line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::PlanePath::ImaginaryHalf; |
20
|
1
|
|
|
1
|
|
523
|
use 5.004; |
|
1
|
|
|
|
|
4
|
|
21
|
1
|
|
|
1
|
|
6
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
35
|
|
22
|
1
|
|
|
1
|
|
7
|
use Carp 'croak'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
66
|
|
23
|
|
|
|
|
|
|
#use List::Util 'max'; |
24
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
25
|
|
|
|
|
|
|
|
26
|
1
|
|
|
1
|
|
7
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
65
|
|
27
|
|
|
|
|
|
|
$VERSION = 128; |
28
|
1
|
|
|
1
|
|
7
|
use Math::PlanePath; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
41
|
|
29
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
30
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
33
|
1
|
|
|
|
|
57
|
'is_infinite', |
34
|
1
|
|
|
1
|
|
5
|
'round_nearest'; |
|
1
|
|
|
|
|
2
|
|
35
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
36
|
1
|
|
|
|
|
78
|
'digit_split_lowtohigh', |
37
|
1
|
|
|
1
|
|
460
|
'digit_join_lowtohigh'; |
|
1
|
|
|
|
|
2
|
|
38
|
|
|
|
|
|
|
|
39
|
1
|
|
|
1
|
|
499
|
use Math::PlanePath::ImaginaryBase; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
48
|
|
40
|
|
|
|
|
|
|
*_negaradix_range_digits_lowtohigh |
41
|
|
|
|
|
|
|
= \&Math::PlanePath::ImaginaryBase::_negaradix_range_digits_lowtohigh; |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
44
|
|
|
|
|
|
|
#use Smart::Comments; |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
|
47
|
1
|
|
|
1
|
|
7
|
use constant n_start => 0; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
53
|
|
48
|
1
|
|
|
1
|
|
6
|
use constant class_y_negative => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
97
|
|
49
|
|
|
|
|
|
|
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad12; |
50
|
|
|
|
|
|
|
|
51
|
1
|
|
|
|
|
115
|
use constant parameter_info_array => |
52
|
|
|
|
|
|
|
[ Math::PlanePath::Base::Digits::parameter_info_radix2(), |
53
|
|
|
|
|
|
|
{ |
54
|
|
|
|
|
|
|
name => 'digit_order', |
55
|
|
|
|
|
|
|
share_key => 'digit_order_XYX', |
56
|
|
|
|
|
|
|
display => 'Digit Order', |
57
|
|
|
|
|
|
|
type => 'enum', |
58
|
|
|
|
|
|
|
default => 'XYX', |
59
|
|
|
|
|
|
|
choices => ['XYX', |
60
|
|
|
|
|
|
|
'XXY', |
61
|
|
|
|
|
|
|
'YXX', |
62
|
|
|
|
|
|
|
'XnYX', |
63
|
|
|
|
|
|
|
'XnXY', |
64
|
|
|
|
|
|
|
'YXnX', |
65
|
|
|
|
|
|
|
], |
66
|
|
|
|
|
|
|
}, |
67
|
1
|
|
|
1
|
|
7
|
]; |
|
1
|
|
|
|
|
1
|
|
68
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
{ |
70
|
|
|
|
|
|
|
my %x_negative_at_n = (XYX => 2, |
71
|
|
|
|
|
|
|
XXY => 1, |
72
|
|
|
|
|
|
|
YXX => 2, |
73
|
|
|
|
|
|
|
XnYX => 0, |
74
|
|
|
|
|
|
|
XnXY => 0, |
75
|
|
|
|
|
|
|
YXnX => 1, |
76
|
|
|
|
|
|
|
); |
77
|
|
|
|
|
|
|
sub x_negative_at_n { |
78
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
