line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# math-image --path=PythagoreanTree --all --scale=3 |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
# http://sunilchebolu.wordpress.com/pythagorean-triples-and-the-integer-points-on-a-hyperboloid/ |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
# http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/pythagtriple.pdf |
24
|
|
|
|
|
|
|
# |
25
|
|
|
|
|
|
|
# http://www.math.ou.edu/~dmccullough/teaching/pythagoras1.pdf |
26
|
|
|
|
|
|
|
# http://www.math.ou.edu/~dmccullough/teaching/pythagoras2.pdf |
27
|
|
|
|
|
|
|
# |
28
|
|
|
|
|
|
|
# http://www.microscitech.com/pythag_eigenvectors_invariants.pdf |
29
|
|
|
|
|
|
|
# |
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
package Math::PlanePath::PythagoreanTree; |
33
|
2
|
|
|
2
|
|
3823
|
use 5.004; |
|
2
|
|
|
|
|
8
|
|
34
|
2
|
|
|
2
|
|
12
|
use strict; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
47
|
|
35
|
2
|
|
|
2
|
|
12
|
use Carp 'croak'; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
96
|
|
36
|
|
|
|
|
|
|
|
37
|
2
|
|
|
2
|
|
12
|
use vars '$VERSION', '@ISA'; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
127
|
|
38
|
|
|
|
|
|
|
$VERSION = 128; |
39
|
2
|
|
|
2
|
|
1489
|
use Math::PlanePath; |
|
2
|
|
|
|
|
6
|
|
|
2
|
|
|
|
|
152
|
|
40
|
|
|
|
|
|
|
*_divrem = \&Math::PlanePath::_divrem; |
41
|
|
|
|
|
|
|
*_sqrtint = \&Math::PlanePath::_sqrtint; |
42
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
#use List::Util 'min','max'; |
45
|
|
|
|
|
|
|
*min = \&Math::PlanePath::_min; |
46
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
47
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
49
|
2
|
|
|
|
|
94
|
'is_infinite', |
50
|
2
|
|
|
2
|
|
14
|
'round_nearest'; |
|
2
|
|
|
|
|
4
|
|
51
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
52
|
2
|
|
|
|
|
108
|
'round_down_pow', |
53
|
|
|
|
|
|
|
'digit_split_lowtohigh', |
54
|
2
|
|
|
2
|
|
626
|
'digit_join_lowtohigh'; |
|
2
|
|
|
|
|
5
|
|
55
|
2
|
|
|
2
|
|
1206
|
use Math::PlanePath::GrayCode; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
71
|
|
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
58
|
|
|
|
|
|
|
# use Smart::Comments; |
59
|
|
|
|
|
|
|
|
60
|
2
|
|
|
2
|
|
13
|
use constant class_x_negative => 0; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
100
|
|
61
|
2
|
|
|
2
|
|
13
|
use constant class_y_negative => 0; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
83
|
|
62
|
2
|
|
|
2
|
|
11
|
use constant tree_num_children_list => (3); # complete ternary tree |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
90
|
|
63
|
2
|
|
|
2
|
|
10
|
use constant tree_n_to_subheight => undef; # complete tree, all infinity |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
179
|
|
64
|
|
|
|
|
|
|
|
65
|
2
|
|
|
|
|
930
|
use constant parameter_info_array => |
66
|
|
|
|
|
|
|
[ { name => 'tree_type', |
67
|
|
|
|
|
|
|
share_key => 'tree_type_uadfb', |
68
|
|
|
|
|
|
|
display => 'Tree Type', |
69
|
|
|
|
|
|
|
type => 'enum', |
70
|
|
|
|
|
|
|
default => 'UAD', |
71
|
|
|
|
|
|
|
choices => ['UAD','UArD','FB','UMT'], |
72
|
|
|
|
|
|
|
}, |
73
|
|
|
|
|
|
|
{ name => 'coordinates', |
74
|
|
|
|
|
|
|
share_key => 'coordinates_abcpqsm', |
75
|
|
|
|
|
|
|
display => 'Coordinates', |
76
|
|
|
|
|
|
|
type => 'enum', |
77
|
|
|
|
|
|
|
default => 'AB', |
78
|
|
|
|
|
|
|
choices => ['AB','AC','BC','PQ', 'SM','SC','MC', |
79
|
|
|
|
|
|
|
# 'BA' |
80
|
|
|
|
|
|
|
# 'UV', # q from x=y diagonal down at 45-deg |
81
|
|
|
|
|
|
|
# 'RS','ST', # experimental |
82
|
|
|
|
|
|
|
], |
83
|
|
|
|
|
|
|
}, |
84
|
|
|
|
|
|
|
{ name => 'digit_order', |
85
|
|
|
|
|
|
|
display => 'Digit Order', |
86
|
|
|
|
|
|
|
type => 'enum', |
87
|
|
|
|
|
|
|
default => 'HtoL', |
88
|
|
|
|
|
|
|
choices => ['HtoL','LtoH'], |
89
|
|
|
|
|
|
|
}, |
90
|
2
|
|
|
2
|
|
12
|
]; |
|
2
|
|
|
|
|
4
|
|
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
{ |
93
|
|
|
|
|
|
|
my %UAD_coordinates_always_right = (PQ => 1, |
94
|
|
|
|
|
|
|
AB => 1, |
95
|
|
|
|
|
|
|
AC => 1); |
96
|
|
|
|
|
|
|
sub turn_any_left { |
97
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
98
|
|
|
|
|
|
|
return ! ($self->{'tree_type'} eq 'UAD' |
99
|
0
|
|
0
|
|
|
0
|
&& $UAD_coordinates_always_right{$self->{'coordinates'}}); |
100
|
|
|
|
|
|
|
} |
101
|
|
|
|
|
|
|
} |
102
|
|
|
|
|
|
|
{ |
103
|
|
|
|
|
|
|
my %UAD_coordinates_always_left = (BC => 1); |
104
|
|
|
|
|
|
|
sub turn_any_right { |
105
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
106
|
|
|
|
|
|
|
return ! ($self->{'tree_type'} eq 'UAD' |
107
|
0
|
|
0
|
|
|
0
|
&& $UAD_coordinates_always_left{$self->{'coordinates'}}); |
108
|
|
|
|
|
|
|
} |
109
|
|
|
|
|
|
|
} |
110
|
|
|
|
|
|
|
{ |
111
|
|
|
|
|
|
|
my %UMT_coordinates_any_straight = (BC => 1, # UMT at N=5 |
112
|
|
|
|
|
|
|
PQ => 1); # UMT at N=5 |
113
|
|
|
|
|
|
|
sub turn_any_straight { |
114
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
115
|
|
|
|
|
|
|
return ($self->{'tree_type'} eq 'UMT' |
116
|
0
|
|
0
|
|
|
0
|
&& $UMT_coordinates_any_straight{$self->{'coordinates'}}); |
117
|
|
|
|
|
|
|
} |
118
|
|
|
|
|
|
|
} |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
122
|
|
|
|
|
|
|
{ |
123
|
|
|
|
|
|
|
my %coordinate_minimum = (A => 3, |
124
|
|
|
|
|
|
|
B => 4, |
125
|
|
|
|
|
|
|
C => 5, |
126
|
|
|
|
|
|
|
P => 2, |
127
|
|
|
|
|
|
|
Q => 1, |
128
|
|
|
|
|
|
|
S => 3, |
129
|
|
|
|
|
|
|
M => 4, |
130
|
|
|
|
|
|
|
); |
131
|
|
|
|
|
|
|
sub x_minimum { |
132
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
133
|
0
|
|
|
|
|
0
|
return $coordinate_minimum{substr($self->{'coordinates'},0,1)}; |
134
|
|
|
|
|
|
|
} |
135
|
|
|
|
|
|
|
sub y_minimum { |
136
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
137
|
0
|
|
|
|
|
0
|
return $coordinate_minimum{substr($self->{'coordinates'},1)}; |
138
|
|
|
|
|
|
|
} |
139
|
|
|
|
|
|
|
} |
140
|
|
|
|
|
|
|
{ |
141
|
|
|
|
|
|
|
my %diffxy_minimum = (PQ => 1, # octant X>=Y+1 so X-Y>=1 |
142
|
|
|
|
|
|
|
); |
143
|
|
|
|
|
|
|
sub diffxy_minimum { |
144
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
145
|
0
|
|
|
|
|
0
|
return $diffxy_minimum{$self->{'coordinates'}}; |
146
|
|
|
|
|
|
|
} |
147
|
|
|
|
|
|
|
} |
148
|
|
|
|
|
|
|
{ |
149
|
|
|
|
|
|
|
my %diffxy_maximum = (AC => -2, # C>=A+2 so X-Y<=-2 |
150
|
|
|
|
|
|
|
BC => -1, # C>=B+1 so X-Y<=-1 |
151
|
|
|
|
|
|
|
SM => -1, # S
|
152
|
|
|
|
|
|
|
SC => -2, # S
|
153
|
|
|
|
|
|
|
MC => -1, # M
|
154
|
|
|
|
|
|
|
); |
155
|
|
|
|
|
|
|
sub diffxy_maximum { |
156
