
|
|
|
|
# h = (3 * $y**2 + $x**2) |
337
|
|
|
|
|
|
|
# = (3 * $y**2 + ($3*y)**2) |
338
|
|
|
|
|
|
|
# = (3*$y*$y + 9*$y*$y) |
339
|
|
|
|
|
|
|
# = (12*$y*$y) |
340
|
28
|
|
|
|
|
53
|
$y_next_x->[$y] = 3*$y - $self->{'x_inc'}; # X=3*Y, so X-2=3*Y-2 |
341
|
28
|
|
|
|
|
51
|
$y_next_hypot->[$y] = 12*$y*$y; |
342
|
|
|
|
|
|
|
|
343
|
|
|
|
|
|
|
} elsif ($points eq 'odd') { |
344
|
55
|
|
|
|
|
89
|
my $odd = ! ($y%2); |
345
|
55
|
|
|
|
|
85
|
$y_next_x->[$y] = $odd - $self->{'x_inc'}; |
346
|
55
|
|
|
|
|
90
|
$y_next_hypot->[$y] = 3*$y*$y + $odd; |
347
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
} elsif ($points eq 'hex') { |
349
|
56
|
100
|
|
|
|
113
|
my $x = $y_next_x->[$y] = (($y % 3) == 1 ? $y : $y-2); |
350
|
56
|
|
|
|
|
65
|
$x += 2; |
351
|
56
|
|
|
|
|
97
|
$y_next_hypot->[$y] = $x*$x + 3*$y*$y; |
352
|
|
|
|
|
|
|
### assert: (($x+$y*3) % 6 == 0 || ($x+$y*3) % 6 == 2) |
353
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
} elsif ($points eq 'hex_rotated') { |
355
|
45
|
100
|
|
|
|
174
|
my $x = $y_next_x->[$y] = (($y % 3) == 2 ? $y : $y-2); |
356
|
45
|
|
|
|
|
58
|
$x += 2; |
357
|
45
|
|
|
|
|
82
|
$y_next_hypot->[$y] = $x*$x + 3*$y*$y; |
358
|
|
|
|
|
|
|
### assert: (($x+$y*3) % 6 == 4 || ($x+$y*3) % 6 == 0) |
359
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
} elsif ($points eq 'hex_centred') { |
361
|
32
|
|
|
|
|
58
|
my $x = $y_next_x->[$y] = 3*$y; |
362
|
32
|
|
|
|
|
36
|
$x += 2; |
363
|
32
|
|
|
|
|
53
|
$y_next_hypot->[$y] = $x*$x + 3*$y*$y; |
364
|
|
|
|
|
|
|
### assert: (($x+$y*3) % 6 == 2 || ($x+$y*3) % 6 == 4) |
365
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
} else { |
367
|
|
|
|
|
|
|
### assert: $points eq 'all' |
368
|
43
|
|
|
|
|
70
|
$y_next_x->[$y] = - $self->{'x_inc'}; # X=0, so X-1=0 |
369
|
43
|
|
|
|
|
72
|
$y_next_hypot->[$y] = 3*$y*$y; |
370
|
|
|
|
|
|
|
} |
371
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
### new y_next_x (with adjustment): $y_next_x->[$y]+$self->{'x_inc'} |
373
|
|
|
|
|
|
|
### new y_next_hypot: $y_next_hypot->[$y] |
374
|
|
|
|
|
|
|
|
375
|
|
|
|
|
|
|
### assert: ($points ne 'even' || (($y ^ ($y_next_x->[$y]+$self->{'x_inc'})) & 1) == 0) |
376
|
|
|
|
|
|
|
### assert: $y_next_hypot->[$y] == (3 * $y**2 + ($y_next_x->[$y]+$self->{'x_inc'})**2) |
377
|
|
|
|
|
|
|
} |
378
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
# @x is the $y_next_x->[$y] for each of the @y smallests, and step those |
380
|
|
|
|
|
|
|
# selected elements next X and hypot for that new X,Y |
381
|
|
|
|
|
|
|
my @x = map { |
382
|
|
|
|
|
|
|