79
|
0
|
|
|
|
|
0
|
return $self->{'radix'} ** $x_negative_at_n{$self->{'digit_order'}}; |
80
|
|
|
|
|
|
|
} |
81
|
|
|
|
|
|
|
} |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
# ENHANCE-ME: prove dY range |
84
|
1
|
|
|
1
|
|
7
|
use constant dy_maximum => 1; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
1454
|
|
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
{ |
87
|
|
|
|
|
|
|
my %absdx_minimum = (XYX => 1, |
88
|
|
|
|
|
|
|
XXY => 1, |
89
|
|
|
|
|
|
|
YXX => 0, # dX=0 at N=0 |
90
|
|
|
|
|
|
|
XnYX => 2, # dX=-2 at N=0 |
91
|
|
|
|
|
|
|
XnXY => 1, |
92
|
|
|
|
|
|
|
YXnX => 0, # dX=0 at N=0 |
93
|
|
|
|
|
|
|
); |
94
|
|
|
|
|
|
|
sub absdx_minimum { |
95
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
96
|
0
|
|
|
|
|
0
|
return $absdx_minimum{$self->{'digit_order'}}; |
97
|
|
|
|
|
|
|
} |
98
|
|
|
|
|
|
|
} |
99
|
|
|
|
|
|
|
{ |
100
|
|
|
|
|
|
|
my %absdy_minimum = (XYX => 0, # dY=0 at N=0 |
101
|
|
|
|
|
|
|
XXY => 0, # dY=0 at N=0 |
102
|
|
|
|
|
|
|
YXX => 1, |
103
|
|
|
|
|
|
|
XnYX => 0, # dY=0 at N=0 |
104
|
|
|
|
|
|
|
XnXY => 0, # dY=0 at N=0 |
105
|
|
|
|
|
|
|
YXnX => 1, |
106
|
|
|
|
|
|
|
); |
107
|
|
|
|
|
|
|
sub absdy_minimum { |
108
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
109
|
0
|
|
|
|
|
0
|
return $absdy_minimum{$self->{'digit_order'}}; |
110
|
|
|
|
|
|
|
} |
111
|
|
|
|
|
|
|
} |
112
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
# was this anything? |
114
|
|
|
|
|
|
|
# |
115
|
|
|
|
|
|
|
# sub dir4_minimum { |
116
|
|
|
|
|
|
|
# my ($self) = @_; |
117
|
|
|
|
|
|
|
# if ($self->{'digit_order'} eq 'zzXYX') { |
118
|
|
|
|
|
|
|
# return Math::NumSeq::PlanePathDelta::_delta_func_Dir4 |
119
|
|
|
|
|
|
|
# ($self->{'radix'}-1,-2); |
120
|
|
|
|
|
|
|
# } else { |
121
|
|
|
|
|
|
|
# return 0; |
122
|
|
|
|
|
|
|
# } |
123
|
|
|
|
|
|
|
# } |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
{ |
126
|
|
|
|
|
|
|
# radix>2 has a straight somewhere |
127
|
|
|
|
|
|
|
# radix=2 only has straight in XXY, XnXY |
128
|
|
|
|
|
|
|
my %turn_any_straight = (# XYX => 0, |
129
|
|
|
|
|
|
|
XXY => 1, |
130
|
|
|
|
|
|
|
# YXX => 0, |
131
|
|
|
|
|
|
|
XnXY => 1, |
132
|
|
|
|
|
|
|
# XnYX => 0, |
133
|
|
|
|
|
|
|
# YXnX => 0, |
134
|
|
|
|
|
|
|
); |
135
|
|
|
|
|
|
|
sub turn_any_straight { |
136
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
137
|
|
|
|
|
|
|
return ($self->{'radix'} > 2 |
138
|
0
|
|
0
|
|
|
0
|
|| $turn_any_straight{$self->{'digit_order'}}); |
139
|
|
|
|
|
|
|
} |
140
|
|
|
|
|
|
|
} |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_left_at_n { |
143
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
144
|
0
|
|
|
|
|
0
|
my $digit_order = $self->{'digit_order'}; |
145
|
0
|
|
|
|
|
0
|
my $radix = $self->{'radix'}; |
146
|
0
|
0
|
|
|
|
0
|