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
157
|
0
|
|
|
|
|
0
|
return $diffxy_maximum{$self->{'coordinates'}}; |
158
|
|
|
|
|
|
|
} |
159
|
|
|
|
|
|
|
} |
160
|
|
|
|
|
|
|
{ |
161
|
|
|
|
|
|
|
my %absdiffxy_minimum = (PQ => 1, |
162
|
|
|
|
|
|
|
AB => 1, # X=Y never occurs |
163
|
|
|
|
|
|
|
BA => 1, # X=Y never occurs |
164
|
|
|
|
|
|
|
AC => 2, # C>=A+2 so abs(X-Y)>=2 |
165
|
|
|
|
|
|
|
BC => 1, |
166
|
|
|
|
|
|
|
SM => 1, # X=Y never occurs |
167
|
|
|
|
|
|
|
SC => 2, # X<=Y-2 |
168
|
|
|
|
|
|
|
MC => 1, # X=Y never occurs |
169
|
|
|
|
|
|
|
); |
170
|
|
|
|
|
|
|
sub absdiffxy_minimum { |
171
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
172
|
0
|
|
|
|
|
0
|
return $absdiffxy_minimum{$self->{'coordinates'}}; |
173
|
|
|
|
|
|
|
} |
174
|
|
|
|
|
|
|
} |
175
|
2
|
|
|
2
|
|
16
|
use constant gcdxy_maximum => 1; # no common factor |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
4621
|
|
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
{ |
178
|
|
|
|
|
|
|
my %absdx_minimum = ('AB,UAD' => 2, |
179
|
|
|
|
|
|
|
'AB,FB' => 2, |
180
|
|
|
|
|
|
|
'AB,UMT' => 2, |
181
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
'AC,UAD' => 2, |
183
|
|
|
|
|
|
|
'AC,FB' => 2, |
184
|
|
|
|
|
|
|
'AC,UMT' => 2, |
185
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
'BC,UAD' => 4, # at N=37 |
187
|
|
|
|
|
|
|
'BC,FB' => 4, # at N=2 X=12,Y=13 |
188
|
|
|
|
|
|
|
'BC,UMT' => 4, # at N=2 X=12,Y=13 |
189
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
'PQ,UAD' => 0, |
191
|
|
|
|
|
|
|
'PQ,FB' => 0, |
192
|
|
|
|
|
|
|
'PQ,UMT' => 0, |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
'SM,UAD' => 1, |
195
|
|
|
|
|
|
|
'SM,FB' => 1, |
196
|
|
|
|
|
|
|
'SM,UMT' => 2, |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
'SC,UAD' => 1, |
199
|
|
|
|
|
|
|
'SC,FB' => 1, |
200
|
|
|
|
|
|
|
'SC,UMT' => 1, |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
'MC,UAD' => 3, |
203
|
|
|
|
|
|
|
'MC,FB' => 3, |
204
|
|
|
|
|
|
|
'MC,UMT' => 1, |
205
|
|
|
|
|
|
|
); |
206
|
|
|
|
|
|
|
sub absdx_minimum { |
207
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
208
|
0
|
|
0
|
|
|
0
|
return $absdx_minimum{"$self->{'coordinates'},$self->{'tree_type'}"} || 0; |
209
|
|
|
|
|
|
|
} |
210
|
|
|
|
|
|
|
} |
211
|
|
|
|
|
|
|
{ |
212
|
|
|
|
|
|
|
my %absdy_minimum = ('AB,UAD' => 4, |
213
|
|
|
|
|
|
|
'AB,FB' => 4, |
214
|
|
|
|
|
|
|
'AB,UMT' => 4, |
215
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
'AC,UAD' => 4, |
217
|
|
|
|
|
|
|
'AC,FB' => 4, |
218
|
|
|
|
|
|
|
'BC,UAD' => 4, |
219
|
|
|
|
|
|
|
'BC,FB' => 4, |
220
|
|
|
|
|
|
|
'PQ,UAD' => 0, |
221
|
|
|
|
|
|
|
'PQ,FB' => 1, |
222
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
'SM,UAD' => 3, |
224
|
|
|
|
|
|
|
'SM,FB' => 3, |
225
|
|
|
|
|
|
|
'SM,UMT' => 1, |
226
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
'SC,UAD' => 4, |
228
|
|
|
|
|
|
|
'SC,FB' => 4, |
229
|
|
|
|
|
|
|
'MC,UAD' => 4, |
230
|
|
|
|
|
|
|
'MC,FB' => 4, |
231
|
|
|
|
|
|
|
); |
232
|
|
|
|
|
|
|
sub absdy_minimum { |
233
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
234
|
0
|
|
0
|
|
|
0
|
return $absdy_minimum{"$self->{'coordinates'},$self->{'tree_type'}"} || 0; |
235
|
|
|
|
|
|
|
} |
236
|
|
|
|
|
|
|
} |
237
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
{ |
239
|
|
|
|
|
|
|
my %dir_minimum_dxdy = (# AB apparent minimum dX=16,dY=8 |
240
|
|
|
|
|
|
|
'AB,UAD' => [16,8], |
241
|
|
|
|
|
|
|
'AC,UAD' => [1,1], # it seems |
242
|
|
|
|
|
|
|
# 'BC,UAD' => [1,0], # infimum |
243
|
|
|
|
|
|
|
# 'SM,UAD' => [1,0], # infimum |
244
|
|
|
|
|
|
|
# 'SC,UAD' => [1,0], # N=255 dX=7,dY=0 |
245
|
|
|
|
|
|
|
# 'MC,UAD' => [1,0], # infimum |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
# 'SM,FB' => [1,0], # infimum |
248
|
|
|
|
|
|
|
# 'SC,FB' => [1,0], # infimum |
249
|
|
|
|
|
|
|
# 'SM,FB' => [1,0], # infimum |
250
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
'AB,UMT' => [6,12], # it seems |
252
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
# N=ternary 1111111122 dx=118,dy=40 |
254
|
|
|
|
|
|
|
# in general dx=3*4k-2 dy=4k |
255
|
|
|
|
|
|
|
'AC,UMT' => [3,1], # infimum |
256
|
|
|
|
|
|
|
# |
257
|
|
|
|
|
|
|
# 'BC,UMT' => [1,0], # N=31 dX=72,dY=0 |
258
|
|
|
|
|
|
|
'PQ,UMT' => [1,1], # N=1 |
259
|
|
|
|
|
|
|
'SM,UMT' => [1,0], # infiumum dX=big,dY=3 |
260
|
|
|
|
|
|
|
'SC,UMT' => [3,1], # like AC |
261
|
|
|
|
|
|
|
# 'MC,UMT' => [1,0], # at N=31 |
262
|
|
|
|
|
|
|
); |
263
|
|
|
|
|
|
|
sub dir_minimum_dxdy { |
264
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
265
|
0
|
0
|
|
|
|
0
|
return @{$dir_minimum_dxdy{"$self->{'coordinates'},$self->{'tree_type'}"} |
|
0
|
|
|
|
|
0
|
|
266
|
|
|
|
|
|
|
|| [1,0] }; |
267
|
|
|
|
|
|
|
} |
268
|
|
|
|
|
|
|
} |
269
|
|
|
|
|
|
|
{ |
270
|
|
|
|
|
|
|
# AB apparent maximum dX=-6,dY=-12 at N=3 |
271
|
|
|
|
|
|
|
# AC apparent maximum dX=-6,dY=-12 at N=3 same |
272
|
|
|
|
|
|
|
# PQ apparent maximum dX=-1,dY=-1 |
273
|
|
|
|
|
|
|
my %dir_maximum_dxdy = ('AB,UAD' => [-6,-12], |
274
|
|
|
|
|
|
|
'AC,UAD' => [-6,-12], |
275
|
|
|
|
|
|
|
# 'BC,UAD' => [0,0], |
276
|
|
|
|
|
|
|
'PQ,UAD' => [-1,-1], |
277
|
|
|
|
|
|
|
# 'SM,UAD' => [0,0], # supremum |
278
|
|
|
|
|
|
|
# 'SC,UAD' => [0,0], # supremum |
279
|
|
|
|
|
|
|
# 'MC,UAD' => [0,0], # supremum |
280
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
# 'AB,FB' => [0,0], |
282
|
|
|
|
|
|
|
# 'AC,FB' => [0,0], |
283
|
|
|
|
|
|
|
'BC,FB' => [1,-1], |
284
|
|
|
|
|
|
|
# 'PQ,FB' => [0,0], |
285
|
|
|
|
|
|
|
# 'SM,FB' => [0,0], # supremum |
286
|
|
|
|
|
|
|
# 'SC,FB' => [0,0], # supremum |
287
|
|
|
|
|
|
|
# 'MC,FB' => [0,0], # supremum |
288
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
# N=ternary 1111111122 dx=118,dy=-40 |
290
|
|
|
|
|
|
|
# in general dx=3*4k-2 dy=-4k |
291
|
|
|
|
|
|
|
'AB,UMT' => [3,-1], # supremum |
292
|
|
|
|
|
|
|
# |
293
|
|
|
|
|
|
|
'AC,UMT' => [-10,-20], # at N=9 apparent maximum |
294
|
|
|
|
|
|
|
# 'BC,UMT' => [0,0], # apparent approach |
295
|
|
|
|
|
|
|
'PQ,UMT' => [1,-1], # N=2 |
296
|
|
|
|
|
|
|
# 'SM,UMT' => [0,0], # supremum dX=big,dY=-1 |
297
|
|
|
|
|
|
|
'SC,UMT' => [-3,-5], # apparent approach |
298
|
|
|
|
|
|
|
# 'MC,UMT' => [0,0], # supremum dX=big,dY=-small |
299
|
|
|
|
|
|
|
); |
300
|
|
|
|
|
|
|
sub dir_maximum_dxdy { |
301
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
302
|
0
|
0
|
|
|
|
0
|
return @{$dir_maximum_dxdy{"$self->{'coordinates'},$self->{'tree_type'}"} |
|
0
|
|
|
|
|
0
|
|
303
|
|
|
|
|
|
|
|| [0,0]}; |
304
|
|
|
|
|
|
|
} |
305
|
|
|
|
|
|
|
} |
306
