line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# cf |
20
|
|
|
|
|
|
|
# |
21
|
|
|
|
|
|
|
# http://www.cut-the-knot.org/Curriculum/Geometry/PeanoComplete.shtml |
22
|
|
|
|
|
|
|
# applet, directions in 9 sub-parts |
23
|
|
|
|
|
|
|
# |
24
|
|
|
|
|
|
|
# math-image --path=PeanoCurve,radix=5 --all --output=numbers |
25
|
|
|
|
|
|
|
# math-image --path=PeanoCurve,radix=5 --lines |
26
|
|
|
|
|
|
|
# |
27
|
|
|
|
|
|
|
# ----------- |
28
|
|
|
|
|
|
|
# Peano: |
29
|
|
|
|
|
|
|
# T = 0.a1 a2 a3 a4 ... |
30
|
|
|
|
|
|
|
# x y x y |
31
|
|
|
|
|
|
|
# |
32
|
|
|
|
|
|
|
# X = 0.b1 b2 ... |
33
|
|
|
|
|
|
|
# a1 a3.k(a2) |
34
|
|
|
|
|
|
|
# |
35
|
|
|
|
|
|
|
# Y = 0.c1 c2 ... |
36
|
|
|
|
|
|
|
# a2.k(a1) a4.k(a1,a3) |
37
|
|
|
|
|
|
|
# |
38
|
|
|
|
|
|
|
# b1=a1 |
39
|
|
|
|
|
|
|
# c1 = a2 comp(a1) |
40
|
|
|
|
|
|
|
# b2 = a3 comp(a2) |
41
|
|
|
|
|
|
|
# c2 = a4 comp(a1+a3) |
42
|
|
|
|
|
|
|
# |
43
|
|
|
|
|
|
|
# bn = a[2n-1] comp a2+a4+...+a[2n-2] |
44
|
|
|
|
|
|
|
# cn = a[2n] comp a1+a3+...+a[2n-1] |
45
|
|
|
|
|
|
|
# |
46
|
|
|
|
|
|
|
# Brouwer(?) no continuous one-to-one between R and RxR, so line and plane |
47
|
|
|
|
|
|
|
# are distinguished. |
48
|
|
|
|
|
|
|
# |
49
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
package Math::PlanePath::PeanoCurve; |
52
|
5
|
|
|
5
|
|
4891
|
use 5.004; |
|
5
|
|
|
|
|
25
|
|
53
|
5
|
|
|
5
|
|
28
|
use strict; |
|
5
|
|
|
|
|
10
|
|
|
5
|
|
|
|
|
230
|
|
54
|
|
|
|
|
|
|
#use List::Util 'max'; |
55
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
56
|
|
|
|
|
|
|
|
57
|
5
|
|
|
5
|
|
31
|
use vars '$VERSION', '@ISA'; |
|
5
|
|
|
|
|
19
|
|
|
5
|
|
|
|
|
370
|
|
58
|
|
|
|
|
|
|
$VERSION = 128; |
59
|
5
|
|
|
5
|
|
1208
|
use Math::PlanePath; |
|
5
|
|
|
|
|
11
|
|
|
5
|
|
|
|
|
205
|
|
60
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
63
|
5
|
|
|
|
|
272
|
'is_infinite', |
64
|
5
|
|
|
5
|
|
30
|
'round_nearest'; |
|
5
|
|
|
|
|
43
|
|
65
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
66
|
5
|
|
|
|
|
312
|
'round_down_pow', |
67
|
|
|
|
|
|
|
'digit_split_lowtohigh', |
68
|
5
|
|
|
5
|
|
1314
|
'digit_join_lowtohigh'; |
|
5
|
|
|
|
|
12
|
|
69
|
5
|
|
|
5
|
|
1783
|
use Math::PlanePath::Base::NSEW; |
|
5
|
|
|
|
|
12
|
|
|
5
|
|
|
|
|
140
|
|
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
72
|
|
|
|
|
|
|
# use Smart::Comments; |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
|
75
|
5
|
|
|
5
|
|
28
|
use constant n_start => 0; |
|
5
|
|
|
|
|
11
|
|
|
5
|
|
|
|
|
239
|
|
76
|
5
|
|
|
5
|
|
27
|
use constant class_x_negative => 0; |
|
5
|
|
|
|
|
10
|
|
|
5
|
|
|
|
|
224
|
|
77
|
5
|
|
|
5
|
|
26
|