if ($digit_order eq 'XXY') { |
147
|
0
|
|
|
|
|
0
|
return $radix*$radix - 1; |
148
|
|
|
|
|
|
|
} |
149
|
0
|
0
|
0
|
|
|
0
|
if ($digit_order eq 'YXX' || $digit_order eq 'XnYX') { |
150
|
0
|
|
|
|
|
0
|
return $radix; |
151
|
|
|
|
|
|
|
} |
152
|
0
|
0
|
|
|
|
0
|
if ($digit_order eq 'XnXY') { |
153
|
0
|
|
|
|
|
0
|
return $radix*$radix ; |
154
|
|
|
|
|
|
|
} |
155
|
0
|
|
|
|
|
0
|
return $radix - 1; |
156
|
|
|
|
|
|
|
} |
157
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_right_at_n { |
158
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
159
|
0
|
|
|
|
|
0
|
my $digit_order = $self->{'digit_order'}; |
160
|
0
|
|
|
|
|
0
|
my $radix = $self->{'radix'}; |
161
|
0
|
0
|
|
|
|
0
|
if ($digit_order eq 'XXY') { |
162
|
0
|
|
|
|
|
0
|
return $radix*$radix; |
163
|
|
|
|
|
|
|
} |
164
|
0
|
0
|
|
|
|
0
|
if ($digit_order eq 'XnXY') { |
165
|
0
|
|
|
|
|
0
|
return $radix*$radix - 1; |
166
|
|
|
|
|
|
|
} |
167
|
0
|
0
|
0
|
|
|
0
|
if ($digit_order eq 'YXX' || $digit_order eq 'XnYX') { |
168
|
0
|
|
|
|
|
0
|
return $radix - 1; |
169
|
|
|
|
|
|
|
} |
170
|
0
|
|
|
|
|
0
|
return $radix; |
171
|
|
|
|
|
|
|
} |
172
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
175
|
|
|
|
|
|
|
my %digit_permutation = (XYX => [0,2,1], |
176
|
|
|
|
|
|
|
YXX => [2,0,1], |
177
|
|
|
|
|
|
|
XXY => [0,1,2], |
178
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
XnYX => [1,2,0], |
180
|
|
|
|
|
|
|
YXnX => [2,1,0], |
181
|
|
|
|
|
|
|
XnXY => [1,0,2], |
182
|
|
|
|
|
|
|
); |
183
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
sub new { |
185
|
8
|
|
|
8
|
1
|
2003
|
my $self = shift->SUPER::new(@_); |
186
|
|
|
|
|
|
|
|
187
|
8
|
|
|
|
|
24
|
my $radix = $self->{'radix'}; |
188
|
8
|
50
|
33
|
|
|
23
|
if (! defined $radix || $radix <= 2) { $radix = 2; } |
|
8
|
|
|
|
|
13
|
|
189
|
8
|
|
|
|
|
18
|
$self->{'radix'} = $radix; |
190
|
|
|
|
|
|
|
|
191
|
8
|
|
100
|
|
|
25
|
my $digit_order = ($self->{'digit_order'} ||= 'XYX'); |
192
|
8
|
|
33
|
|
|
25
|
$self->{'digit_permutation'} = $digit_permutation{$digit_order} |
193
|
|
|
|
|
|
|
|| croak "Unrecognised digit_order: ",$digit_order; |
194
|
|
|
|
|
|
|
|
195
|
8
|
|
|
|
|
17
|
return $self; |
196
|
|
|
|
|
|
|
} |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
sub n_to_xy { |
199
|
48
|
|
|
48
|
1
|
5525
|
my ($self, $n) = @_; |
200
|
|
|
|
|
|
|
### ImaginaryHalf n_to_xy(): $n |
201
|
|
|
|
|
|
|
|
202
|
48
|
50
|
|
|
|
122
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
203
|
48
|
50
|
|
|
|
134
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
204
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
{ |
206
|
48
|
|
|
|
|
91
|
my $int = int($n); |
|
48
|
|
|
|
|
77
|
|
207
|
|
|
|
|
|
|
### $int |
208
|
|
|
|
|
|
|
### $n |
209
|
48
|
50
|
|
|
|
91
|
if ($n != $int) { |
210