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
308
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
sub _noop { |
310
|
1340
|
|
|
1340
|
|
3396
|
return @_; |
311
|
|
|
|
|
|
|
} |
312
|
|
|
|
|
|
|
my %xy_to_pq = (AB => \&_ab_to_pq, |
313
|
|
|
|
|
|
|
AC => \&_ac_to_pq, |
314
|
|
|
|
|
|
|
BC => \&_bc_to_pqa, # ignoring extra $a return |
315
|
|
|
|
|
|
|
PQ => \&_noop, |
316
|
|
|
|
|
|
|
SM => \&_sm_to_pq, |
317
|
|
|
|
|
|
|
SC => \&_sc_to_pq, |
318
|
|
|
|
|
|
|
MC => \&_mc_to_pq, |
319
|
|
|
|
|
|
|
UV => \&_uv_to_pq, |
320
|
|
|
|
|
|
|
RS => \&_rs_to_pq, |
321
|
|
|
|
|
|
|
ST => \&_st_to_pq, |
322
|
|
|
|
|
|
|
); |
323
|
|
|
|
|
|
|
my %pq_to_xy = (AB => \&_pq_to_ab, |
324
|
|
|
|
|
|
|
AC => \&_pq_to_ac, |
325
|
|
|
|
|
|
|
BC => \&_pq_to_bc, |
326
|
|
|
|
|
|
|
PQ => \&_noop, |
327
|
|
|
|
|
|
|
SM => \&_pq_to_sm, |
328
|
|
|
|
|
|
|
SC => \&_pq_to_sc, |
329
|
|
|
|
|
|
|
MC => \&_pq_to_mc, |
330
|
|
|
|
|
|
|
UV => \&_pq_to_uv, |
331
|
|
|
|
|
|
|
RS => \&_pq_to_rs, |
332
|
|
|
|
|
|
|
ST => \&_pq_to_st, |
333
|
|
|
|
|
|
|
); |
334
|
|
|
|
|
|
|
|
335
|
|
|
|
|
|
|
my %tree_types = (UAD => 1, |
336
|
|
|
|
|
|
|
UArD => 1, |
337
|
|
|
|
|
|
|
FB => 1, |
338
|
|
|
|
|
|
|
UMT => 1); |
339
|
|
|
|
|
|
|
my %digit_orders = (HtoL => 1, |
340
|
|
|
|
|
|
|
LtoH => 1); |
341
|
|
|
|
|
|
|
sub new { |
342
|
21
|
|
|
21
|
1
|
2989
|
my $self = shift->SUPER::new (@_); |
343
|
|
|
|
|
|
|
{ |
344
|
21
|
|
50
|
|
|
170
|
my $digit_order = ($self->{'digit_order'} ||= 'HtoL'); |
345
|
21
|
50
|
|
|
|
71
|
$digit_orders{$digit_order} |
346
|
|
|
|
|
|
|
|| croak "Unrecognised digit_order option: ",$digit_order; |
347
|
|
|
|
|
|
|
} |
348
|
|
|
|
|
|
|
{ |
349
|
21
|
|
100
|
|
|
41
|
my $tree_type = ($self->{'tree_type'} ||= 'UAD'); |
|
21
|
|
|
|
|
71
|
|
350
|
21
|
50
|
|
|
|
61
|
$tree_types{$tree_type} |
351
|
|
|
|
|
|
|
|| croak "Unrecognised tree_type option: ",$tree_type; |
352
|
|
|
|
|
|
|
} |
353
|
|
|
|
|
|
|
{ |
354
|
21
|
|
100
|
|
|
34
|
my $coordinates = ($self->{'coordinates'} ||= 'AB'); |
|
21
|
|
|
|
|
34
|
|
|
21
|
|
|
|
|
69
|
|
355
|
21
|
|
33
|
|
|
66
|
$self->{'xy_to_pq'} = $xy_to_pq{$coordinates} |
356
|
|
|
|
|
|
|
|| croak "Unrecognised coordinates option: ",$coordinates; |
357
|
21
|
|
|
|
|
48
|
$self->{'pq_to_xy'} = $pq_to_xy{$coordinates}; |
358
|
|
|
|
|
|
|
} |
359
|
21
|
|
|
|
|
48
|
return $self; |
360
|
|
|
|
|
|
|
} |
361
|
|
|
|
|
|
|
|
362
|
|
|
|
|
|
|
sub n_to_xy { |
363
|
56
|
|
|
56
|
1
|
5721
|
my ($self, $n) = @_; |
364
|
|
|
|
|
|
|
### PythagoreanTree n_to_xy(): $n |
365
|
|
|
|
|
|
|
|
366
|
56
|
50
|
|
|
|
131
|
if ($n < 1) { return; } |
|
0
|
|
|
|
|
0
|
|
367
|
56
|
50
|
|
|
|
150
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
368
|
|
|
|
|
|
|
|
369
|
|
|
|
|
|
|
{ |
370
|
56
|
|
|
|
|
101
|
my $int = int($n); |
|
56
|
|
|
|
|
105
|
|
371
|
56
|
50
|
|
|
|
107
|
if ($n != $int) { |
372
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat/BigRat |
373
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
374
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
375
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
376
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
377
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
378
|
|
|
|
|
|
|
} |
379
|
|
|
|
|
|
|
} |
380
|
|
|
|
|
|
|
|
381
|
56
|
|
|
|
|
106
|
return &{$self->{'pq_to_xy'}}(_n_to_pq($self,$n)); |
|
56
|
|
|
|
|
119
|
|
382
|
|
|
|
|
|
|
} |
383
|
|
|
|
|
|
|
|
384
|
|
|
|
|
|
|
# maybe similar n_to_rsquared() as C^2=(P^2+Q^2)^2 |
385
|
|
|
|
|
|
|
sub n_to_radius { |
386
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
387
|
|
|
|
|
|
|
|
388
|
0
|
0
|
0
|
|
|
0
|
if (($self->{'coordinates'} eq 'AB' |
|
|
|
0
|
|
|
|
|
389
|
|
|
|
|
|
|
|| $self->{'coordinates'} eq 'BA' |
390
|
|
|
|
|
|
|
|| $self->{'coordinates'} eq 'SM') |
391
|
|
|
|
|
|
|
&& $n == int($n)) { |
392
|
0
|
0
|
|
|
|
0
|
if ($n < 1) { return undef; } |
|
0
|
|
|
|
|
0
|
|
393
|
0
|
0
|
|
|
|
0
|
if (is_infinite($n)) { return $n; } |
|
0
|
|
|
|
|
0
|
|
394
|
0
|
|
|
|
|
0
|
my ($p,$q) = _n_to_pq($self,$n); |
395
|
0
|
|
|
|
|
0
|
return $p*$p + $q*$q; # C=P^2+Q^2 |
396
|
|
|
|
|
|
|
} |
397
|
|
|
|
|
|
|
|
398
|
0
|
|
|
|
|
0
|
return $self->SUPER::n_to_radius($n); |
399
|
|
|
|
|
|
|
} |
400
|
|
|
|
|
|
|
|
401
|
|
|
|
|
|
|
sub _n_to_pq { |
402
|
56
|
|
|
56
|
|
95
|
my ($self, $n) = @_; |
403
|
|
|
|
|
|
|
|
404
|
56
|
|
|
|
|
113
|
my $ndigits = _n_to_digits_lowtohigh($n); |
405
|
|
|
|
|
|
|
### $ndigits |
406
|
|
|
|
|
|
|
|
407
|
56
|
50
|
|
|
|
145
|
if ($self->{'tree_type'} eq 'UArD') { |
408
|
0
|
|
|
|
|
0
|
Math::PlanePath::GrayCode::_digits_to_gray_reflected($ndigits,3); |
409
|
|
|
|
|
|
|
### gray: $ndigits |
410
|
|
|
|
|
|
|
} |
411
|
56
|
50
|
|
|
|
122
|
if ($self->{'digit_order'} eq 'HtoL') { |
412
|
56
|
|
|
|
|
109
|
@$ndigits = reverse @$ndigits; |
413
|
|
|
|
|
|
|
### reverse: $ndigits |
414
|
|
|
|
|
|
|
} |
415
|
|
|
|
|
|
|
|
416
|
56
|
|
|
|
|
82
|
my $zero = $n * 0; |
417
|
|
|
|
|
|
|
|
418
|
56
|
|
|
|
|
86
|
my $p = 2 + $zero; |
419
|
56
|
|
|
|
|
74
|
my $q = 1 + $zero; |
420
|
|
|
|
|
|
|
|
421
|
56
|
100
|
|
|
|
119
|
if ($self->{'tree_type'} eq 'FB') { |
|
|
50
|
|
|
|
|
|
422
|
|
|
|
|
|
|
### FB ... |
423
|
|
|
|
|
|
|
|
424
|
26
|
|
|
|
|
51
|
foreach my $digit (@$ndigits) { # high to low, possibly $digit=undef |
425
|
|
|
|
|
|
|
### $p |
426
|
|
|
|
|
|
|
### $q |
427
|
|
|
|
|
|
|
### $digit |
428
|
|
|
|
|
|
|
|
429
|
42
|
100
|
|
|
|
61
|
if ($digit) { |
430
|
28
|
100
|
|
|
|
63
|
if ($digit == 1) { |
431
|
14
|
|
|
|
|
19
|
$q = $p-$q; # (2p, p-q) M2 |
432
|
14
|
|
|
|
|
23
|
$p *= 2; |
433
|
|
|
|
|
|
|
} else { |
434
|
|
|
|
|
|
|
# ($p,$q) = (2*$p, $p+$q); |
435
|
14
|
|
|
|
|
21
|
$q += $p; # (p+q, 2q) M3 |
436
|
14
|
|
|
|
|
25
|
$p *= 2; |
437
|
|
|
|
|
|
|
} |
438
|
|
|
|
|
|
|
} else { # $digit == 0 |
439
|
|
|
|
|
|
|
# ($p,$q) = ($p+$q, 2*$q); |
440
|
14
|
|
|
|
|
19
|
$p += $q; # (p+q, 2q) M1 |
441
|
14
|
|
|
|
|
24
|
$q *= 2; |
442
|
|
|
|
|
|
|
} |
443
|
|
|
|
|
|
|
} |
444
|
|
|
|
|
|
|
} elsif ($self->{'tree_type'} eq 'UMT') { |
445
|
|
|
|
|
|
|
### UMT ... |
446
|
|
|
|
|
|
|
|
447
|
0
|
|
|
|
|
0
|
foreach my $digit (@$ndigits) { # high to low, possibly $digit=undef |
448
|
|
|
|
|
|
|
### $p |
449
|
|
|
|
|
|
|
### $q |
450
|
|
|
|
|
|
|
### $digit |
451
|
|
|
|
|
|
|
|
452
|
0
|
0
|
|
|
|
0
|
if ($digit) { |
453
|
0
|
0
|
|
|
|
0
|
if ($digit == 1) { |
454
|
0
|
|
|
|
|
0
|
$q = $p-$q; # (2p, p-q) M2 |
455
|
0
|
|
|
|
|
0
|
$p *= 2; |
456
|
|
|
|
|
|
|
} else { # $digit == 2 |
457
|
0
|
|
|
|
|
0
|
$p += 3*$q; # T |