use constant class_y_negative => 0; |
|
5
|
|
|
|
|
10
|
|
|
5
|
|
|
|
|
354
|
|
78
|
|
|
|
|
|
|
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1; |
79
|
|
|
|
|
|
|
|
80
|
5
|
|
|
|
|
8440
|
use constant parameter_info_array => |
81
|
|
|
|
|
|
|
[ { name => 'radix', |
82
|
|
|
|
|
|
|
display => 'Radix', |
83
|
|
|
|
|
|
|
share_key => 'radix_3', |
84
|
|
|
|
|
|
|
type => 'integer', |
85
|
|
|
|
|
|
|
minimum => 2, |
86
|
|
|
|
|
|
|
default => 3, |
87
|
|
|
|
|
|
|
width => 3, |
88
|
5
|
|
|
5
|
|
29
|
} ]; |
|
5
|
|
|
|
|
10
|
|
89
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
# shared by WunderlichSerpentine |
91
|
|
|
|
|
|
|
sub dx_minimum { |
92
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
93
|
0
|
0
|
|
|
|
0
|
return ($self->{'radix'} % 2 |
94
|
|
|
|
|
|
|
? -1 # odd |
95
|
|
|
|
|
|
|
: undef); # even, unlimited |
96
|
|
|
|
|
|
|
} |
97
|
|
|
|
|
|
|
sub dx_maximum { |
98
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
99
|
0
|
0
|
|
|
|
0
|
return ($self->{'radix'} % 2 |
100
|
|
|
|
|
|
|
? 1 # odd |
101
|
|
|
|
|
|
|
: undef); # even, unlimited |
102
|
|
|
|
|
|
|
} |
103
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
# shared by WunderlichSerpentine |
105
|
|
|
|
|
|
|
sub _UNDOCUMENTED__dxdy_list { |
106
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
107
|
0
|
0
|
|
|
|
0
|
return ($self->{'radix'} % 2 |
108
|
|
|
|
|
|
|
? Math::PlanePath::Base::NSEW->_UNDOCUMENTED__dxdy_list |
109
|
|
|
|
|
|
|
: ()); # even, unlimited |
110
|
|
|
|
|
|
|
} |
111
|
|
|
|
|
|
|
# *--- b^2-1 -- b^2 ---- b^2+b-1 = (b+1)b-1 |
112
|
|
|
|
|
|
|
# | | |
113
|
|
|
|
|
|
|
# *------- |
114
|
|
|
|
|
|
|
# | |
115
|
|
|
|
|
|
|
# 0 ----- b |
116
|
|
|
|
|
|
|
# |
117
|
|
|
|
|
|
|
sub _UNDOCUMENTED__dxdy_list_at_n { |
118
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
119
|
0
|
|
|
|
|
0
|
return ($self->{'radix'} + 1) * $self->{'radix'} - 1; |
120
|
|
|
|
|
|
|
} |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
# shared by WunderlichSerpentine |
123
|
|
|
|
|
|
|
*dy_minimum = \&dx_minimum; |
124
|
|
|
|
|
|
|
*dy_maximum = \&dx_maximum; |
125
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
*dsumxy_minimum = \&dx_minimum; |
127
|
|
|
|
|
|
|
*dsumxy_maximum = \&dx_maximum; |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
*ddiffxy_minimum = \&dx_minimum; |
130
|
|
|
|
|
|
|
*ddiffxy_maximum = \&dx_maximum; |
131
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
sub dir_maximum_dxdy { |
133
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
134
|
0
|
0
|
|
|
|
0
|
return ($self->{'radix'} % 2 |
135
|
|
|
|
|
|
|
? (0,-1) # odd, South |
136
|
|
|
|