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
211
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
212
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat |
213
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
214
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
215
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
216
|
|
|
|
|
|
|
} |
217
|
48
|
|
|
|
|
72
|
$n = $int; # BigFloat int() gives BigInt, use that |
218
|
|
|
|
|
|
|
} |
219
|
|
|
|
|
|
|
|
220
|
48
|
|
|
|
|
82
|
my $radix = $self->{'radix'}; |
221
|
48
|
|
|
|
|
97
|
my $zero = ($n*0); # inherit bignum 0 |
222
|
|
|
|
|
|
|
|
223
|
48
|
|
|
|
|
128
|
my @xydigits = ([],[0],[]); |
224
|
48
|
|
|
|
|
95
|
my $digit_permutation = $digit_permutation{$self->{'digit_order'}}; |
225
|
48
|
|
|
|
|
117
|
my @ndigits = digit_split_lowtohigh($n, $radix); |
226
|
48
|
|
|
|
|
114
|
foreach my $i (0 .. $#ndigits) { |
227
|
102
|
|
|
|
|
180
|
my $p = $digit_permutation->[$i%3]; |
228
|
102
|
100
|
|
|
|
124
|
push @{$xydigits[$p]}, $ndigits[$i], ($p < 2 ? (0) : ()); |
|
102
|
|
|
|
|
301
|
|
229
|
|
|
|
|
|
|
} |
230
|
|
|
|
|
|
|
|
231
|
48
|
|
|
|
|
115
|
return (digit_join_lowtohigh ($xydigits[0], $radix, $zero) |
232
|
|
|
|
|
|
|
- digit_join_lowtohigh ($xydigits[1], $radix, $zero), |
233
|
|
|
|
|
|
|
digit_join_lowtohigh ($xydigits[2], $radix, $zero)); |
234
|
|
|
|
|
|
|
} |
235
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
sub xy_to_n { |
237
|
48
|
|
|
48
|
1
|
4196
|
my ($self, $x, $y) = @_; |
238
|
|
|
|
|
|
|
### ImaginaryHalf xy_to_n(): "$x, $y" |
239
|
|
|
|
|
|
|
|
240
|
48
|
|
|
|
|
137
|
$y = round_nearest ($y); |
241
|
48
|
50
|
|
|
|
105
|
if (is_infinite($y)) { return $y; } |
|
0
|
|
|
|
|
0
|
|
242
|
48
|
50
|
|
|
|
104
|
if ($y < 0) { return undef; } |
|
0
|
|
|
|
|
0
|
|
243
|
|
|
|
|
|
|
|
244
|
48
|
|
|
|
|
94
|
$x = round_nearest ($x); |
245
|
48
|
50
|
|
|
|
103
|
if (is_infinite($x)) { return $x; } |
|
0
|
|
|
|
|
0
|
|
246
|
|
|
|
|
|
|
|
247
|
48
|
|
|
|
|
82
|
my $zero = ($x * 0 * $y); # inherit bignum 0 |
248
|
48
|
|
|
|
|
84
|
my $radix = $self->{'radix'}; |
249
|
48
|
|
|
|
|
117
|
my @ydigits = digit_split_lowtohigh($y, $radix); |
250
|
48
|
|
|
|
|
100
|
my $digit_permutation = $digit_permutation{$self->{'digit_order'}}; |
251
|
|
|
|
|
|
|
|
252
|
48
|
|
|
|
|
70
|
my @ndigits; # digits low to high |
253
|
|
|
|
|
|
|
my @nd; |
254
|
48
|
|
100
|
|
|
117
|
while ($x || @ydigits) { |
255
|
42
|
|
|
|
|
126
|
$nd[0] = _divrem_mutate ($x, $radix); |
256
|
42
|
|
|
|
|
82
|
$x = -$x; |
257
|
42
|
|
|
|
|
78
|
$nd[1] = _divrem_mutate ($x, $radix); |
258
|
42
|
|
|
|
|
60
|
$x = -$x; |
259
|
42
|
|
100
|
|
|
109
|
$nd[2] = shift @ydigits || 0; |
260
|
|
|
|
|
|
|
|
261
|
42
|
|
|
|
|
199
|
push @ndigits, |
262
|
|
|
|
|
|
|
$nd[$digit_permutation->[0]], |