458
|
0
|
|
|
|
|
0
|
$q *= 2; |
459
|
|
|
|
|
|
|
} |
460
|
|
|
|
|
|
|
} else { # $digit == 0 |
461
|
|
|
|
|
|
|
# ($p,$q) = ($p+$q, 2*$q); |
462
|
0
|
|
|
|
|
0
|
($p,$q) = (2*$p-$q, $p); # "U" = (2p-q, p) |
463
|
|
|
|
|
|
|
} |
464
|
|
|
|
|
|
|
} |
465
|
|
|
|
|
|
|
} else { |
466
|
|
|
|
|
|
|
### UAD or UArD ... |
467
|
|
|
|
|
|
|
### assert: $self->{'tree_type'} eq 'UAD' || $self->{'tree_type'} eq 'UArD' |
468
|
|
|
|
|
|
|
|
469
|
|
|
|
|
|
|
# # Could optimize high zeros as repeated U |
470
|
|
|
|
|
|
|
# # high zeros as repeated U: $depth-scalar(@$ndigits) |
471
|
|
|
|
|
|
|
# # U^0 = p, q |
472
|
|
|
|
|
|
|
# # U^1 = 2p-q, p eg. P=2,Q=1 is 2*2-1,2 = 3,2 |
473
|
|
|
|
|
|
|
# # U^2 = 3p-2q, 2p-q eg. P=2,Q=1 is 3*2-2*1,2*2-1 = 4,3 |
474
|
|
|
|
|
|
|
# # U^3 = 4p-3q, 3p-2q |
475
|
|
|
|
|
|
|
# # U^k = (k+1)p-kq, kp-(k-1)q for k>=2 |
476
|
|
|
|
|
|
|
# # = p + k*(p-q), k*(p-q)+q |
477
|
|
|
|
|
|
|
# # and with initial p=2,q=1 |
478
|
|
|
|
|
|
|
# # U^k = 2+k, 1+k |
479
|
|
|
|
|
|
|
# # |
480
|
|
|
|
|
|
|
# $q = $depth - $#ndigits + $zero; # count high zeros + 1 |
481
|
|
|
|
|
|
|
# $p = $q + 1 + $zero; |
482
|
|
|
|
|
|
|
|
483
|
30
|
|
|
|
|
53
|
foreach my $digit (@$ndigits) { # high to low, possibly $digit=undef |
484
|
|
|
|
|
|
|
### $p |
485
|
|
|
|
|
|
|
### $q |
486
|
|
|
|
|
|
|
### $digit |
487
|
|
|
|
|
|
|
|
488
|
52
|
100
|
|
|
|
88
|
if ($digit) { |
489
|
34
|
100
|
|
|
|
55
|
if ($digit == 1) { |
490
|
18
|
|
|
|
|
47
|
($p,$q) = (2*$p+$q, $p); # "A" = (2p+q, p) |
491
|
|
|
|
|
|
|
} else { |
492
|
16
|
|
|
|
|
30
|
$p += 2*$q; # "D" = (p+2q, q) |
493
|
|
|
|
|
|
|
} |
494
|
|
|
|
|
|
|
} else { # $digit==0 |
495
|
18
|
|
|
|
|
38
|
($p,$q) = (2*$p-$q, $p); # "U" = (2p-q, p) |
496
|
|
|
|
|
|
|
} |
497
|
|
|
|
|
|
|
} |
498
|
|
|
|
|
|
|
|
499
|
|
|
|
|
|
|
} |
500
|
|
|
|
|
|
|
|
501
|
|
|
|
|
|
|
### final pq: "$p, $q" |
502
|
|
|
|
|
|
|
|
503
|
56
|
|
|
|
|
116
|
return ($p, $q); |
504
|
|
|
|
|
|
|
} |
505
|
|
|
|
|
|
|
|
506
|
|
|
|
|
|
|
# _n_to_digits_lowtohigh() returns an arrayref $ndigits which is a list of |
507
|
|
|
|
|
|
|
# ternary digits 0,1,2 from low to high which are the position of $n within |
508
|
|
|
|
|
|
|
# its row of the tree. |
509
|
|
|
|
|
|
|
# The length of the array is the depth. |
510
|
|
|
|
|
|
|
# |
511
|
|
|
|
|
|
|
# depth N N%3 2*N-1 (N-2)/3*2+1 |
512
|
|
|
|
|
|
|
# 0 1 1 1 1/3 |
513
|
|
|
|
|
|
|
# 1 2 2 3 1 |
514
|
|
|
|
|
|
|
# 2 5 2 9 3 |
515
|
|
|
|
|
|
|
# 3 14 2 27 9 |
516
|
|
|
|
|
|
|
# 4 41 2 81 27 28 + (28/2-1) = 41 |
517
|
|
|
|
|
|
|
# |
518
|
|
|
|
|
|
|
# (N-2)/3*2+1 rounded down to pow=3^k gives depth=k+1 and base=pow+(pow+1)/2 |
519
|
|
|
|
|
|
|
# is the start of the row base=1,2,5,14,41 etc. |
520
|
|
|
|
|
|
|
# |
521
|
|
|
|
|
|
|
# An easier calculation is 2*N-1 rounded down to pow=3^d gives depth=d and |
522
|
|
|
|
|
|
|
# base=2*pow-1, but 2*N-1 and 2*pow-1 might overflow an integer. Though |
523
|
|
|
|
|
|
|
# just yet round_down_pow() goes into floats and so doesn't preserve 64-bit |
524
|
|
|
|
|
|
|
# integer. So the technique here helps 53-bit float integers, but not right |
525
|
|
|
|
|
|
|
# up to 64-bits. |
526
|
|
|
|
|
|
|
# |
527
|
|
|
|
|
|
|
sub _n_to_digits_lowtohigh { |
528
|
76
|
|
|
76
|
|
1510
|
my ($n) = @_; |
529
|
|
|
|
|
|
|
### _n_to_digits_lowtohigh(): $n |
530
|
|
|
|
|
|
|
|
531
|
76
|
|
|
|
|
114
|
my @ndigits; |
532
|
76
|
100
|
|
|
|
164
|
if ($n >= 2) { |
533
|
69
|
|
|
|
|
195
|
my ($pow) = _divrem($n-2, 3); |
534
|
69
|
|
|
|
|
189
|
($pow, my $depth) = round_down_pow (2*$pow+1, 3); |
535
|
|
|
|
|
|
|
### $depth |
536
|
|
|
|
|
|
|
### base: $pow + ($pow+1)/2 |
537
|
|
|
|
|
|
|
### offset: $n - $pow - ($pow+1)/2 |
538
|
69
|
|
|
|
|
212
|
@ndigits = digit_split_lowtohigh ($n - $pow - ($pow+1)/2, 3); |
539
|
69
|
|
|
|
|
165
|
push @ndigits, (0) x ($depth - $#ndigits); # pad to $depth with 0s |
540
|
|
|
|
|
|
|
} |
541
|
|
|
|
|
|
|
### @ndigits |
542
|
76
|
|
|
|
|
153
|
return \@ndigits; |
543
|
|
|
|
|
|
|
|
544
|
|
|
|
|
|
|
|
545
|
|
|
|
|
|
|
# { |
546
|
|
|
|
|
|
|
# my ($pow, $depth) = round_down_pow (2*$n-1, 3); |
547
|
|
|
|
|
|
|
# |
548
|
|
|
|
|
|
|
# ### h: 2*$n-1 |
549
|
|
|
|
|
|
|
# ### $depth |
550
|
|
|
|
|
|
|
# ### $pow |
551
|
|
|
|
|
|
|
# ### base: ($pow + 1)/2 |
552
|
|
|
|
|
|
|
# ### rem n: $n - ($pow + 1)/2 |
553
|
|
|
|
|
|
|
# |
554
|
|
|
|
|
|
|
# my @ndigits = digit_split_lowtohigh ($n - ($pow+1)/2, 3); |
555
|
|
|
|
|
|
|
# $#ndigits = $depth-1; # pad to $depth with undefs |
556
|
|
|
|
|
|
|
# ### @ndigits |
557
|
|
|
|
|
|
|
# |
558
|
|
|
|
|
|
|
# return \@ndigits; |
559
|
|
|
|
|
|
|
# } |
560
|
|
|
|
|
|
|
} |
561
|
|
|
|
|
|
|
|
562
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
563
|
|
|
|
|
|
|
# xy_to_n() |
564
|
|
|
|
|
|
|
|
565
|
|
|
|
|
|
|
# Nrow(depth+1) - Nrow(depth) |
566
|
|
|
|
|
|
|
# = (3*pow+1)/2 - (pow+1)/2 |
567
|
|
|
|
|
|
|
# = (3*pow + 1 - pow - 1)/2 |
568
|
|
|
|
|
|
|
# = (2*pow)/2 |
569
|
|
|
|
|
|
|
# = pow |
570
|
|
|
|
|
|
|
# |
571
|
|
|
|
|
|
|
sub xy_to_n { |
572
|
5213
|
|
|
5213
|
1
|
29841
|
my ($self, $x, $y) = @_; |
573
|
5213
|
|
|
|
|
9484
|
$x = round_nearest ($x); |
574
|
5213
|
|
|
|
|
9295
|
$y = round_nearest ($y); |
575
|
|
|
|
|
|
|
### PythagoreanTree xy_to_n(): "$x, $y" |
576
|
|
|
|
|
|
|
|
577
|
5213
|
100
|
|
|
|
7471
|
my ($p,$q) = &{$self->{'xy_to_pq'}}($x,$y) |
|
5213
|
|
|
|
|
8408
|
|
578
|
|
|
|
|
|
|
or return undef; # not a primitive A,B,C |
579
|
|
|
|
|
|
|
|
580
|
1369
|
100
|
100
|
|
|
3866
|
unless ($p >= 2 && $q >= 1) { # must be P > Q >= 1 |
581
|
328
|
|
|
|
|
580
|
return undef; |
582
|
|
|
|
|
|
|
} |
583
|
1041
|
50
|
|
|
|
2026
|
if (is_infinite($p)) { |
584
|
0
|
|
|
|
|
0
|
return $p; # infinity |
585
|
|
|
|
|
|
|
} |
586
|
1041
|
50
|
|
|
|
2095
|
if (is_infinite($q)) { |
587
|
0
|
|
|
|
|
0
|
return $q; # infinity |
588
|
|
|
|
|
|
|
} |
589
|
1041
|
100
|
|
|
|
2235
|
if ($p%2 == $q%2) { # must be opposite parity, not same parity |
590
|
480
|
|
|
|
|
940
|
return undef; |
591
|
|
|
|
|
|
|
} |
592
|
|
|
|
|
|
|
|
593
|
561
|
|
|
|
|
775
|
my @ndigits; # low to high |
594
|
561
|
100
|
|
|
|
1155
|
if ($self->{'tree_type'} eq 'FB') { |
|
|
50
|
|
|
|
|
|
595
|
276
|
|
|
|
|
375
|
for (;;) { |
596
|
885
|
100
|
100
|
|
|
2235
|
unless ($p > $q && $q >= 1) { |
597
|
114
|
|
|
|
|
242
|
return undef; |
598
|
|
|
|
|
|
|
} |
599
|
771
|
100
|
100
|
|
|
1610
|
last if $q <= 1 && $p <= 2; |
600
|
|
|
|
|
|
|
|
601
|
609
|
100
|
|
|
|
951
|
if ($q % 2) { |
602
|
|
|
|
|
|
|
### q odd, p even, digit 1 or 2 ... |
603
|