|
|
|
: (0,0)); # even, supremum |
137
|
|
|
|
|
|
|
} |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_left_at_n { |
140
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
141
|
0
|
|
|
|
|
0
|
return $self->{'radix'} - 1; |
142
|
|
|
|
|
|
|
} |
143
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_right_at_n { |
144
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
145
|
|
|
|
|
|
|
return ($self->{'radix'} == 2 ? 5 |
146
|
0
|
0
|
|
|
|
0
|
: 2*$self->{'radix'} - 1); |
147
|
|
|
|
|
|
|
} |
148
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
sub new { |
153
|
11
|
|
|
11
|
1
|
1817
|
my $self = shift->SUPER::new(@_); |
154
|
|
|
|
|
|
|
|
155
|
11
|
100
|
66
|
|
|
80
|
if (! $self->{'radix'} || $self->{'radix'} < 2) { |
156
|
7
|
|
|
|
|
17
|
$self->{'radix'} = 3; |
157
|
|
|
|
|
|
|
} |
158
|
11
|
|
|
|
|
26
|
return $self; |
159
|
|
|
|
|
|
|
} |
160
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
sub _n_to_xykk { |
162
|
60585
|
|
|
60585
|
|
96088
|
my ($self, $n) = @_; |
163
|
60585
|
|
|
|
|
93536
|
my $radix = $self->{'radix'}; |
164
|
60585
|
|
|
|
|
84895
|
my $radix_minus_1 = $radix - 1; |
165
|
|
|
|
|
|
|
|
166
|
60585
|
|
|
|
|
117943
|
my @ndigits = digit_split_lowtohigh($n,$radix); |
167
|
60585
|
100
|
|
|
|
121394
|
if (scalar(@ndigits) & 1) { |
168
|
52494
|
|
|
|
|
74805
|
push @ndigits, 0; # so even number of entries |
169
|
|
|
|
|
|
|
} |
170
|
|
|
|
|
|
|
### @ndigits |
171
|
|
|
|
|
|
|
|
172
|
60585
|
|
|
|
|
88743
|
my $xk = 0; |
173
|
60585
|
|
|
|
|
77566
|
my $yk = 0; |
174
|
60585
|
|
|
|
|
88268
|
my @ydigits; |
175
|
|
|
|
|
|
|
my @xdigits; |
176
|
|
|
|
|
|
|
|
177
|
60585
|
|
|
|
|
123616
|
for (my $i = $#ndigits >> 1; @ndigits; $i--) { # high to low |
178
|
|
|
|
|
|
|
### $i |
179
|
|
|
|
|
|
|
{ |
180
|
172473
|
|
|
|
|
227655
|
my $ndigit = pop @ndigits; # high to low |
181
|
172473
|
|
|
|
|
241710
|
$xk ^= $ndigit; |
182
|
172473
|
100
|
|
|
|
493929
|
$ydigits[$i] = ($yk & 1 ? $radix_minus_1-$ndigit : $ndigit); |
183
|
|
|
|
|
|
|
} |
184
|
|
|
|
|
|
|
{ |
185
|
172473
|
|
|
|
|
440252
|
my $ndigit = pop @ndigits; |
|
172473
|
|
|
|
|
567520
|
|
|
172473
|
|
|
|
|
222167
|
|
186
|
172473
|
|
|
|
|
226061
|
$yk ^= $ndigit; |
187
|
172473
|
100
|
|
|
|
638821
|
$xdigits[$i] = ($xk & 1 ? $radix_minus_1-$ndigit : $ndigit); |
188
|
|
|
|
|
|
|
} |
189
|
|
|
|
|
|
|
} |
190
|
60585
|
|
|
|
|
89540
|
my $zero = $n*0; |
191
|
60585
|
|
|
|
|
97157
|
return ((map {digit_join_lowtohigh($_, $radix, $zero)} \@xdigits, \@ydigits), |
|
121170
|
|
|
|
|
227851
|
|
192
|
|
|
|
|
|
|
$xk,$yk); |
193
|
|
|
|
|
|
|
} |
194
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