263
|
|
|
|
|
|
|
$nd[$digit_permutation->[1]], |
264
|
|
|
|
|
|
|
$nd[$digit_permutation->[2]]; |
265
|
|
|
|
|
|
|
} |
266
|
48
|
|
|
|
|
124
|
return digit_join_lowtohigh (\@ndigits, $radix, $zero); |
267
|
|
|
|
|
|
|
} |
268
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
# Nlevel=2^level-1 |
270
|
|
|
|
|
|
|
# 66666666 55 55 5555 7.[16].7 |
271
|
|
|
|
|
|
|
# 66666666 55 55 5555 7.[16].7 |
272
|
|
|
|
|
|
|
# 66666666 33 22 4444 7.[16].7 |
273
|
|
|
|
|
|
|
# 9 66666666 33 01 4444 7.[16].7 |
274
|
|
|
|
|
|
|
# ^ ^ ^ ^ ^ ^ ^ |
275
|
|
|
|
|
|
|
# -11 -3 -1 1 2 6 22 |
276
|
|
|
|
|
|
|
# |
277
|
|
|
|
|
|
|
# X=1 when level=1 |
278
|
|
|
|
|
|
|
# X=1+1=2 when level=4 |
279
|
|
|
|
|
|
|
# X=2+4=6 when level=7 |
280
|
|
|
|
|
|
|
# X=6+16=22 when level=10 |
281
|
|
|
|
|
|
|
# |
282
|
|
|
|
|
|
|
# X=0-2=-2 when level=3 |
283
|
|
|
|
|
|
|
# X=-2-8=-10 when level=6 |
284
|
|
|
|
|
|
|
# X=-10-32=-42 when level=9 |
285
|
|
|
|
|
|
|
# |
286
|
|
|
|
|
|
|
# Y=1 k=0 want level=2 |
287
|
|
|
|
|
|
|
# Y=2 k=1 want level=5 |
288
|
|
|
|
|
|
|
# Y=4 k=2 want level=8 |
289
|
|
|
|
|
|
|
# |
290
|
|
|
|
|
|
|
# X = 1 + 1 + 4 + 16 + 4^k |
291
|
|
|
|
|
|
|
# = 1 + (4^(k+1) - 1) / (4-1) |
292
|
|
|
|
|
|
|
# X*(R2-1) = (R2-1) + R2^(k+1) - 1 |
293
|
|
|
|
|
|
|
# X*(R2-1) + 1 - (R2-1) = R2^(k+1) |
294
|
|
|
|
|
|
|
# R2^(k+1) = (X-1)*(R2-1) + 1 |
295
|
|
|
|
|
|
|
# k+1 = round down pow (X-1)*(R2-1) + 1 |
296
|
|
|
|
|
|
|
# (1-1)*3+1=1 k+1=0 want level=1 |
297
|
|
|
|
|
|
|
# (2-1)*3+1=4 k+1=1 want level=4 |
298
|
|
|
|
|
|
|
# (6-1)*3+1=16 k+1=2 want level=7 |
299
|
|
|
|
|
|
|
# (22-1)*3+1=64 k+1=3 want level=10 |
300
|
|
|
|
|
|
|
# |
301
|
|
|
|
|
|
|
# X = 1 + 2 + 8 + 32 + ... 2*4^k |
302
|
|
|
|
|
|
|
# = 1 + 2*(4^(k+1) - 1) / (4-1) |
303
|
|
|
|
|
|
|
# X = 1 + R*(R2^(k+1) - 1) / (R2-1) |
304
|
|
|
|
|
|
|
# R*(R2^(k+1) - 1) / (R2-1) = X-1 |
305
|
|
|
|
|
|
|
# R2^(k+1) - 1 = (X-1)*(R2-1)/R |
306
|
|
|
|
|
|
|
# R2^(k+2) - R2 = (X-1)*(R2-1)*R |
307
|
|
|
|
|
|
|
# R2^(k+2) = (X-1)*(R2-1)*R + R2 |
308
|
|
|
|
|
|
|
# (1-1)*3*2+4=4 k+2=1 want level=3 |
309
|
|
|
|
|
|
|
# (3-1)*3*2+4=16 k+2=2 want level=6 |
310
|
|
|
|
|
|
|
# (11-1)*3*2+4=64 k+2=3 want level=9 |
311
|
|
|
|
|
|
|
|
312
|
|
|
|
|
|
|
# exact |
313
|
|
|
|
|
|
|
sub rect_to_n_range { |
314
|
96
|
|
|
96
|
1
|
13038
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
315
|
|
|
|
|
|
|
### ImaginaryBase rect_to_n_range(): "$x1,$y1 $x2,$y2" |
316
|
|
|
|
|
|
|
|
317
|
96
|
|
|
|
|
175
|
my $zero = $x1 * 0 * $x2 * $y1 * $y2; |
318
|
|
|
|
|
|
|
|
319
|
96
|
|
|
|
|
275
|
$y1 = round_nearest($y1); |
320
|
96
|
|
|
|
|
192
|
$y2 = round_nearest($y2); |
321
|
96
|
50
|
|
|
|
205
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
322
|
96
|
50
|
|
|
|
178
|
if ($y2 < 0) { |
323
|
|
|
|
|
