| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify it |
|
6
|
|
|
|
|
|
|
# under the terms of the GNU General Public License as published by the Free |
|
7
|
|
|
|
|
|
|
# Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# math-image --path=SquareArms --lines --scale=10 |
|
20
|
|
|
|
|
|
|
# math-image --path=SquareArms --all --output=numbers_dash |
|
21
|
|
|
|
|
|
|
# math-image --path=SquareArms --values=Polygonal,polygonal=8 |
|
22
|
|
|
|
|
|
|
# |
|
23
|
|
|
|
|
|
|
# RepdigitsAnyBase fall on 14 or 15 lines ... |
|
24
|
|
|
|
|
|
|
# |
|
25
|
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
package Math::PlanePath::SquareArms; |
|
27
|
1
|
|
|
1
|
|
19
|
use 5.004; |
|
|
1
|
|
|
|
|
3
|
|
|
28
|
1
|
|
|
1
|
|
7
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
50
|
|
|
29
|
|
|
|
|
|
|
#use List::Util 'max'; |
|
30
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
31
|
|
|
|
|
|
|
|
|
32
|
1
|
|
|
1
|
|
6
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
63
|
|
|
33
|
|
|
|
|
|
|
$VERSION = 128; |
|
34
|
1
|
|
|
1
|
|
8
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
28
|
|
|
35
|
1
|
|
|
1
|
|
5
|
use Math::PlanePath::Base::NSEW; |
|
|
1
|
|
|
|
|
9
|
|
|
|
1
|
|
|
|
|
35
|
|
|
36
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath::Base::NSEW', |
|
37
|
|
|
|
|
|
|
'Math::PlanePath'); |
|
38
|
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
40
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
78
|
|
|
41
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
|
42
|
|
|
|
|
|
|
*_sqrtint = \&Math::PlanePath::_sqrtint; |
|
43
|
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
45
|
|
|
|
|
|
|
#use Smart::Comments '###'; |
|
46
|
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
|
|
48
|
1
|
|
|
1
|
|
8
|
use constant arms_count => 4; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
63
|
|
|
49
|
1
|
|
|
1
|
|
7
|
use constant xy_is_visited => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
46
|
|
|
50
|
1
|
|
|
1
|
|
6
|
use constant x_negative_at_n => 4; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
51
|
|
|
51
|
1
|
|
|
1
|
|
7
|
use constant y_negative_at_n => 5; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
41
|
|
|
52
|
1
|
|
|
1
|
|
5
|
use constant turn_any_right => 0; # only left or straight |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
612
|
|
|
53
|
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
56
|
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
# 28 |
|
58
|
|
|
|
|
|
|
# 172 +144 |
|
59
|
|
|
|
|
|
|
# 444 +272 +128 |
|
60
|
|
|
|
|
|
|
# 844 +400 +128 |
|
61
|
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
# [ 0, 1, 2, 3,], |
|
63
|
|
|
|
|
|
|
# [ 0, 2, 6, 12 ], |
|
64
|
|
|
|
|
|
|
# N = (d^2 + d) |
|
65
|
|
|
|
|
|
|
# d = -1/2 + sqrt(1 * $n + 1/4) |
|
66
|
|
|
|
|
|
|
# = (-1 + 2*sqrt($n + 1/4)) / 2 |
|
67
|
|
|
|
|
|
|
# = (-1 + sqrt(4*$n + 1)) / 2 |
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
sub n_to_xy { |
|
70
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
71
|
|
|
|
|
|
|
### SquareArms n_to_xy(): $n |
|
72
|
|
|
|
|
|
|
|
|
73
|
0
|
0
|
|
|
|
0
|
if ($n < 2) { |
|
74
|
0
|
0
|
|
|
|
0
|