sub n_to_xy { |
197
|
20183
|
|
|
20183
|
1
|
116602
|
my ($self, $n) = @_; |
198
|
|
|
|
|
|
|
### PeanoCurve n_to_xy(): $n |
199
|
20183
|
50
|
|
|
|
38257
|
if ($n < 0) { # negative |
200
|
0
|
|
|
|
|
0
|
return; |
201
|
|
|
|
|
|
|
} |
202
|
20183
|
50
|
|
|
|
40594
|
if (is_infinite($n)) { |
203
|
0
|
|
|
|
|
0
|
return ($n,$n); |
204
|
|
|
|
|
|
|
} |
205
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
{ |
207
|
|
|
|
|
|
|
# ENHANCE-ME: for odd radix the ends join and the direction can be had |
208
|
|
|
|
|
|
|
# without a full N+1 calculation |
209
|
20183
|
|
|
|
|
38208
|
my $int = int($n); |
|
20183
|
|
|
|
|
28111
|
|
210
|
|
|
|
|
|
|
### $int |
211
|
|
|
|
|
|
|
### $n |
212
|
20183
|
100
|
|
|
|
35884
|
if ($n != $int) { |
213
|
1
|
|
|
|
|
360
|
my ($x1,$y1) = $self->n_to_xy($int); |
214
|
1
|
|
|
|
|
7
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
215
|
1
|
|
|
|
|
12
|
my $frac = $n - $int; # inherit possible BigFloat |
216
|
1
|
|
|
|
|
600
|
my $dx = $x2-$x1; |
217
|
1
|
|
|
|
|
319
|
my $dy = $y2-$y1; |
218
|
1
|
|
|
|
|
253
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
219
|
|
|
|
|
|
|
} |
220
|
20182
|
|
|
|
|
30976
|
$n = $int; # BigFloat int() gives BigInt, use that |
221
|
|
|
|
|
|
|
} |
222
|
|
|
|
|
|
|
|
223
|
20182
|
|
|
|
|
37210
|
my ($x,$y) = _n_to_xykk($self,$n); |
224
|
20182
|
|
|
|
|
53702
|
return ($x,$y); |
225
|
|
|
|
|
|
|
} |
226
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
sub _xykk_to_n { |
228
|
853
|
|
|
853
|
|
1547
|
my ($self, $x,$y, $offset_xk,$offset_yk) = @_; |
229
|
|
|
|
|
|
|
### PeanoCurve _xykk_to_n(): "$x, $y offset $offset_xk,$offset_yk" |
230
|
|
|
|
|
|
|
|
231
|
853
|
100
|
100
|
|
|
2698
|
if (($offset_xk && ($x-=$offset_xk) < 0) |
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
232
|
|
|
|
|
|
|
|| ($offset_yk && ($y-=$offset_yk) < 0)) { |
233
|
11
|
|
|
|
|
36
|
return; # offset goes negative |
234
|
|
|
|
|
|
|
} |
235
|
|
|
|
|
|
|
|
236
|
842
|
|
|
|
|
1417
|
my $radix = $self->{'radix'}; |
237
|
842
|
|
|
|
|
1730
|
my @x = digit_split_lowtohigh ($x, $radix); |
238
|
842
|
|
|
|
|
1607
|
my @y = digit_split_lowtohigh ($y, $radix); |
239
|
|
|
|
|
|
|
|
240
|
842
|
|
|
|
|
1280
|
my $radix_minus_1 = $radix - 1; |
241
|
842
|
|
|
|
|
1158
|
my $xk = 0; |
242
|
842
|
|
|
|
|
1136
|
my $yk = 0; |
243
|
|
|
|
|
|
|
|
244
|
842
|
|
|
|
|
1063
|
my @n; # stored low to high, generated from high to low |
245
|
842
|
|
|
|
|
2627
|
my $i_high = max($#x,$#y); |
246
|
842
|
|
|
|
|
1319
|
my $npos = 2*$i_high+1; |
247
|
|
|
|
|
|
|
|
248
|
842
|
|
|
|
|
1809
|
foreach my $i (reverse 0 .. $i_high) { # high to low |