### assert: (3 * $_**2 + ($y_next_x->[$_]+$self->{'x_inc'})**2) == $y_next_hypot->[$_] |
383
|
|
|
|
|
|
|
|
384
|
3724
|
|
|
|
|
5203
|
my $x = ($y_next_x->[$_] += $self->{'x_inc'}); |
|
5580
|
|
|
|
|
6886
|
|
385
|
|
|
|
|
|
|
### map y _: $_ |
386
|
|
|
|
|
|
|
### map inc x to: $x |
387
|
5580
|
100
|
100
|
|
|
11011
|
if (defined $self->{'skip_hex'} |
388
|
|
|
|
|
|
|
&& ($x+2 + 3*$_) % 6 == $self->{'skip_hex'}) { |
389
|
|
|
|
|
|
|
### extra inc for hex ... |
390
|
1110
|
|
|
|
|
1342
|
$y_next_x->[$_] += 2; |
391
|
1110
|
|
|
|
|
1268
|
$y_next_hypot->[$_] += 8*$x+16; # (X+4)^2-X^2 = 8X+16 |
392
|
|
|
|
|
|
|
} else { |
393
|
|
|
|
|
|
|
$y_next_hypot->[$_] |
394
|
4470
|
|
|
|
|
5708
|
+= $self->{'x_inc_factor'}*$x + $self->{'x_inc_squared'}; |
395
|
|
|
|
|
|
|
} |
396
|
|
|
|
|
|
|
|
397
|
|
|
|
|
|
|
### $x |
398
|
|
|
|
|
|
|
### y_next_x (including adjust): $y_next_x->[$_]+$self->{'x_inc'} |
399
|
|
|
|
|
|
|
### y_next_hypot[]: $y_next_hypot->[$_] |
400
|
|
|
|
|
|
|
|
401
|
|
|
|
|
|
|
### assert: $y_next_hypot->[$_] == (3 * $_**2 + ($y_next_x->[$_]+$self->{'x_inc'})**2) |
402
|
|
|
|
|
|
|
### assert: $self->{'points'} ne 'hex' || (($x+3*$_) % 6 == 0 || ($x+3*$_) % 6 == 2) |
403
|
|
|
|
|
|
|
### assert: $self->{'points'} ne 'hex_rotated' || (($x+$_*3) % 6 == 4 || ($x+$_*3) % 6 == 0) |
404
|
|
|
|
|
|
|
### assert: $self->{'points'} ne 'hex_centred' || (($x+$_*3) % 6 == 2 || ($x+$_*3) % 6 == 4) |
405
|
|
|
|
|
|
|
|
406
|
5580
|
|
|
|
|
8970
|
$x |
407
|
|
|
|
|
|
|
} @y; |
408
|
|
|
|
|
|
|
### $hypot |
409
|
|
|
|
|
|
|
|
410
|
3724
|
|
|
|
|
4075
|
my $p2; |
411
|
3724
|
100
|
|
|
|
6027
|
if ($self->{'symmetry'} == 12) { |
|
|
100
|
|
|
|
|
|
412
|
|
|
|
|
|
|
### base twelvth: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
413
|
765
|
|
|
|
|
1007
|
my $p1 = scalar(@y); |
414
|
765
|
|
|
|
|
1048
|
my @base_x = @x; |
415
|
765
|
|
|
|
|
921
|
my @base_y = @y; |
416
|
765
|
100
|
|
|
|
1124
|
unless ($y[0]) { # no mirror of x,0 |
417
|
84
|
|
|
|
|
105
|
shift @base_x; |
418
|
84
|
|
|
|
|
94
|
shift @base_y; |
419
|
|
|
|
|
|
|
} |
420
|
765
|
100
|
|
|
|
1136
|
if ($x[-1] == 3*$y[-1]) { # no mirror of x=3*y line |
421
|
26
|
|
|
|
|
34
|
pop @base_x; |
422
|
26
|
|
|
|
|
36
|
pop @base_y; |
423
|
|
|
|
|
|
|
} |
424
|
765
|
|
|
|
|
1895
|
$#x = $#y = ($p1+scalar(@base_x))*6-1; # pre-extend arrays |
425
|
765
|
|
|
|
|
1352
|
for (my $i = $#base_x; $i >= 0; $i--) { |
426
|
830
|
|
|
|
|
1410
|
$x[$p1] = ($base_x[$i] + 3*$base_y[$i]) / 2; |
427
|
830
|
|
|
|
|
1618
|
$y[$p1++] = ($base_x[$i] - $base_y[$i]) / 2; |