if ($n < 1) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
75
|
|
|
|
|
|
|
### centre |
|
76
|
0
|
|
|
|
|
0
|
return (0, 1-$n); # from n=1 towards n=5 at x=0,y=-1 |
|
77
|
|
|
|
|
|
|
} |
|
78
|
0
|
|
|
|
|
0
|
$n -= 2; |
|
79
|
|
|
|
|
|
|
|
|
80
|
0
|
|
|
|
|
0
|
my $frac; |
|
81
|
0
|
|
|
|
|
0
|
{ my $int = int($n); |
|
|
0
|
|
|
|
|
0
|
|
|
82
|
0
|
|
|
|
|
0
|
$frac = $n - $int; |
|
83
|
0
|
|
|
|
|
0
|
$n = $int; # BigFloat int() gives BigInt, use that |
|
84
|
|
|
|
|
|
|
} |
|
85
|
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
# arm as initial rotation |
|
87
|
0
|
|
|
|
|
0
|
my $rot = _divrem_mutate($n,4); |
|
88
|
|
|
|
|
|
|
### $n |
|
89
|
|
|
|
|
|
|
|
|
90
|
0
|
|
|
|
|
0
|
my $d = int( (-1 + _sqrtint(4*$n+1)) / 2 ); |
|
91
|
|
|
|
|
|
|
### d frac: ((-1 + sqrt(4*$n + 1)) / 2) |
|
92
|
|
|
|
|
|
|
### $d |
|
93
|
|
|
|
|
|
|
### base: $d*($d+1) |
|
94
|
|
|
|
|
|
|
|
|
95
|
0
|
|
|
|
|
0
|
$n -= $d*($d+1); |
|
96
|
|
|
|
|
|
|
### remainder: $n |
|
97
|
|
|
|
|
|
|
|
|
98
|
0
|
|
|
|
|
0
|
$rot += ($d % 4); |
|
99
|
0
|
|
|
|
|
0
|
my $x = $d + 1; |
|
100
|
0
|
|
|
|
|
0
|
my $y = $frac + $n - $d; |
|
101
|
|
|
|
|
|
|
|
|
102
|
0
|
|
|
|
|
0
|
$rot %= 4; |
|
103
|
0
|
0
|
|
|
|
0
|
if ($rot & 2) { |
|
104
|
0
|
|
|
|
|
0
|
$x = -$x; # rotate 180 |
|
105
|
0
|
|
|
|
|
0
|
$y = -$y; |
|
106
|
|
|
|
|
|
|
} |
|
107
|
0
|
0
|
|
|
|
0
|
if ($rot & 1) { |
|
108
|
0
|
|
|
|
|
0
|
return (-$y,$x); # rotate +90 |
|
109
|
|
|
|
|
|
|
} else { |
|
110
|
0
|
|
|
|
|
0
|
return ($x,$y); |
|
111
|
|
|
|
|
|
|
} |
|
112
|
|
|
|
|
|
|
} |
|
113
|
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
sub xy_to_n { |
|
115
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x, $y) = @_; |
|
116
|
0
|
|
|
|
|
0
|
$x = round_nearest ($x); |
|
117
|
0
|
|
|
|
|
0
|
$y = round_nearest ($y); |
|
118
|
|
|
|
|
|
|
### SquareArms xy_to_n: "$x,$y" |
|
119
|
|
|
|
|
|
|
|
|
120
|
0
|
0
|
0
|
|
|
0
|
if ($x == 0 && $y == 0) { |
|
121
|
0
|
|
|
|
|
0
|
return 1; |
|
122
|
|
|
|
|
|
|
} |
|
123
|
|
|
|
|
|
|
|
|
124
|
0
|
|
|
|
|
0
|
my $rot = 0; |
|
125
|
|
|
|
|
|
|
# eg. y=2 have (0<=>$y)-$y == -1-2 == -3 |
|
126
|
0
|
0
|
|
|
|
0
|
if ($y <= ($x <=> 0) - $x) { |
|
127
|
|
|
|
|
|
|
### below diagonal, rot 180 ... |
|
128
|
0
|
|
|
|
|
0
|
$rot = 2; |
|
129
|
0
|
|
|
|
|
0
|
$x = -$x; # rotate 180 |
|
130
|
0
|
|
|
|
|
0
|
$y = -$y; |
|
131
|
|
|
|
|
|
|
} |
|
132
|
0
|
0
|
|
|
|
0
|
if ($x < $y) { |
|
133
|
|
|
|
|
|
|
### left of diagonal, rot -90 ... |
|
134
|
0
|
|
|
|
|
0
|
$rot++; |
|
135
|
0
|
|
|
|
|
0
|
($x,$y) = ($y,-$x); # rotate -90 |
|
136
|
|
|
|
|
|
|
} |
|
137
|
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
# diagonal down from N=2 |
|
139
|
|
|
|
|
|
|
# x=1 d=0 n=2 |
|
140
|
|
|
|
|
|
|
# x=5 d=4 n=82 |
|
141
|
|
|
|
|
|
|
# x=9 d=8 n=290 |
|
142
|
|
|
|
|
|
|
# x=13 d=12 n=626 |
|
143
|
|
|
|
|
|
|
# N = (4 d^2 + 4 d + 2) |
|
144
|
|
|
|
|
|
|
# = (4 x^2 - 4 x + 2) |
|
145
|
|
|
|
|
|
|
# offset = y + x-1 upwards from diagonal |
|
146
|
|
|
|
|
|
|
# N + 4*offset |
|
147
|
|
|
|
|
|
|
# = (4*x^2 - 4*x + 2) + 4*(y + x-1) |
|
148
|
|
|
|
|
|
|
# = 4*x^2 - 4*x + 2 + 4*y + 4*x - 4 |
|
149
|
|
|
|
|
|
|
# = 4*x^2 + 4*y - 2 |
|