249
|
|
|
|
|
|
|
{ |
250
|
4159
|
|
100
|
|
|
7984
|
my $digit = $y[$i] || 0; |
251
|
4159
|
100
|
|
|
|
7041
|
if ($yk & 1) { |
252
|
1670
|
|
|
|
|
2096
|
$digit = $radix_minus_1 - $digit; # reverse digit |
253
|
|
|
|
|
|
|
} |
254
|
4159
|
|
|
|
|
6003
|
$n[$npos--] = $digit; |
255
|
4159
|
|
|
|
|
5607
|
$xk ^= $digit; |
256
|
|
|
|
|
|
|
} |
257
|
|
|
|
|
|
|
{ |
258
|
4159
|
|
100
|
|
|
5014
|
my $digit = $x[$i] || 0; |
|
4159
|
|
|
|
|
5133
|
|
|
4159
|
|
|
|
|
7840
|
|
259
|
4159
|
100
|
|
|
|
7124
|
if ($xk & 1) { |
260
|
2084
|
|
|
|
|
2727
|
$digit = $radix_minus_1 - $digit; # reverse digit |
261
|
|
|
|
|
|
|
} |
262
|
4159
|
|
|
|
|
6061
|
$n[$npos--] = $digit; |
263
|
4159
|
|
|
|
|
5843
|
$yk ^= $digit; |
264
|
|
|
|
|
|
|
} |
265
|
|
|
|
|
|
|
} |
266
|
|
|
|
|
|
|
### final n: @n |
267
|
|
|
|
|
|
|
### final xkyk: ($xk&1).' '.($yk&1) |
268
|
842
|
100
|
100
|
|
|
4584
|
return ((! defined $offset_xk || ($xk&1) == $offset_xk) |
269
|
|
|
|
|
|
|
&& (! defined $offset_yk || ($yk&1) == $offset_yk) |
270
|
|
|
|
|
|
|
? (digit_join_lowtohigh (\@n, $radix, |
271
|
|
|
|
|
|
|
$x*0*$y)) # inherit bignum 0 |
272
|
|
|
|
|
|
|
: ()); |
273
|
|
|
|
|
|
|
} |
274
|
|
|
|
|
|
|
|
275
|
|
|
|
|
|
|
sub xy_to_n { |
276
|
731
|
|
|
731
|
1
|
1482
|
my ($self, $x, $y) = @_; |
277
|
|
|
|
|
|
|
### PeanoCurve xy_to_n(): "$x, $y" |
278
|
|
|
|
|
|
|
|
279
|
731
|
|
|
|
|
1795
|
$x = round_nearest ($x); |
280
|
731
|
|
|
|
|
1445
|
$y = round_nearest ($y); |
281
|
|
|
|
|
|
|
|
282
|
731
|
50
|
33
|
|
|
2713
|
if ($x < 0 || $y < 0) { return undef; } |
|
0
|
|
|
|
|
0
|
|
283
|
731
|
50
|
|
|
|
1605
|
if (is_infinite($x)) { return $x; } |
|
0
|
|
|
|
|
0
|
|
284
|
731
|
50
|
|
|
|
1602
|
if (is_infinite($y)) { return $y; } |
|
0
|
|
|
|
|
0
|
|
285
|
|
|
|
|
|
|
|
286
|
731
|
|
|
|
|
1658
|
return _xykk_to_n($self, $x,$y); |
287
|
|
|
|
|
|
|
} |
288
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
# exact |
290
|
|
|
|
|
|
|
sub rect_to_n_range { |
291
|
1
|
|
|
1
|
1
|
8
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
292
|
|
|
|
|
|
|
|
293
|
1
|
|
|
|
|
3
|
$x1 = round_nearest ($x1); |
294
|
1
|
|
|
|
|
3
|
$y1 = round_nearest ($y1); |
295
|
1
|
|
|
|
|
80
|
$x2 = round_nearest ($x2); |
296
|
1
|
|
|
|
|
4
|
$y2 = round_nearest ($y2); |
297
|
1
|
50
|
|
|
|
4
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
298
|
1
|
50
|
|
|
|
3
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
299
|
|
|
|
|
|
|
### rect_to_n_range(): "$x1,$y1 to $x2,$y2" |
300
|
|
|
|
|
|
|
|
301
|
1
|
50
|
33
|
|
|
6
|
if ($x2 < 0 || $y2 < 0) { |
302
|
0
|
|
|
|
|
0
|
return (1, 0); |
303
|
|
|
|