323
|
|
|
|
|
443
|
$p /= 2; |
604
|
323
|
100
|
|
|
|
514
|
if ($q > $p) { |
605
|
|
|
|
|
|
|
### digit 2, M3 ... |
606
|
119
|
|
|
|
|
193
|
push @ndigits, 2; |
607
|
119
|
|
|
|
|
174
|
$q -= $p; # opp parity of p, and < new p |
608
|
|
|
|
|
|
|
} else { |
609
|
|
|
|
|
|
|
### digit 1, M2 ... |
610
|
204
|
|
|
|
|
315
|
push @ndigits, 1; |
611
|
204
|
|
|
|
|
291
|
$q = $p - $q; # opp parity of p, and < p |
612
|
|
|
|
|
|
|
} |
613
|
|
|
|
|
|
|
} else { |
614
|
|
|
|
|
|
|
### q even, p odd, digit 0, M1 ... |
615
|
286
|
|
|
|
|
431
|
push @ndigits, 0; |
616
|
286
|
|
|
|
|
426
|
$q /= 2; |
617
|
286
|
|
|
|
|
420
|
$p -= $q; # opp parity of q |
618
|
|
|
|
|
|
|
} |
619
|
|
|
|
|
|
|
### descend: "$q / $p" |
620
|
|
|
|
|
|
|
} |
621
|
|
|
|
|
|
|
|
622
|
|
|
|
|
|
|
} elsif ($self->{'tree_type'} eq 'UMT') { |
623
|
0
|
|
|
|
|
0
|
for (;;) { |
624
|
|
|
|
|
|
|
### at: "p=$p q=$q" |
625
|
0
|
|
|
|
|
0
|
my $qmod2 = $q % 2; |
626
|
0
|
0
|
0
|
|
|
0
|
unless ($p > $q && $q >= 1) { |
627
|
0
|
|
|
|
|
0
|
return undef; |
628
|
|
|
|
|
|
|
} |
629
|
0
|
0
|
0
|
|
|
0
|
last if $q <= 1 && $p <= 2; |
630
|
|
|
|
|
|
|
|
631
|
0
|
0
|
|
|
|
0
|
if ($p < 2*$q) { |
|
|
0
|
|
|
|
|
|
632
|
0
|
|
|
|
|
0
|
($p,$q) = ($q, 2*$q-$p); # U |
633
|
0
|
|
|
|
|
0
|
push @ndigits, 0; |
634
|
|
|
|
|
|
|
} elsif ($qmod2) { |
635
|
0
|
|
|
|
|
0
|
$p /= 2; # M2 |
636
|
0
|
|
|
|
|
0
|
$q = $p - $q; |
637
|
0
|
|
|
|
|
0
|
push @ndigits, 1; |
638
|
|
|
|
|
|
|
} else { |
639
|
0
|
|
|
|
|
0
|
$q /= 2; # T |
640
|
0
|
|
|
|
|
0
|
$p -= 3*$q; |
641
|
0
|
|
|
|
|
0
|
push @ndigits, 2; |
642
|
|
|
|
|
|
|
} |
643
|
|
|
|
|
|
|
} |
644
|
|
|
|
|
|
|
|
645
|
|
|
|
|
|
|
} else { |
646
|
|
|
|
|
|
|
### UAD or UArD ... |
647
|
|
|
|
|
|
|
### assert: $self->{'tree_type'} eq 'UAD' || $self->{'tree_type'} eq 'UArD' |
648
|
285
|
|
|
|
|
385
|
for (;;) { |
649
|
|
|
|
|
|
|
### $p |
650
|
|
|
|
|
|
|
### $q |
651
|
1065
|
100
|
66
|
|
|
3668
|
if ($q <= 0 || $p <= 0 || $p <= $q) { |
|
|
|
100
|
|
|
|
|
652
|
119
|
|
|
|
|
240
|
return undef; |
653
|
|
|
|
|
|
|
} |
654
|
946
|
100
|
100
|
|
|
1985
|
last if $q <= 1 && $p <= 2; |
655
|
|
|
|
|
|
|
|
656
|
780
|
100
|
|
|
|
1213
|
if ($p > 2*$q) { |
657
|
317
|
100
|
|
|
|
491
|
if ($p > 3*$q) { |
658
|
|
|
|
|
|
|
### digit 2 ... |
659
|
230
|
|
|
|
|
365
|
push @ndigits, 2; |
660
|
230
|
|
|
|
|
335
|
$p -= 2*$q; |
661
|
|
|
|
|
|
|
} else { |
662
|
|
|
|
|
|
|
### digit 1 |
663
|
87
|
|
|
|
|
142
|
push @ndigits, 1; |
664
|
87
|
|
|
|
|
180
|
($p,$q) = ($q, $p - 2*$q); |
665
|
|
|
|
|
|
|
} |
666
|
|
|
|
|
|
|
|
667
|
|
|
|
|
|
|
} else { |
668
|
|
|
|
|
|
|
### digit 0 ... |
669
|
463
|
|
|
|
|
763
|
push @ndigits, 0; |
670
|
463
|
|
|
|
|
802
|
($p,$q) = ($q, 2*$q-$p); |
671
|
|
|
|
|
|
|
} |
672
|
|
|
|
|
|
|
### descend: "$q / $p" |
673
|
|
|
|
|
|
|
} |
674
|
|
|
|
|
|
|
} |
675
|
|
|
|
|
|
|
### @ndigits |
676
|
|
|
|
|
|
|
|
677
|
328
|
50
|
|
|
|
640
|
if ($self->{'digit_order'} eq 'LtoH') { |
678
|
0
|
|
|
|
|
0
|
@ndigits = reverse @ndigits; |
679
|
|
|
|
|
|
|
### unreverse: @ndigits |
680
|
|
|
|
|
|
|
} |
681
|
328
|
50
|
|
|
|
575
|
if ($self->{'tree_type'} eq 'UArD') { |
682
|
0
|
|
|
|
|
0
|
Math::PlanePath::GrayCode::_digits_from_gray_reflected(\@ndigits,3); |
683
|
|
|
|
|
|
|
### ungray: @ndigits |
684
|
|
|
|
|
|
|
} |
685
|
|
|
|
|
|
|
|
686
|
328
|
|
|
|
|
524
|
my $zero = $x*0*$y; |
687
|
|
|
|
|
|
|
### offset: digit_join_lowtohigh(\@ndigits,3,$zero) |
688
|
|
|
|
|
|
|
### depth: scalar(@ndigits) |
689
|
|
|
|
|
|
|
### Nrow: $self->tree_depth_to_n($zero + scalar(@ndigits)) |
690
|
|
|
|
|
|
|
|
691
|
328
|
|
|
|
|
726
|
return ($self->tree_depth_to_n($zero + scalar(@ndigits)) |
692
|
|
|
|
|
|
|
+ digit_join_lowtohigh(\@ndigits,3,$zero)); # offset into row |
693
|
|
|
|
|
|
|
} |
694
|
|
|
|
|
|
|
|
695
|
|
|
|
|
|
|
# numprims(H) = how many with hypot < H |
696
|
|
|
|
|
|
|
# limit H->inf numprims(H) / H -> 1/2pi |
697
|
|
|
|
|
|
|
# |
698
|
|
|
|
|
|
|
# not exact |
699
|
|
|
|
|
|
|
sub rect_to_n_range { |
700
|
64
|
|
|
64
|
1
|
5950
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
701
|
|
|
|
|
|
|
### PythagoreanTree rect_to_n_range(): "$x1,$y1 $x2,$y2" |
702
|
|
|
|
|
|
|
|
703
|
64
|
|
|
|
|
172
|
$x1 = round_nearest ($x1); |
704
|
64
|
|
|
|
|
144
|
$y1 = round_nearest ($y1); |
705
|
64
|
|
|
|
|
128
|
$x2 = round_nearest ($x2); |
706
|
64
|
|
|
|
|
119
|
$y2 = round_nearest ($y2); |
707
|
|
|
|
|
|
|
|
708
|
64
|
|
|
|
|
120
|
my $zero = ($x1 * 0 * $y1 * $x2 * $y2); # inherit bignum |
709
|
|
|
|
|
|
|
|
710
|
64
|
50
|
|
|
|
126
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
711
|
64
|
50
|
|
|
|
140
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
712
|
|
|
|
|
|
|
### x2: "$x2" |
713
|
|
|
|
|
|
|
### y2: "$y2" |
714
|
|
|
|
|
|
|
|
715
|
64
|
50
|
|
|
|
173
|
if ($self->{'coordinates'} eq 'BA') { |
716
|
0
|
|
|
|
|
0
|
($x2,$y2) = ($y2,$x2); |
717
|
|
|
|
|
|
|
} |
718
|
64
|
50
|
|
|
|
130
|
if ($self->{'coordinates'} eq 'SM') { |
719
|
0
|
0
|
|
|
|
0
|
if ($x2 > $y2) { # both max |
720
|
0
|
|
|
|
|
0
|
$y2 = $x2; |
721
|
|
|
|
|
|
|
} else { |
722
|
0
|
|
|
|
|
0
|
$x2 = $y2; |
723
|
|
|
|
|
|
|
} |
724
|
|
|
|
|
|
|
} |
725
|
|
|
|
|
|
|
|
726
|
64
|
100
|
|
|
|
135
|
if ($self->{'coordinates'} eq 'PQ') { |
727
|
28
|
50
|
33
|
|
|
103
|
if ($x2 < 2 || $y2 < 1) { |
728
|
0
|
|
|
|
|
0
|
return (1,0); |
729
|
|
|
|
|
|
|
} |
730
|
|
|
|
|
|
|
# P > Q so reduce y2 to at most x2-1 |
731
|
28
|
50
|
|
|
|
56
|
if ($y2 >= $x2) { |
732
|
0
|
|
|
|
|
0
|
$y2 = $x2-1; # $y2 = min ($y2, $x2-1); |
733
|
|
|
|
|
|
|
} |
734
|
|
|
|
|
|
|
|
735
|
28
|
50
|
|
|
|
64
|
if ($y2 < $y1) { |
736
|
|
|
|
|
|
|
### PQ y range all above X=Y diagonal ... |
737
|
0
|
|
|
|
|
0
|
return (1,0); |
738
|
|
|
|
|
|
|
} |
739
|
|
|
|
|
|
|
} else { |
740
|
|
|
|
|
|
|
# AB,AC,BC, SM,SC,MC |
741
|
36
|
50
|
33
|
|
|
140
|
if ($x2 < 3 || $y2 < 0) { |
742
|
0
|
|
|
|
|
0
|
return (1,0); |
743
|
|
|
|
|
|
|
} |
744
|
|
|
|
|
|
|
} |
745
|
|
|
|
|
|
|
|
746
|
64
|
|
|
|
|
89
|
my $depth; |
747
|
64
|
100
|
|
|
|
130
|
if ($self->{'tree_type'} eq 'FB') { |
748
|
|
|
|
|
|
|
### FB ... |
749
|
30
|
100
|
|
|
|
78
|
if ($self->{'coordinates'} eq 'PQ') { |
750
|
14
|
|
|
|
|
21
|
$x2 *= 3; |
751
|
|
|
|
|
|
|
} |
752
|
30
|
|
|
|
|
83
|
my ($pow, $exp) = round_down_pow ($x2, 2); |
753
|
30
|
|
|
|
|
57
|
$depth = 2*$exp; |
754
|
|
|
|
|
|
|
} else { |
755
|
|
|
|
|
|
|
### UAD or UArD, and UMT ... |
756
|
34
|
100
|
|
|
|
57
|
if ($self->{'coordinates'} eq 'PQ') { |
757
|
|
|
|
|
|
|
### PQ ... |
758
|
|
|
|
|
|
|