428
|
|
|
|
|
|
|
} |
429
|
|
|
|
|
|
|
### with mirror 30: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p1-1) |
430
|
|
|
|
|
|
|
|
431
|
765
|
|
|
|
|
888
|
$p2 = 2*$p1; |
432
|
765
|
|
|
|
|
1185
|
foreach my $i (0 .. $p1-1) { |
433
|
1770
|
|
|
|
|
2725
|
$x[$p1] = ($x[$i] - 3*$y[$i])/2; # rotate +60 |
434
|
1770
|
|
|
|
|
2425
|
$y[$p1++] = ($x[$i] + $y[$i])/2; |
435
|
|
|
|
|
|
|
|
436
|
1770
|
|
|
|
|
2314
|
$x[$p2] = ($x[$i] + 3*$y[$i])/-2; # rotate +120 |
437
|
1770
|
|
|
|
|
2599
|
$y[$p2++] = ($x[$i] - $y[$i])/2; |
438
|
|
|
|
|
|
|
} |
439
|
|
|
|
|
|
|
### with rotates 60,120: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1) |
440
|
|
|
|
|
|
|
|
441
|
765
|
|
|
|
|
1017
|
foreach my $i (0 .. $p2-1) { |
442
|
5310
|
|
|
|
|
6500
|
$x[$p2] = -$x[$i]; # rotate 180 |
443
|
5310
|
|
|
|
|
7375
|
$y[$p2++] = -$y[$i]; |
444
|
|
|
|
|
|
|
} |
445
|
|
|
|
|
|
|
### with rotate 180: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
446
|
|
|
|
|
|
|
|
447
|
|
|
|
|
|
|
} elsif ($self->{'symmetry'} == 6) { |
448
|
1106
|
|
|
|
|
1327
|
my $p1 = scalar(@x); |
449
|
1106
|
|
|
|
|
1449
|
my @base_x = @x; |
450
|
1106
|
|
|
|
|
1411
|
my @base_y = @y; |
451
|
1106
|
100
|
|
|
|
1689
|
unless ($y[0]) { # no mirror of x,0 |
452
|
67
|
|
|
|
|
87
|
shift @base_x; |
453
|
67
|
|
|
|
|
74
|
shift @base_y; |
454
|
|
|
|
|
|
|
} |
455
|
1106
|
100
|
|
|
|
1618
|
if ($x[-1] == $y[-1]) { # no mirror of X=Y line |
456
|
66
|
|
|
|
|
79
|
pop @base_x; |
457
|
66
|
|
|
|
|
72
|
pop @base_y; |
458
|
|
|
|
|
|
|
} |
459
|
|
|
|
|
|
|
### base xy: join(' ',map{"$base_x[$_],$base_y[$_]"} 0 .. $#base_x) |
460
|
|
|
|
|
|
|
|
461
|
1106
|
|
|
|
|
1813
|
for (my $i = $#base_x; $i >= 0; $i--) { |
462
|
1642
|
|
|
|
|
2520
|
$x[$p1] = ($base_x[$i] - 3*$base_y[$i]) / -2; # mirror +60 |
463
|
1642
|
|
|
|
|
3025
|
$y[$p1++] = ($base_x[$i] + $base_y[$i]) / 2; |
464
|
|
|
|
|
|
|
} |
465
|
|
|
|
|
|
|
### with mirror 60: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p1-1) |
466
|
|
|
|
|
|
|
|
467
|
1106
|
|
|
|
|
1310
|
$p2 = 2*$p1; |
468
|
1106
|
|
|
|
|
1733
|
foreach my $i (0 .. $#x) { |
469
|
3417
|
|
|
|
|
4900
|
$x[$p1] = ($x[$i] + 3*$y[$i])/-2; # rotate +120 |
470
|
3417
|
|
|
|
|
4369
|
$y[$p1++] = ($x[$i] - $y[$i])/2; |
471
|
|
|
|
|
|
|
|
472
|
3417
|
|
|
|
|
4229
|
$x[$p2] = ($x[$i] - 3*$y[$i])/-2; # rotate +240 == -120 |
473
|
3417
|
|
|
|
|
4890
|
$y[$p2++] = ($x[$i] + $y[$i])/-2; |
474
|
|
|
|
|
|
|
|
475
|
|
|
|
|
|
|
# should be on correct grid |
476
|
|
|
|
|
|
|
# ### assert: (($x[$p1-1]+$y[$p1-1]*3) % 6 == 0 || ($x[$p1-1]+$y[$p1-1]*3) % 6 == 2) |
477