|
|
|
} |
304
|
|
|
|
|
|
|
|
305
|
1
|
|
|
|
|
3
|
my $radix = $self->{'radix'}; |
306
|
|
|
|
|
|
|
|
307
|
1
|
|
|
|
|
4
|
my ($power, $level) = round_down_pow (max($x2,$y2), $radix); |
308
|
1
|
50
|
|
|
|
3
|
if (is_infinite($level)) { |
309
|
0
|
|
|
|
|
0
|
return (0, $level); |
310
|
|
|
|
|
|
|
} |
311
|
|
|
|
|
|
|
|
312
|
1
|
|
|
|
|
3
|
my $n_power = $power * $power * $radix; |
313
|
1
|
|
|
|
|
2
|
my $max_x = 0; |
314
|
1
|
|
|
|
|
2
|
my $max_y = 0; |
315
|
1
|
|
|
|
|
2
|
my $max_n = 0; |
316
|
1
|
|
|
|
|
1
|
my $max_xk = 0; |
317
|
1
|
|
|
|
|
2
|
my $max_yk = 0; |
318
|
|
|
|
|
|
|
|
319
|
1
|
|
|
|
|
2
|
my $min_x = 0; |
320
|
1
|
|
|
|
|
2
|
my $min_y = 0; |
321
|
1
|
|
|
|
|
1
|
my $min_n = 0; |
322
|
1
|
|
|
|
|
2
|
my $min_xk = 0; |
323
|
1
|
|
|
|
|
3
|
my $min_yk = 0; |
324
|
|
|
|
|
|
|
|
325
|
|
|
|
|
|
|
# l<=c
|
326
|
|
|
|
|
|
|
# l>c2 or h-1
|
327
|
|
|
|
|
|
|
# l>c2 or h<=c1 |
328
|
|
|
|
|
|
|
# so does overlap if |
329
|
|
|
|
|
|
|
# l<=c2 and h>c1 |
330
|
|
|
|
|
|
|
# |
331
|
1
|
|
|
|
|
2
|
my $radix_minus_1 = $radix - 1; |
332
|
|
|
|
|
|
|
my $overlap = sub { |
333
|
5
|
|
|
5
|
|
17
|
my ($c,$ck,$digit, $c1,$c2) = @_; |
334
|
5
|
100
|
|
|
|
12
|
if ($ck & 1) { |
335
|
1
|
|
|
|
|
2
|
$digit = $radix_minus_1 - $digit; |
336
|
|
|
|
|
|
|
} |
337
|
|
|
|
|
|
|
### overlap consider: "inv".($ck&1)."digit=$digit ".($c+$digit*$power)."<=c<".($c+($digit+1)*$power)." cf $c1 to $c2 incl" |
338
|
5
|
|
66
|
|
|
27
|
return ($c + $digit*$power <= $c2 |
339
|
|
|
|
|
|
|
&& $c + ($digit+1)*$power > $c1); |
340
|
1
|
|
|
|
|
6
|
}; |
341
|
|
|
|
|
|
|
|
342
|
1
|
|
|
|
|
4
|
while ($level-- >= 0) { |
343
|
|
|
|
|
|
|
### $power |
344
|
|
|
|
|
|
|
### $n_power |
345
|
|
|
|
|
|
|
### $max_n |
346
|
|
|
|
|
|
|
### $min_n |
347
|
|
|
|
|
|
|
{ |
348
|
1
|
|
|
|
|
2
|
my $digit; |
349
|
1
|
|
|
|
|
4
|
for ($digit = $radix_minus_1; $digit > 0; $digit--) { |
350
|
2
|
100
|
|
|
|
5
|
last if &$overlap ($max_y,$max_yk,$digit, $y1,$y2); |
351
|
|
|
|
|
|
|
} |
352
|
1
|
|
|
|
|
11
|
$max_n += $n_power * $digit; |
353
|
1
|
|
|
|
|
3
|
$max_xk ^= $digit; |
354
|
1
|
50
|
|
|
|
3
|
if ($max_yk&1) { $digit = $radix_minus_1 - $digit; } |
|
0
|
|
|
|
|
0
|
|
355
|
1
|
|
|
|
|
2
|
$max_y += $power * $digit; |
356
|
|
|
|
|
|
|
### max y digit (complemented): $digit |
357
|
|
|
|
|
|
|
### $max_y |
358
|
|
|
|
|
|
|
### $max_n |
359
|
|
|
|
|
|
|
} |
360
|
|
|
|
|
|
|
{ |
361
|
1
|
|
|
|
|
1
|
my $digit; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
8
|
|
362
|
1
|
|
|
|
|
4
|
for ($digit = 0; $digit < $radix_minus_1; $digit++) { |
363
|
1
|
50
|
|
|
|
3
|
last if &$overlap ($min_y,$min_yk,$digit, $y1,$y2); |