# P=k+1,Q=k diagonal N=100..000 first of row is depth=P-2 |
759
|
|
|
|
|
|
|
# anything else in that X=P column is smaller depth |
760
|
14
|
|
|
|
|
23
|
$depth = $x2 - 2; |
761
|
|
|
|
|
|
|
} else { |
762
|
20
|
|
|
|
|
44
|
my $xdepth = int (($x2+1) / 2); |
763
|
20
|
|
|
|
|
38
|
my $ydepth = int (($y2+31) / 4); |
764
|
20
|
|
|
|
|
51
|
$depth = min($xdepth,$ydepth); |
765
|
|
|
|
|
|
|
} |
766
|
|
|
|
|
|
|
} |
767
|
|
|
|
|
|
|
### depth: "$depth" |
768
|
64
|
|
|
|
|
165
|
return (1, $self->tree_depth_to_n_end($zero+$depth)); |
769
|
|
|
|
|
|
|
} |
770
|
|
|
|
|
|
|
|
771
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
772
|
2
|
|
|
2
|
|
19
|
use constant tree_num_roots => 1; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
3281
|
|
773
|
|
|
|
|
|
|
|
774
|
|
|
|
|
|
|
sub tree_n_children { |
775
|
7
|
|
|
7
|
1
|
329
|
my ($self, $n) = @_; |
776
|
7
|
50
|
|
|
|
17
|
unless ($n >= 1) { |
777
|
0
|
|
|
|
|
0
|
return; |
778
|
|
|
|
|
|
|
} |
779
|
7
|
|
|
|
|
10
|
$n *= 3; |
780
|
7
|
|
|
|
|
26
|
return ($n-1, $n, $n+1); |
781
|
|
|
|
|
|
|
} |
782
|
|
|
|
|
|
|
sub tree_n_num_children { |
783
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
784
|
0
|
0
|
|
|
|
0
|
return ($n >= 1 ? 3 : undef); |
785
|
|
|
|
|
|
|
} |
786
|
|
|
|
|
|
|
sub tree_n_parent { |
787
|
13
|
|
|
13
|
1
|
642
|
my ($self, $n) = @_; |
788
|
13
|
100
|
|
|
|
33
|
unless ($n >= 2) { |
789
|
1
|
|
|
|
|
4
|
return undef; |
790
|
|
|
|
|
|
|
} |
791
|
12
|
|
|
|
|
30
|
return int(($n+1)/3); |
792
|
|
|
|
|
|
|
} |
793
|
|
|
|
|
|
|
sub tree_n_to_depth { |
794
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
795
|
|
|
|
|
|
|
### PythagoreanTree tree_n_to_depth(): $n |
796
|
0
|
0
|
|
|
|
0
|
unless ($n >= 1) { |
797
|
0
|
|
|
|
|
0
|
return undef; |
798
|
|
|
|
|
|
|
} |
799
|
0
|
|
|
|
|
0
|
my ($pow, $depth) = round_down_pow (2*$n-1, 3); |
800
|
0
|
|
|
|
|
0
|
return $depth; |
801
|
|
|
|
|
|
|
} |
802
|
|
|
|
|
|
|
|
803
|
|
|
|
|
|
|
sub tree_depth_to_n { |
804
|
328
|
|
|
328
|
1
|
553
|
my ($self, $depth) = @_; |
805
|
328
|
50
|
|
|
|
1176
|
return ($depth >= 0 |
806
|
|
|
|
|
|
|
? (3**$depth + 1)/2 |
807
|
|
|
|
|
|
|
: undef); |
808
|
|
|
|
|
|
|
} |
809
|
|
|
|
|
|
|
# (3^(d+1)+1)/2-1 = (3^(d+1)-1)/2 |
810
|
|
|
|
|
|
|
sub tree_depth_to_n_end { |
811
|
64
|
|
|
64
|
1
|
114
|
my ($self, $depth) = @_; |
812
|
64
|
50
|
|
|
|
263
|
return ($depth >= 0 |
813
|
|
|
|
|
|
|
? (3**($depth+1) - 1)/2 |
814
|
|
|
|
|
|
|
: undef); |
815
|
|
|
|
|
|
|
} |
816
|
|
|
|
|
|
|
sub tree_depth_to_n_range { |
817
|
0
|
|
|
0
|
1
|
0
|
my ($self, $depth) = @_; |
818
|
0
|
0
|
|
|
|
0
|
if ($depth >= 0) { |
819
|
0
|
|
|
|
|
0
|
my $n_lo = (3**$depth + 1) / 2; # same as tree_depth_to_n() |
820
|
0
|
|
|
|
|
0
|
return ($n_lo, 3*$n_lo-2); |
821
|
|
|
|
|
|
|
} else { |
822
|
0
|
|
|
|
|
0
|
return; |
823
|
|
|
|
|
|
|
} |
824
|
|
|
|
|
|
|
} |
825
|
|
|
|
|
|
|
sub tree_depth_to_width { |
826
|
0
|
|
|
0
|
1
|
0
|
my ($self, $depth) = @_; |
827
|
0
|
0
|
|
|
|
0
|
return ($depth >= 0 |
828
|
|
|
|
|
|
|
? 3**$depth |
829
|
|
|
|
|
|
|
: undef); |
830
|
|
|
|
|
|
|
} |
831
|
|
|
|
|
|
|
|
832
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
833
|
|
|
|
|
|
|
|
834
|
|
|
|
|
|
|
# Maybe, or abc_to_pq() perhaps with two of three values. |
835
|
|
|
|
|
|
|
# |
836
|
|
|
|
|
|
|
# @EXPORT_OK = ('ab_to_pq','pq_to_ab'); |
837
|
|
|
|
|
|
|
# |
838
|
|
|
|
|
|
|
# =item C<($p,$q) = Math::PlanePath::PythagoreanTree::ab_to_pq($a,$b)> |
839
|
|
|
|
|
|
|
# |
840
|
|
|
|
|
|
|
# Return the P,Q coordinates for C<$a,$b>. As described above this is |
841
|
|
|
|
|
|
|
# |
842
|
|
|
|
|
|
|
# P = sqrt((C+A)/2) where C=sqrt(A^2+B^2) |
843
|
|
|
|
|
|
|
# Q = sqrt((C-A)/2) |
844
|
|
|
|
|
|
|
# |
845
|
|
|
|
|
|
|
# The returned P,Q are integers PE=0,QE=0, but the further |
846
|
|
|
|
|
|
|
# conditions for the path (namely PEQE=1 and no common factor) are |
847
|
|
|
|
|
|
|
# not enforced. |
848
|
|
|
|
|
|
|
# |
849
|
|
|
|
|
|
|
# If P,Q are not integers or if BE0 then return an empty list. This |
850
|
|
|
|
|
|
|
# ensures A,B is a Pythagorean triple, ie. that C=sqrt(A^2+B^2) is an |
851
|
|
|
|
|
|
|
# integer, but it might not be a primitive triple and might not have A odd B |
852
|
|
|
|
|
|
|
# even. |
853
|
|
|
|
|
|
|
# |
854
|
|
|
|
|
|
|
# =item C<($a,$b) = Math::PlanePath::PythagoreanTree::pq_to_ab($p,$q)> |
855
|
|
|
|
|
|
|
# |
856
|
|
|
|
|
|
|
# Return the A,B coordinates for C<$p,$q>. This is simply |
857
|
|
|
|
|
|
|
# |
858
|
|
|
|
|
|
|
# $a = $p*$p - $q*$q |
859
|
|
|
|
|
|
|
# $b = 2*$p*$q |
860
|
|
|
|
|
|
|
# |
861
|
|
|
|
|
|
|
# This is intended for use with C<$p,$q> satisfying PEQE=1 and no |
862
|
|
|
|
|
|
|
# common factor, but that's not enforced. |
863
|
|
|
|
|
|
|
|
864
|
|
|
|
|
|
|
|
865
|
|
|
|
|
|
|
# a=p^2-q^2, b=2pq, c=p^2+q^2 |
866
|
|
|
|
|
|
|
# Done as a=(p-q)*(p+q) for one multiply instead of two squares, and to work |
867
|
|
|
|
|
|
|
# close to a=UINT_MAX. |
868
|
|
|
|
|
|
|
# |
869
|
|
|
|
|
|
|
sub _pq_to_ab { |
870
|
27
|
|
|
27
|
|
51
|
my ($p, $q) = @_; |
871
|
27
|
|
|
|
|
71
|
return (($p-$q)*($p+$q), 2*$p*$q); |
872
|
|
|
|
|
|
|
} |
873
|
|
|
|
|
|
|
|
874
|
|
|
|
|
|
|
# C=(p-q)^2+B for one squaring instead of two. |
875
|
|
|
|
|
|
|
# Also possible is C=(p+q)^2-B, but prefer "+B" so as not to round-off in |
876
|
|
|
|
|
|
|
# floating point if (p+q)^2 overflows an integer. |
877
|
|
|
|
|
|
|
sub _pq_to_bc { |
878
|
1
|
|
|
1
|
|
4
|
my ($p, $q) = @_; |
879
|
1
|
|
|
|
|
3
|
my $b = 2*$p*$q; |
880
|
1
|
|
|
|
|
3
|
$p -= $q; |
881
|
1
|
|
|
|
|
4
|
return ($b, $p*$p+$b); |
882
|
|
|
|
|
|
|
} |
883
|
|
|
|
|
|
|
|
884
|
|
|
|
|
|
|
# a=p^2-q^2, b=2pq, c=p^2+q^2 |
885
|
|
|
|
|
|
|
# Could a=(p-q)*(p+q) to avoid overflow if p^2 exceeds an integer as per |
886
|
|
|
|
|
|
|
# _pq_to_ab(), but c overflows in that case anyway. |
887
|
|
|
|
|
|
|
sub _pq_to_ac { |
888
|
2
|
|
|
2
|
|
17
|
my ($p, $q) = @_; |
889
|
2
|
|
|
|
|
5
|
$p *= $p; |
890
|
2
|
|
|
|
|
4
|
$q *= $q; |
891
|
2
|
|
|
|
|
8
|
return ($p-$q, $p+$q); |
892
|
|
|
|
|
|
|
} |
893
|
|
|
|
|
|
|
|
894
|
|
|
|
|
|
|
# a=p^2-q^2, b=2pq, c=p^2+q^2 |
895
|
|
|
|
|
|
|
# a
|
896
|
|
|
|
|
|
|
# p^2-q^2 < 2pq |
897
|
|
|
|
|
|
|
# p^2 + 2pq - q^2 < 0 |
898
|
|
|
|
|
|
|
# (p+q)^2 - 2*q^2 < 0 |
899
|
|
|
|
|
|
|
# (p+q + sqrt(2)*q)*(p+q - sqrt(2)*q) < 0 |
900
|
|
|
|
|
|
|
# (p+q - sqrt(2)*q) < 0 |
901
|
|
|
|
|
|
|
# p + (1-sqrt(2))*q < 0 |
902
|
|
|
|
|
|
|
# p < (sqrt(2)-1)*q |
903
|
|
|
|
|
|
|
# |
904
|
|
|
|
|
|
|
sub _pq_to_sc { |
905
|
0
|
|
|
0
|
|
0
|
my ($p, $q) = @_; |