|
|
|
|
|
|
|
# ### assert: (($x[$p2-1]+$y[$p2-1]*3) % 6 == 0 || ($x[$p2-1]+$y[$p2-1]*3) % 6 == 2) |
478
|
|
|
|
|
|
|
} |
479
|
|
|
|
|
|
|
### with rotates 120,240: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1) |
480
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
} else { |
482
|
|
|
|
|
|
|
### assert: $self->{'symmetry'} == 4 |
483
|
|
|
|
|
|
|
### base quarter: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
484
|
1853
|
|
|
|
|
2122
|
my $p1 = $#x; |
485
|
1853
|
|
|
|
|
2468
|
push @y, reverse @y; |
486
|
1853
|
|
|
|
|
2332
|
push @x, map {-$_} reverse @x; |
|
2865
|
|
|
|
|
3810
|
|
487
|
1853
|
100
|
|
|
|
2956
|
if ($x[$p1] == 0) { |
488
|
68
|
|
|
|
|
104
|
splice @x, $p1, 1; # don't duplicate X=0 in mirror |
489
|
68
|
|
|
|
|
76
|
splice @y, $p1, 1; |
490
|
|
|
|
|
|
|
} |
491
|
1853
|
100
|
|
|
|
2600
|
if ($y[-1] == 0) { |
492
|
119
|
|
|
|
|
129
|
pop @y; # omit final Y=0 ready for rotate |
493
|
119
|
|
|
|
|
132
|
pop @x; |
494
|
|
|
|
|
|
|
} |
495
|
1853
|
|
|
|
|
2181
|
$p2 = scalar(@y); |
496
|
|
|
|
|
|
|
### with mirror +90: join(' ',map{"$x[$_],$y[$_]"} 0 .. $p2-1) |
497
|
|
|
|
|
|
|
|
498
|
1853
|
|
|
|
|
2953
|
foreach my $i (0 .. $p2-1) { |
499
|
5543
|
|
|
|
|
6340
|
$x[$p2] = -$x[$i]; # rotate 180 |
500
|
5543
|
|
|
|
|
7563
|
$y[$p2++] = -$y[$i]; |
501
|
|
|
|
|
|
|
} |
502
|
|
|
|
|
|
|
### with rotate 180: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
503
|
|
|
|
|
|
|
} |
504
|
|
|
|
|
|
|
|
505
|
|
|
|
|
|
|
### store: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
506
|
|
|
|
|
|
|
### at n: scalar(@$n_to_x) |
507
|
|
|
|
|
|
|
### hypot_to_n: "h=$hypot n=".scalar(@$n_to_x) |
508
|
3724
|
|
|
|
|
6215
|
$hypot_to_n->[$hypot] = scalar(@$n_to_x); |
509
|
3724
|
|
|
|
|
7359
|
push @$n_to_x, @x; |
510
|
3724
|
|
|
|
|
11499
|
push @$n_to_y, @y; |
511
|
|
|
|
|
|
|
|
512
|
|
|
|
|
|
|
# ### hypot_to_n now: join(' ',map {defined($hypot_to_n->[$_]) && "h=$_,n=$hypot_to_n->[$_]"} 0 .. $#hypot_to_n) |
513
|
|
|
|
|
|
|
} |
514
|
|
|
|
|
|
|
|
515
|
|
|
|
|
|
|
sub n_to_xy { |
516
|
29994
|
|
|
29994
|
1
|
315927
|
my ($self, $n) = @_; |
517
|
|
|
|
|
|
|
### TriangularHypot n_to_xy(): $n |
518
|
|
|
|
|
|
|
|
519
|
29994
|
|
|
|
|
34880
|
$n = $n - $self->{'n_start'}; # starting $n==0, warn if $n==undef |
520
|
29994
|
50
|
|
|
|
42056
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
521
|
29994
|
50
|
|
|
|
45152
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
522
|
|
|
|
|
|
|
|
523
|
29994
|
|
|
|
|
40609
|
my $int = int($n); |