364
|
|
|
|
|
|
|
} |
365
|
1
|
|
|
|
|
3
|
$min_n += $n_power * $digit; |
366
|
1
|
|
|
|
|
2
|
$min_xk ^= $digit; |
367
|
1
|
50
|
|
|
|
4
|
if ($min_yk&1) { $digit = $radix_minus_1 - $digit; } |
|
0
|
|
|
|
|
0
|
|
368
|
1
|
|
|
|
|
2
|
$min_y += $power * $digit; |
369
|
|
|
|
|
|
|
### min y digit (complemented): $digit |
370
|
|
|
|
|
|
|
### $min_y |
371
|
|
|
|
|
|
|
### $min_n |
372
|
|
|
|
|
|
|
} |
373
|
|
|
|
|
|
|
|
374
|
1
|
|
|
|
|
2
|
$n_power = int($n_power/$radix); |
375
|
|
|
|
|
|
|
{ |
376
|
1
|
|
|
|
|
2
|
my $digit; |
377
|
1
|
|
|
|
|
3
|
for ($digit = $radix_minus_1; $digit > 0; $digit--) { |
378
|
1
|
50
|
|
|
|
2
|
last if &$overlap ($max_x,$max_xk,$digit, $x1,$x2); |
379
|
|
|
|
|
|
|
} |
380
|
1
|
|
|
|
|
3
|
$max_n += $n_power * $digit; |
381
|
1
|
|
|
|
|
2
|
$max_yk ^= $digit; |
382
|
1
|
50
|
|
|
|
3
|
if ($max_xk&1) { $digit = $radix_minus_1 - $digit; } |
|
1
|
|
|
|
|
2
|
|
383
|
1
|
|
|
|
|
2
|
$max_x += $power * $digit; |
384
|
|
|
|
|
|
|
### max x digit (complemented): $digit |
385
|
|
|
|
|
|
|
### $max_x |
386
|
|
|
|
|
|
|
### $max_n |
387
|
|
|
|
|
|
|
} |
388
|
|
|
|
|
|
|
{ |
389
|
1
|
|
|
|
|
2
|
my $digit; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
1
|
|
390
|
1
|
|
|
|
|
3
|
for ($digit = 0; $digit < $radix_minus_1; $digit++) { |
391
|
1
|
50
|
|
|
|
3
|
last if &$overlap ($min_x,$min_xk,$digit, $x1,$x2); |
392
|
|
|
|
|
|
|
} |
393
|
1
|
|
|
|
|
3
|
$min_n += $n_power * $digit; |
394
|
1
|
|
|
|
|
2
|
$min_yk ^= $digit; |
395
|
1
|
50
|
|
|
|
10
|
if ($min_xk&1) { $digit = $radix_minus_1 - $digit; } |
|
0
|
|
|
|
|
0
|
|
396
|
1
|
|
|
|
|
3
|
$min_x += $power * $digit; |
397
|
|
|
|
|
|
|
### min x digit (complemented): $digit |
398
|
|
|
|
|
|
|
### $min_x |
399
|
|
|
|
|
|
|
### $min_n |
400
|
|
|
|
|
|
|
} |
401
|
|
|
|
|
|
|
|
402
|
1
|
|
|
|
|
3
|
$power = int($power/$radix); |
403
|
1
|
|
|
|
|
3
|
$n_power = int($n_power/$radix); |
404
|
|
|
|
|
|
|
} |
405
|
|
|
|
|
|
|
### is: "$min_n at $min_x,$min_y to $max_n at $max_x,$max_y" |
406
|
1
|
|
|
|
|
7
|
return ($min_n, $max_n); |
407
|
|
|
|
|
|
|
} |
408
|
|
|
|
|
|
|
|
409
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
410
|
|
|
|
|
|
|
# levels |
411
|
|
|
|
|
|
|
|
412
|
5
|
|
|
5
|
|
2083
|
use Math::PlanePath::ZOrderCurve; |
|
5
|
|
|
|
|
14
|
|
|
5
|
|
|
|
|
286
|
|
413
|
|
|
|
|
|
|
*level_to_n_range = \&Math::PlanePath::ZOrderCurve::level_to_n_range; |
414
|
|
|
|
|
|
|
*n_to_level = \&Math::PlanePath::ZOrderCurve::n_to_level; |
415
|
|
|
|
|
|
|
|
416
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
417
|
|
|
|
|
|
|
1; |
418
|
|
|
|
|
|
|
__END__ |