906
|
0
|
|
|
|
|
0
|
my $b = 2*$p*$q; |
907
|
0
|
|
|
|
|
0
|
my $p_plus_q = $p + $q; |
908
|
0
|
|
|
|
|
0
|
$p -= $q; |
909
|
0
|
|
|
|
|
0
|
return (min($p_plus_q*$p, $b), # A = P^2-Q^2 = (P+Q)*(P-Q) |
910
|
|
|
|
|
|
|
$p*$p+$b); # C = P^2+Q^2 = (P-Q)^2 + 2*P*Q |
911
|
|
|
|
|
|
|
} |
912
|
|
|
|
|
|
|
sub _pq_to_mc { |
913
|
0
|
|
|
0
|
|
0
|
my ($p, $q) = @_; |
914
|
0
|
|
|
|
|
0
|
my $b = 2*$p*$q; |
915
|
0
|
|
|
|
|
0
|
my $p_plus_q = $p + $q; |
916
|
0
|
|
|
|
|
0
|
$p -= $q; |
917
|
0
|
|
|
|
|
0
|
return (max($p_plus_q*$p, $b), # A = P^2-Q^2 = (P+Q)*(P-Q) |
918
|
|
|
|
|
|
|
$p*$p+$b); # C = P^2+Q^2 = (P-Q)^2 + 2*P*Q |
919
|
|
|
|
|
|
|
} |
920
|
|
|
|
|
|
|
sub _pq_to_sm { |
921
|
0
|
|
|
0
|
|
0
|
my ($p, $q) = @_; |
922
|
0
|
|
|
|
|
0
|
my ($a, $b) = _pq_to_ab($p,$q); |
923
|
0
|
0
|
|
|
|
0
|
return ($a < $b ? ($a, $b) : ($b, $a)); |
924
|
|
|
|
|
|
|
} |
925
|
|
|
|
|
|
|
|
926
|
|
|
|
|
|
|
# u = p+q, v=p-q |
927
|
|
|
|
|
|
|
# at given p, vertical q |
928
|
|
|
|
|
|
|
# u=p,v=p on diagonal then p+q,p-q is diagonal down |
929
|
|
|
|
|
|
|
# so mirror p axis to x=y diagonal and measure down diagonal from there |
930
|
|
|
|
|
|
|
sub _pq_to_uv { |
931
|
0
|
|
|
0
|
|
0
|
my ($p, $q) = @_; |
932
|
0
|
|
|
|
|
0
|
return ($p+$q, $p-$q); |
933
|
|
|
|
|
|
|
} |
934
|
|
|
|
|
|
|
|
935
|
|
|
|
|
|
|
# r = b+c = 2pq+p^2+q^2 = (p+q)^2 |
936
|
|
|
|
|
|
|
# s = c-a = p^2+q^2 - (p^2-q^2) = 2*q^2 |
937
|
|
|
|
|
|
|
sub _pq_to_rs { |
938
|
0
|
|
|
0
|
|
0
|
my ($p, $q) = @_; |
939
|
0
|
|
|
|
|
0
|
return (($p+$q)**2, 2*$q*$q); |
940
|
|
|
|
|
|
|
} |
941
|
|
|
|
|
|
|
|
942
|
|
|
|
|
|
|
# s = c-a = p^2+q^2 - (p^2-q^2) = 2*q^2 |
943
|
|
|
|
|
|
|
# t = a+b-c = p^2-q^2 + 2pq - (p^2+q^2) = 2pq-2q^2 = 2(p-q)q |
944
|
|
|
|
|
|
|
sub _pq_to_st { |
945
|
0
|
|
|
0
|
|
0
|
my ($p, $q) = @_; |
946
|
0
|
|
|
|
|
0
|
my $q2 = 2*$q; |
947
|
0
|
|
|
|
|
0
|
return ($q2*$q, ($p-$q)*$q2); |
948
|
|
|
|
|
|
|
} |
949
|
|
|
|
|
|
|
|
950
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
951
|
|
|
|
|
|
|
|
952
|
|
|
|
|
|
|
# a = p^2 - q^2 |
953
|
|
|
|
|
|
|
# b = 2pq |
954
|
|
|
|
|
|
|
# c = p^2 + q^2 |
955
|
|
|
|
|
|
|
# |
956
|
|
|
|
|
|
|
# q = b/2p |
957
|
|
|
|
|
|
|
# a = p^2 - (b/2p)^2 |
958
|
|
|
|
|
|
|
# = p^2 - b^2/4p^2 |
959
|
|
|
|
|
|
|
# 4ap^2 = 4p^4 - b^2 |
960
|
|
|
|
|
|
|
# 4(p^2)^2 - 4a*p^2 - b^2 = 0 |
961
|
|
|
|
|
|
|
# p^2 = [ 4a +/- sqrt(16a^2 + 16*b^2) ] / 2*4 |
962
|
|
|
|
|
|
|
# = [ a +/- sqrt(a^2 + b^2) ] / 2 |
963
|
|
|
|
|
|
|
# = (a +/- c) / 2 where c=sqrt(a^2+b^2) |
964
|
|
|
|
|
|
|
# p = sqrt((a+c)/2) since c>a |
965
|
|
|
|
|
|
|
# |
966
|
|
|
|
|
|
|
# a = (a+c)/2 - q^2 |
967
|
|
|
|
|
|
|
# q^2 = (a+c)/2 - a |
968
|
|
|
|
|
|
|
# = (c-a)/2 |
969
|
|
|
|
|
|
|
# q = sqrt((c-a)/2) |
970
|
|
|
|
|
|
|
# |
971
|
|
|
|
|
|
|
# if c^2 = a^2+b^2 is a perfect square then a,b,c is a pythagorean triple |
972
|
|
|
|
|
|
|
# p^2 = (a+c)/2 |
973
|
|
|
|
|
|
|
# = (a + sqrt(a^2+b^2))/2 |
974
|
|
|
|
|
|
|
# 2p^2 = a + sqrt(a^2+b^2) |
975
|
|
|
|
|
|
|
# |
976
|
|
|
|
|
|
|
# p>q so a>0 |
977
|
|
|
|
|
|
|
# a+c even is a odd, c odd or a even, c even |
978
|
|
|
|
|
|
|
# if a odd then c=a^2+b^2 is opp of b parity, must have b even to make c+a even |
979
|
|
|
|
|
|
|
# if a even then c=a^2+b^2 is same as b parity, must have b even to c+a even |
980
|
|
|
|
|
|
|
# |
981
|
|
|
|
|
|
|
# a=6,b=8 is c=sqrt(6^2+8^2)=10 |
982
|
|
|
|
|
|
|
# a=0,b=4 is c=sqrt(0+4^4)=4 p^2=(a+c)/2 = 2 not a square |
983
|
|
|
|
|
|
|
# a+c even, then (a+c)/2 == 0,1 mod 4 so a+c==0,2 mod 4 |
984
|
|
|
|
|
|
|
# |
985
|
|
|
|
|
|
|
sub _ab_to_pq { |
986
|
5009
|
|
|
5009
|
|
48750
|
my ($a, $b) = @_; |
987
|
|
|
|
|
|
|
### _ab_to_pq(): "A=$a, B=$b" |
988
|
|
|
|
|
|
|
|
989
|
5009
|
100
|
100
|
|
|
15517
|
unless ($b >= 4 && ($a%2) && !($b%2)) { # A odd, B even |
|
|
|
100
|
|
|
|
|
990
|
3931
|
|
|
|
|
8037
|
return; |
991
|
|
|
|
|
|
|
} |
992
|
|
|
|
|
|
|
|
993
|
|
|
|
|
|
|
# This used to be $c=hypot($a,$b) and check $c==int($c), but libm hypot() |
994
|
|
|
|
|
|
|
# on Darwin 8.11.0 is somehow a couple of bits off being an integer, for |
995
|
|
|
|
|
|
|
# example hypot(57,176)==185 but a couple of bits out so $c!=int($c). |
996
|
|
|
|
|
|
|
# Would have thought hypot() ought to be exact on integer inputs and a |
997
|
|
|
|
|
|
|
# perfect square sum :-(. Check for a perfect square by multiplying back |
998
|
|
|
|
|
|
|
# instead. |
999
|
|
|
|
|
|
|
# |
1000
|
|
|
|
|
|
|
# The condition is "$csquared != $c*$c" with operands that way around |
1001
|
|
|
|
|
|
|
# since the other way is bad for Math::BigInt::Lite 0.14. |
1002
|
|
|
|
|
|
|
# |
1003
|
1078
|
|
|
|
|
2873
|
my $c; |
1004
|
|
|
|
|
|
|
{ |
1005
|
1078
|
|
|
|
|
1452
|
my $csquared = $a*$a + $b*$b; |
|
1078
|
|
|
|
|
1620
|
|
1006
|
1078
|
|
|
|
|
2392
|
$c = _sqrtint($csquared); |
1007
|
|
|
|
|
|
|
### $csquared |
1008
|
|
|
|
|
|
|
### $c |
1009
|
|
|
|
|
|
|
# since A odd and B even should have C odd, but floating point rounding |
1010
|
|
|
|
|
|
|
# might prevent that |
1011
|
1078
|
100
|
|
|
|
2261
|
unless ($csquared == $c*$c) { |
1012
|
|
|
|
|
|
|
### A^2+B^2 not a perfect square ... |
1013
|
1010
|
|
|
|
|
2069
|
return; |
1014
|
|
|
|
|
|
|
} |
1015
|
|
|
|
|
|
|
} |
1016
|
68
|
|
|
|
|
259
|
return _ac_to_pq($a,$c); |
1017
|
|
|
|
|
|
|
} |
1018
|
|
|
|
|
|
|
|
1019
|
|
|
|
|
|
|
sub _bc_to_pqa { |
1020
|
1290
|
|
|
1290
|
|
2311
|
my ($b, $c) = @_; |
1021
|
|
|
|
|
|
|
### _bc_to_pqa(): "B=$b C=$c" |
1022
|
|
|
|
|
|
|
|
1023
|
1290
|
100
|
100
|
|
|
3350
|
unless ($c > $b && $b >= 4 && !($b%2) && ($c%2)) { # B even, C odd |
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
1024
|
1216
|
|
|
|
|
3050
|
return; |
1025
|
|
|
|
|
|
|
} |
1026
|
|
|
|
|
|
|
|
1027
|
74
|
|
|
|
|
107
|
my $a; |
1028
|
|
|
|
|
|
|
{ |
1029
|
74
|
|
|
|
|
96
|
my $asquared = $c*$c - $b*$b; |
|
74
|
|
|
|
|
112
|
|
1030
|
74
|
50
|
|
|
|
131
|
unless ($asquared > 0) { |
1031
|
0
|
|
|
|
|
0
|
return; |
1032
|
|
|
|
|
|
|
} |
1033
|
74
|
|
|
|
|
144
|
$a = _sqrtint($asquared); |
1034
|
|
|
|
|
|
|
### $asquared |
1035
|
|
|
|
|
|
|
### $a |
1036
|
74
|
100
|
|
|
|
158
|
unless ($asquared == $a*$a) { |
1037
|
64
|
|
|
|
|
205
|
return; |
1038
|
|
|
|
|
|
|
} |
1039
|
|
|
|
|
|
|
} |
1040
|
|
|
|
|
|
|
|
1041
|
|
|
|
|
|
|
# If $c is near DBL_MAX can have $a overflow to infinity, leaving A>C. |
1042
|
|
|
|
|
|
|
# _ac_to_pq() will detect that. |
1043
|
10
|
100
|
|
|
|
26
|
my ($p,$q) = _ac_to_pq($a,$c) or return; |
1044
|
8
|
|
|
|
|
25
|
return ($p,$q,$a); |
1045
|
|
|
|
|
|
|
} |
1046
|
|
|
|
|