524
|
29994
|
|
|
|
|
33000
|
$n -= $int; # fraction part |
525
|
|
|
|
|
|
|
|
526
|
29994
|
|
|
|
|
34720
|
my $n_to_x = $self->{'n_to_x'}; |
527
|
29994
|
|
|
|
|
31566
|
my $n_to_y = $self->{'n_to_y'}; |
528
|
|
|
|
|
|
|
|
529
|
29994
|
|
|
|
|
47316
|
while ($int >= $#$n_to_x) { |
530
|
3425
|
|
|
|
|
4682
|
_extend($self); |
531
|
|
|
|
|
|
|
} |
532
|
|
|
|
|
|
|
|
533
|
29994
|
|
|
|
|
35521
|
my $x = $n_to_x->[$int]; |
534
|
29994
|
|
|
|
|
32831
|
my $y = $n_to_y->[$int]; |
535
|
29994
|
|
|
|
|
63124
|
return ($x + $n * ($n_to_x->[$int+1] - $x), |
536
|
|
|
|
|
|
|
$y + $n * ($n_to_y->[$int+1] - $y)); |
537
|
|
|
|
|
|
|
} |
538
|
|
|
|
|
|
|
|
539
|
|
|
|
|
|
|
sub xy_is_visited { |
540
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x, $y) = @_; |
541
|
|
|
|
|
|
|
|
542
|
0
|
0
|
|
|
|
0
|
if (defined $self->{'skip_parity'}) { |
543
|
0
|
|
|
|
|
0
|
$x = round_nearest ($x); |
544
|
0
|
|
|
|
|
0
|
$y = round_nearest ($y); |
545
|
0
|
0
|
|
|
|
0
|
if ((($x%2) ^ ($y%2)) == $self->{'skip_parity'}) { |
546
|
|
|
|
|
|
|
### XY wrong parity, no point ... |
547
|
0
|
|
|
|
|
0
|
return 0; |
548
|
|
|
|
|
|
|
} |
549
|
|
|
|
|
|
|
} |
550
|
0
|
0
|
|
|
|
0
|
if (defined $self->{'skip_hex'}) { |
551
|
0
|
|
|
|
|
0
|
$x = round_nearest ($x); |
552
|
0
|
|
|
|
|
0
|
$y = round_nearest ($y); |
553
|
0
|
0
|
|
|
|
0
|
if ((($x%6) + 3*($y%6)) % 6 == $self->{'skip_hex'}) { |
554
|
|
|
|
|
|
|
### XY wrong hex, no point ... |
555
|
0
|
|
|
|
|
0
|
return 0; |
556
|
|
|
|
|
|
|
} |
557
|
|
|
|
|
|
|
} |
558
|
0
|
|
|
|
|
0
|
return 1; |
559
|
|
|
|
|
|
|
} |
560
|
|
|
|
|
|
|
|
561
|
|
|
|
|
|
|
sub xy_to_n { |
562
|
2205
|
|
|
2205
|
1
|
20673
|
my ($self, $x, $y) = @_; |
563
|
|
|
|
|
|
|
### TriangularHypot xy_to_n(): "$x, $y points=$self->{'points'}" |
564
|
|
|
|
|
|
|
|
565
|
2205
|
|
|
|
|
3260
|
$x = round_nearest ($x); |
566
|
2205
|
|
|
|
|
3253
|
$y = round_nearest ($y); |
567
|
|
|
|
|
|
|
|
568
|
|
|
|
|
|
|
### parity xor: ($x%2) ^ ($y%2) |
569
|
|
|
|
|
|
|
### hex modulo: (($x%6) + 3*($y%6)) % 6 |
570
|
2205
|
100
|
100
|
|
|
5401
|
if (defined $self->{'skip_parity'} |
571
|
|
|
|
|
|
|
&& (($x%2) ^ ($y%2)) == $self->{'skip_parity'}) { |
572
|
|
|
|
|
|
|
### XY wrong parity, no point ... |
573
|
881
|
|
|
|
|
1437
|
return undef; |
574
|
|
|
|
|
|
|
} |
575
|
1324
|
100
|
100
|
|
|
2490
|
if (defined $self->{'skip_hex'} |
576
|
|
|
|
|
|
|
&& (($x%6) + 3*($y%6)) % 6 == $self->{'skip_hex'}) { |
577
|
|
|
|
|
|
|
### XY wrong hex, no point ... |
578
|
147
|
|
|
|
|
233
|
return undef; |
579
|
|
|
|
|
|
|
} |
580
|
|