150
|
|
|
|
|
|
|
# cf N=4*x^2 is on the X or Y axis, which is X axis after rotation |
|
151
|
|
|
|
|
|
|
# |
|
152
|
|
|
|
|
|
|
### xy: "$x,$y" |
|
153
|
|
|
|
|
|
|
### $rot |
|
154
|
|
|
|
|
|
|
### x offset: $x-1 + $y |
|
155
|
|
|
|
|
|
|
### d mod: $d % 4 |
|
156
|
|
|
|
|
|
|
### rot d mod: (($rot-$d) % 4) |
|
157
|
0
|
|
|
|
|
0
|
return ($x*$x + $y)*4 - 2 + (($rot-$x+1) % 4); |
|
158
|
|
|
|
|
|
|
} |
|
159
|
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
# d = [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ], |
|
161
|
|
|
|
|
|
|
# Nmax = [ 9, 25, 49, 81, 121, 169, 225, 289, 361 ] |
|
162
|
|
|
|
|
|
|
# being the N=5 arm one spot before the corner of each run |
|
163
|
|
|
|
|
|
|
# N = (4 d^2 + 4 d + 1) |
|
164
|
|
|
|
|
|
|
# = (2d+1)^2 |
|
165
|
|
|
|
|
|
|
# = ((4*$d + 4)*$d + 1) |
|
166
|
|
|
|
|
|
|
# or for d-1 |
|
167
|
|
|
|
|
|
|
# N = (4 d^2 - 4 d + 1) |
|
168
|
|
|
|
|
|
|
# = (2d-1)^2 |
|
169
|
|
|
|
|
|
|
# = ((4*$d - 4)*$d + 1) |
|
170
|
|
|
|
|
|
|
# |
|
171
|
|
|
|
|
|
|
# not exact |
|
172
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
173
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
174
|
0
|
|
|
|
|
0
|
my ($d_lo, $d_hi) = _rect_square_range ($x1,$y1, $x2,$y2); |
|
175
|
0
|
|
|
|
|
0
|
return (((4*$d_lo - 4)*$d_lo + 1), |
|
176
|
|
|
|
|
|
|
max ($self->xy_to_n($x1,$y1), |
|
177
|
|
|
|
|
|
|
$self->xy_to_n($x1,$y2), |
|
178
|
|
|
|
|
|
|
$self->xy_to_n($x2,$y1), |
|
179
|
|
|
|
|
|
|
$self->xy_to_n($x2,$y2))); |
|
180
|
|
|
|
|
|
|
} |
|
181
|
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
sub _rect_square_range { |
|
183
|
1400
|
|
|
1400
|
|
2107
|
my ($x1,$y1, $x2,$y2) = @_; |
|
184
|
|
|
|
|
|
|
### _rect_square_range(): "$x1,$y1 $x2,$y2" |
|
185
|
|
|
|
|
|
|
|
|
186
|
1400
|
|
|
|
|
2143
|
$x1 = round_nearest ($x1); |
|
187
|
1400
|
|
|
|
|
2200
|
$y1 = round_nearest ($y1); |
|
188
|
1400
|
|
|
|
|
2091
|
$x2 = round_nearest ($x2); |
|
189
|
1400
|
|
|
|
|
1994
|
$y2 = round_nearest ($y2); |
|
190
|
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
# if x1,x2 opposite signs then origin x=0 covered, similarly y |
|
192
|
1400
|
|
|
|
|
2033
|
my $x_zero_uncovered = ($x1<0) == ($x2<0); |
|
193
|
1400
|
|
|
|
|
1669
|
my $y_zero_uncovered = ($y1<0) == ($y2<0); |
|
194
|
|
|
|
|
|
|
|
|
195
|
1400
|
|
|
|
|
2146
|
foreach ($x1,$y1, $x2,$y2) { |
|
196
|
5600
|
|
|
|
|
6750
|
$_ = abs($_); |
|
197
|
|
|
|
|
|
|
} |
|
198
|
|
|
|
|
|
|
### abs rect: "x=$x1 to $x2, y=$y1 to $y2" |
|
199
|
|
|
|
|
|
|
|
|
200
|
1400
|
50
|
|
|
|
2072
|
if ($x2 < $x1) { ($x1,$x2) = ($x2,$x1) } # swap to x1
|
|
|
0
|
|
|
|
|
0
|
|
|
201
|
1400
|
50
|
|
|
|
2072
|
if ($y2 < $y1) { ($y1,$y2) = ($y2,$y1) } # swap to y1
|
|
|
0
|
|
|
|
|
0
|
|
|
202
|
|
|
|
|
|
|
|
|
203
|
1400
|
50
|
|
|
|
1889
|
my $dlo = ($x_zero_uncovered ? $x1 : 0); |
|
204
|
1400
|
50
|
66
|
|
|
2935
|
if ($y_zero_uncovered && $dlo < $y1) { $dlo = $y1 } |
|
|
0
|
|
|
|
|
0
|
|
|
205
|
|
|
|
|
|
|
|
|
206
|
1400
|
100
|
|
|
|
2911
|
return ($dlo, |
|
207
|
|
|
|
|
|
|
($x2 > $y2 ? $x2 : $y2)); |
|
208
|
|
|
|
|
|
|
} |
|
209
|
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
1; |
|
211
|
|
|
|
|
|
|
__END__ |