|
|
### rectangle all Y negative, no points ... |
324
|
0
|
|
|
|
|
0
|
return (1, 0); |
325
|
|
|
|
|
|
|
} |
326
|
96
|
50
|
|
|
|
196
|
if (is_infinite($y2)) { |
327
|
0
|
|
|
|
|
0
|
return (0, $y2); |
328
|
|
|
|
|
|
|
} |
329
|
96
|
50
|
|
|
|
222
|
if ($y1 < 0) { $y1 *= 0; } # "*=" to preserve bigint y1 |
|
0
|
|
|
|
|
0
|
|
330
|
|
|
|
|
|
|
|
331
|
96
|
|
|
|
|
188
|
$x1 = round_nearest($x1); |
332
|
96
|
|
|
|
|
239
|
$x2 = round_nearest($x2); |
333
|
|
|
|
|
|
|
|
334
|
96
|
|
|
|
|
183
|
my $radix = $self->{'radix'}; |
335
|
|
|
|
|
|
|
|
336
|
96
|
|
|
|
|
270
|
my ($min_xdigits, $max_xdigits) |
337
|
|
|
|
|
|
|
= _negaradix_range_digits_lowtohigh($x1,$x2, $radix); |
338
|
96
|
50
|
|
|
|
199
|
unless (defined $min_xdigits) { |
339
|
0
|
|
|
|
|
0
|
return (0, $max_xdigits); # infinity |
340
|
|
|
|
|
|
|
} |
341
|
|
|
|
|
|
|
|
342
|
96
|
|
|
|
|
207
|
my @min_ydigits = digit_split_lowtohigh ($y1, $radix); |
343
|
96
|
|
|
|
|
185
|
my @max_ydigits = digit_split_lowtohigh ($y2, $radix); |
344
|
|
|
|
|
|
|
|
345
|
96
|
|
|
|
|
207
|
my $digit_permutation = $digit_permutation{$self->{'digit_order'}}; |
346
|
|
|
|
|
|
|
my @min_ndigits |
347
|
96
|
|
|
|
|
194
|
= _digit_permutation_interleave ($digit_permutation, |
348
|
|
|
|
|
|
|
$min_xdigits, \@min_ydigits); |
349
|
|
|
|
|
|
|
my @max_ndigits |
350
|
96
|
|
|
|
|
191
|
= _digit_permutation_interleave ($digit_permutation, |
351
|
|
|
|
|
|
|
$max_xdigits, \@max_ydigits); |
352
|
|
|
|
|
|
|
|
353
|
96
|
|
|
|
|
258
|
return (digit_join_lowtohigh (\@min_ndigits, $radix, $zero), |
354
|
|
|
|
|
|
|
digit_join_lowtohigh (\@max_ndigits, $radix, $zero)); |
355
|
|
|
|
|
|
|
} |
356
|
|
|
|
|
|
|
|
357
|
|
|
|
|
|
|
sub _digit_permutation_interleave { |
358
|
192
|
|
|
192
|
|
318
|
my ($digit_permutation, $xaref, $yaref) = @_; |
359
|
192
|
|
|
|
|
259
|
my @ret; |
360
|
|
|
|
|
|
|
my @d; |
361
|
192
|
|
|
|
|
585
|
foreach (0 .. max($#$xaref,2*$#$yaref)) { |
362
|
480
|
|
100
|
|
|
1179
|
$d[0] = shift @$xaref || 0; |
363
|
480
|
|
100
|
|
|
1092
|
$d[1] = shift @$xaref || 0; |
364
|
480
|
|
100
|
|
|
1055
|
$d[2] = shift @$yaref || 0; |
365
|
480
|
|
|
|
|
1022
|
push @ret, |
366
|
|
|
|
|
|
|
$d[$digit_permutation->[0]], |
367
|
|
|
|
|
|
|
$d[$digit_permutation->[1]], |
368
|
|
|
|
|
|
|
$d[$digit_permutation->[2]]; |
369
|
|
|
|
|
|
|
} |
370
|
192
|
|
|
|
|
575
|
return @ret; |
371
|
|
|
|
|
|
|
} |
372
|
|
|
|
|
|
|
|
373
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
374
|
|
|
|
|
|
|
# levels |
375
|
|
|
|
|
|
|
|
376
|
|
|
|
|
|
|
*level_to_n_range = \&Math::PlanePath::ImaginaryBase::level_to_n_range; |
377
|
|
|
|
|
|
|
*n_to_level = \&Math::PlanePath::ImaginaryBase::n_to_level; |
378
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
380
|
|
|
|
|
|
|
1; |
381
|
|
|
|
|
|
|
__END__ |