|
|
|
|
|
|
581
|
|
|
|
|
|
|
|
582
|
1177
|
|
|
|
|
1540
|
my $hypot = 3*$y*$y + $x*$x; |
583
|
1177
|
50
|
|
|
|
1680
|
if (is_infinite($hypot)) { |
584
|
|
|
|
|
|
|
# avoid infinite loop extending @hypot_to_n |
585
|
0
|
|
|
|
|
0
|
return undef; |
586
|
|
|
|
|
|
|
} |
587
|
|
|
|
|
|
|
### $hypot |
588
|
|
|
|
|
|
|
|
589
|
1177
|
|
|
|
|
1961
|
my $hypot_to_n = $self->{'hypot_to_n'}; |
590
|
1177
|
|
|
|
|
1288
|
my $n_to_x = $self->{'n_to_x'}; |
591
|
1177
|
|
|
|
|
1340
|
my $n_to_y = $self->{'n_to_y'}; |
592
|
|
|
|
|
|
|
|
593
|
1177
|
|
|
|
|
1844
|
while ($hypot > $#$hypot_to_n) { |
594
|
299
|
|
|
|
|
397
|
_extend($self); |
595
|
|
|
|
|
|
|
} |
596
|
1177
|
|
|
|
|
1473
|
my $n = $hypot_to_n->[$hypot]; |
597
|
1177
|
|
|
|
|
1194
|
for (;;) { |
598
|
5355
|
100
|
100
|
|
|
9166
|
if ($x == $n_to_x->[$n] && $y == $n_to_y->[$n]) { |
599
|
1177
|
|
|
|
|
2279
|
return $n + $self->{'n_start'}; |
600
|
|
|
|
|
|
|
} |
601
|
4178
|
|
|
|
|
4277
|
$n += 1; |
602
|
|
|
|
|
|
|
|
603
|
4178
|
50
|
|
|
|
6711
|
if ($n_to_x->[$n]**2 + 3*$n_to_y->[$n]**2 != $hypot) { |
604
|
|
|
|
|
|
|
### oops, hypot_to_n no good ... |
605
|
0
|
|
|
|
|
0
|
return undef; |
606
|
|
|
|
|
|
|
} |
607
|
|
|
|
|
|
|
} |
608
|
|
|
|
|
|
|
} |
609
|
|
|
|
|
|
|
|
610
|
|
|
|
|
|
|
# not exact |
611
|
|
|
|
|
|
|
sub rect_to_n_range { |
612
|
5
|
|
|
5
|
1
|
40
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
613
|
|
|
|
|
|
|
|
614
|
5
|
|
|
|
|
11
|
$x1 = abs (round_nearest ($x1)); |
615
|
5
|
|
|
|
|
10
|
$y1 = abs (round_nearest ($y1)); |
616
|
5
|
|
|
|
|
7
|
$x2 = abs (round_nearest ($x2)); |
617
|
5
|
|
|
|
|
19
|
$y2 = abs (round_nearest ($y2)); |
618
|
|
|
|
|
|
|
|
619
|
5
|
50
|
|
|
|
9
|
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); } |
|
0
|
|
|
|
|
0
|
|
620
|
5
|
50
|
|
|
|
9
|
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } |
|
0
|
|
|
|
|
0
|
|
621
|
|
|
|
|
|
|
|
622
|
|
|
|
|
|
|
# xyradius r^2 = 1/4 * $x2**2 + 3/4 * $y2**2 |
623
|
|
|
|
|
|
|
# (r+1/2)^2 = r^2 + r + 1/4 |
624
|
|
|
|
|
|
|
# circlearea = pi*(r+1/2)^2 |
625
|
|
|
|
|
|
|
# each hexagon area outradius 1/2 is hexarea = sqrt(27/64) |
626
|
|
|
|
|
|
|
|
627
|
5
|
|
|
|
|
7
|
my $r2 = $x2*$x2 + 3*$y2*$y2; |
628
|
|
|
|
|
|
|
my $n = (3.15 / sqrt(27/64) / 4) * ($r2 + sqrt($r2)) |
629
|
5
|
|
|
|
|
16
|
* (3 - $self->{'x_inc'}); # *2 for odd or even, *1 for all |
630
|
|
|
|
|
|
|
return ($self->{'n_start'}, |
631
|
5
|
|
|
|
|
12
|
$self->{'n_start'} + int($n)); |
632
|
|
|
|
|
|
|
} |
633
|
|
|
|
|
|
|
|
634
|
|
|
|
|
|
|
1; |
635
|
|
|
|
|
|
|
__END__ |