|
|
|
1047
|
|
|
|
|
|
|
sub _ac_to_pq { |
1048
|
1369
|
|
|
1369
|
|
2204
|
my ($a, $c) = @_; |
1049
|
|
|
|
|
|
|
### _ac_to_pq(): "A=$a C=$c" |
1050
|
|
|
|
|
|
|
|
1051
|
1369
|
100
|
100
|
|
|
3832
|
unless ($c > $a && $a >= 3 && ($a%2) && ($c%2)) { # A odd, C odd |
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
1052
|
1224
|
|
|
|
|
3117
|
return; |
1053
|
|
|
|
|
|
|
} |
1054
|
145
|
|
|
|
|
813
|
$a = ($a-1)/2; |
1055
|
145
|
|
|
|
|
706
|
$c = ($c-1)/2; |
1056
|
|
|
|
|
|
|
### halved to: "a=$a c=$c" |
1057
|
|
|
|
|
|
|
|
1058
|
145
|
|
|
|
|
589
|
my $p; |
1059
|
|
|
|
|
|
|
{ |
1060
|
|
|
|
|
|
|
# If a,b,c is a triple but not primitive then can have psquared not an |
1061
|
|
|
|
|
|
|
# integer. Eg. a=9,b=12 has c=15 giving psquared=(9+15)/2=12 is not a |
1062
|
|
|
|
|
|
|
# perfect square. So notice that here. |
1063
|
|
|
|
|
|
|
# |
1064
|
145
|
|
|
|
|
187
|
my $psquared = $c+$a+1; |
|
145
|
|
|
|
|
260
|
|
1065
|
145
|
|
|
|
|
538
|
$p = _sqrtint($psquared); |
1066
|
|
|
|
|
|
|
### $psquared |
1067
|
|
|
|
|
|
|
### $p |
1068
|
145
|
100
|
|
|
|
404
|
unless ($psquared == $p*$p) { |
1069
|
|
|
|
|
|
|
### P^2=A+C not a perfect square ... |
1070
|
72
|
|
|
|
|
188
|
return; |
1071
|
|
|
|
|
|
|
} |
1072
|
|
|
|
|
|
|
} |
1073
|
|
|
|
|
|
|
|
1074
|
73
|
|
|
|
|
256
|
my $q; |
1075
|
|
|
|
|
|
|
{ |
1076
|
|
|
|
|
|
|
# If a,b,c is a triple but not primitive then can have qsquared not an |
1077
|
|
|
|
|
|
|
# integer. Eg. a=15,b=36 has c=39 giving qsquared=(39-15)/2=12 is not a |
1078
|
|
|
|
|
|
|
# perfect square. So notice that here. |
1079
|
|
|
|
|
|
|
# |
1080
|
73
|
|
|
|
|
108
|
my $qsquared = $c-$a; |
|
73
|
|
|
|
|
111
|
|
1081
|
73
|
|
|
|
|
260
|
$q = _sqrtint($qsquared); |
1082
|
|
|
|
|
|
|
### $qsquared |
1083
|
|
|
|
|
|
|
### $q |
1084
|
73
|
100
|
|
|
|
256
|
unless ($qsquared == $q*$q) { |
1085
|
6
|
|
|
|
|
21
|
return; |
1086
|
|
|
|
|
|
|
} |
1087
|
|
|
|
|
|
|
} |
1088
|
|
|
|
|
|
|
|
1089
|
|
|
|
|
|
|
# Might have a common factor between P,Q here. Eg. |
1090
|
|
|
|
|
|
|
# A=27 = 3*3*3, B=36 = 4*3*3 |
1091
|
|
|
|
|
|
|
# A=45 = 3*3*5, B=108 = 4*3*3*3 |
1092
|
|
|
|
|
|
|
# A=63, B=216 |
1093
|
|
|
|
|
|
|
# A=75 =3*5*5 B=100 = 4*5*5 |
1094
|
|
|
|
|
|
|
# A=81, B=360 |
1095
|
|
|
|
|
|
|
# |
1096
|
67
|
|
|
|
|
272
|
return ($p, $q); |
1097
|
|
|
|
|
|
|
} |
1098
|
|
|
|
|
|
|
|
1099
|
|
|
|
|
|
|
sub _sm_to_pq { |
1100
|
0
|
|
|
0
|
|
0
|
my ($s, $m) = @_; |
1101
|
0
|
0
|
|
|
|
0
|
unless ($s < $m) { |
1102
|
0
|
|
|
|
|
0
|
return; |
1103
|
|
|
|
|
|
|
} |
1104
|
0
|
0
|
|
|
|
0
|
return _ab_to_pq($s % 2 |
1105
|
|
|
|
|
|
|
? ($s,$m) # s odd is A |
1106
|
|
|
|
|
|
|
: ($m,$s)); # s even is B |
1107
|
|
|
|
|
|
|
} |
1108
|
|
|
|
|
|
|
|
1109
|
|
|
|
|
|
|
|
1110
|
|
|
|
|
|
|
# s^2+m^2=c^2 |
1111
|
|
|
|
|
|
|
# if s odd then a=s |
1112
|
|
|
|
|
|
|
# ac_to_pq |
1113
|
|
|
|
|
|
|
# b = 2pq check isn't smaller than s |
1114
|
|
|
|
|
|
|
# |
1115
|
|
|
|
|
|
|
# p^2=(c+a)/2 |
1116
|
|
|
|
|
|
|
# q^2=(c-a)/2 |
1117
|
|
|
|
|
|
|
|
1118
|
|
|
|
|
|
|
sub _sc_to_pq { |
1119
|
2
|
|
|
2
|
|
210
|
my ($s, $c) = @_; |
1120
|
2
|
|
|
|
|
4
|
my ($p,$q); |
1121
|
2
|
100
|
|
|
|
7
|
if ($s % 2) { |
1122
|
1
|
50
|
|
|
|
5
|
($p,$q) = _ac_to_pq($s,$c) # s odd is A |
1123
|
|
|
|
|
|
|
or return; |
1124
|
1
|
50
|
|
|
|
3
|
if ($s > 2*$p*$q) { return; } # if s>B then s is not the smaller one |
|
0
|
|
|
|
|
0
|
|
1125
|
|
|
|
|
|
|
} else { |
1126
|
1
|
50
|
|
|
|
6
|
($p,$q,$a) = _bc_to_pqa($s,$c) # s even is B |
1127
|
|
|
|
|
|
|
or return; |
1128
|
1
|
50
|
|
|
|
8
|
if ($s > $a) { return; } # if s>A then s is not the smaller one |
|
1
|
|
|
|
|
3
|
|
1129
|
|
|
|
|
|
|
} |
1130
|
1
|
|
|
|
|
3
|
return ($p,$q); |
1131
|
|
|
|
|
|
|
} |
1132
|
|
|
|
|
|
|
|
1133
|
|
|
|
|
|
|
sub _mc_to_pq { |
1134
|
0
|
|
|
0
|
|
|
my ($m, $c) = @_; |
1135
|
|
|
|
|
|
|
### _mc_to_pq() ... |
1136
|
0
|
|
|
|
|
|
my ($p,$q); |
1137
|
0
|
0
|
|
|
|
|
if ($m % 2) { |
1138
|
|
|
|
|
|
|
### m odd is A ... |
1139
|
0
|
0
|
|
|
|
|
($p,$q) = _ac_to_pq($m,$c) |
1140
|
|
|
|
|
|
|
or return; |
1141
|
0
|
0
|
|
|
|
|
if ($m < 2*$p*$q) { return; } # if m
|
|
0
|
|
|
|
|
|
|
1142
|
|
|
|
|
|
|
} else { |
1143
|
|
|
|
|
|
|
### m even is B ... |
1144
|
0
|
0
|
|
|
|
|
($p,$q,$a) = _bc_to_pqa($m,$c) |
1145
|
|
|
|
|
|
|
or return; |
1146
|
|
|
|
|
|
|
### $a |
1147
|
0
|
0
|
|
|
|
|
if ($m < $a) { return; } # if m
|
|
0
|
|
|
|
|
|
|
1148
|
|
|
|
|
|
|
} |
1149
|
0
|
|
|
|
|
|
return ($p,$q); |
1150
|
|
|
|
|
|
|
} |
1151
|
|
|
|
|
|
|
|
1152
|
|
|
|
|
|
|
# u = p+q, v=p-q |
1153
|
|
|
|
|
|
|
# u+v=2p p = (u+v)/2 |
1154
|
|
|
|
|
|
|
# u-v=2q q = (u-v)/2 |
1155
|
|
|
|
|
|
|
sub _uv_to_pq { |
1156
|
0
|
|
|
0
|
|
|
my ($u, $v) = @_; |
1157
|
0
|
|
|
|
|
|
return (($u+$v)/2, ($u-$v)/2); |
1158
|
|
|
|
|
|
|
} |
1159
|
|
|
|
|
|
|
|
1160
|
|
|
|
|
|
|
# r = (p+q)^2 |
1161
|
|
|
|
|
|
|
# s = 2*q^2 so q = sqrt(r/2) |
1162
|
|
|
|
|
|
|
sub _rs_to_pq { |
1163
|
0
|
|
|
0
|
|
|
my ($r, $s) = @_; |
1164
|
|
|
|
|
|
|
|
1165
|
0
|
0
|
|
|
|
|
return if $s % 2; |
1166
|
0
|
|
|
|
|
|
$s /= 2; |
1167
|
0
|
0
|
|
|
|
|
return unless $s >= 1; |
1168
|
0
|
|
|
|
|
|
my $q = _sqrtint($s); |
1169
|
0
|
0
|
|
|
|
|
return unless $q*$q == $s; |
1170
|
|
|
|
|
|
|
|
1171
|
0
|
0
|
|
|
|
|
return unless $r >= 1; |
1172
|
0
|
|
|
|
|
|
my $p_plus_q = _sqrtint($r); |
1173
|
0
|
0
|
|
|
|
|
return unless $p_plus_q*$p_plus_q == $r; |
1174
|
|
|
|
|
|
|
|
1175
|
0
|
|
|
|
|
|
return ($p_plus_q - $q, $q); |
1176
|
|
|
|
|
|
|
} |
1177
|
|
|
|
|
|
|
|
1178
|
|
|
|
|
|
|
# s = 2*q^2 |
1179
|
|
|
|
|
|
|
# t = a+b-c = p^2-q^2 + 2pq - (p^2+q^2) = 2pq-2q^2 = 2(p-q)q |
1180
|
|
|
|
|
|
|
# |
1181
|
|
|
|
|
|
|
# p=2,q=1 s=2 t=2.1.1=2 |
1182
|
|
|
|
|
|
|
# |
1183
|
|
|
|
|
|
|
sub _st_to_pq { |
1184
|
0
|
|
|
0
|
|
|
my ($s, $t) = @_; |
1185
|
|
|
|
|
|
|
|
1186
|
|
|
|
|
|
|
### _st_to_pq(): "$s, $t" |
1187
|
0
|
0
|
|
|
|
|
return if $s % 2; |
1188
|
0
|
|
|
|
|
|
$s /= 2; |
1189
|
0
|
0
|
|
|
|
|
return unless $s >= 1; |
1190
|
0
|
|
|
|
|
|
my $q = _sqrtint($s); |
1191
|
|
|
|
|
|
|
### $q |
1192
|
0
|
0
|
|
|
|
|
return unless $q*$q == $s; |
1193
|
|
|
|
|
|
|
|
1194
|
0
|
0
|
|
|
|
|
return if $t % 2; |
1195
|
0
|
|
|
|
|
|
$t /= 2; |
1196
|
|
|
|
|
|
|
### rem: $t % $q |
1197
|
0
|
0
|
|
|
|
|
return if $t % $q; |
1198
|
0
|
|
|
|
|
|
$t /= $q; # p-q |
1199
|
|
|
|
|
|
|
|
1200
|
|
|
|
|
|
|
### pq: ($t+$q).", $q" |
1201
|
|
|
|
|
|
|
|
1202
|
0
|
|
|
|
|
|
return ($t+$q, $q); |
1203
|
|
|
|
|
|
|
} |
1204
|
|
|
|
|
|
|
|
1205
|
|
|
|
|
|
|
1; |
1206
|
|
|
|
|
|
|
__END__ |