| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# math-image --path=FilledRings --all --output=numbers_dash --size=70x30 |
|
20
|
|
|
|
|
|
|
# |
|
21
|
|
|
|
|
|
|
# offset 0 to 1 |
|
22
|
|
|
|
|
|
|
# same PixelRings fractional offset for midpoint |
|
23
|
|
|
|
|
|
|
# |
|
24
|
|
|
|
|
|
|
# default 0.5 |-------int-------| 0.5 |
|
25
|
|
|
|
|
|
|
# |------------------| 0 |
|
26
|
|
|
|
|
|
|
# |------------------| 0.99 or 1.0 |
|
27
|
|
|
|
|
|
|
# |
|
28
|
|
|
|
|
|
|
# default 0 |-------int-------|--------int-------| |
|
29
|
|
|
|
|
|
|
# |------------------| 0.5 |
|
30
|
|
|
|
|
|
|
# |------------------| 0.99 or 1.0 |
|
31
|
|
|
|
|
|
|
# |
|
32
|
|
|
|
|
|
|
# innermost |
|
33
|
|
|
|
|
|
|
# |-------0-------|-------1--------| |
|
34
|
|
|
|
|
|
|
# |
|
35
|
|
|
|
|
|
|
# |
|
36
|
|
|
|
|
|
|
# offset -0.5 to +0.5 |
|
37
|
|
|
|
|
|
|
# h-0.5 < R < h+0.5 |
|
38
|
|
|
|
|
|
|
# h-0.5 <= R-0.5 < h+0.5 |
|
39
|
|
|
|
|
|
|
# h-0.5 < R+0.5 <= h+0.5 |
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
# A036702 count Gaussian |z| <= n |
|
42
|
|
|
|
|
|
|
# A036706 count Gaussian n-1/2 < |z| < n+1/2 with a>0,b>=0, so 1/4 |
|
43
|
|
|
|
|
|
|
# A036707 count Gaussian |z| < n+1/2 with b>=0, so 1/2 plane |
|
44
|
|
|
|
|
|
|
# A036708 count Gaussian n-1/2 < |z| < n+1/2 with b>=0, so 1/4 |
|
45
|
|
|
|
|
|
|
# |
|
46
|
|
|
|
|
|
|
# A000328 num points <= circle radius n |
|
47
|
|
|
|
|
|
|
# 1, 5, 13, 29, 49, 81, 113, 149, 197, 253, 317, 377, 441, |
|
48
|
|
|
|
|
|
|
# A046109 num points == circle radius n |
|
49
|
|
|
|
|
|
|
# A051132 num points < circle radius n |
|
50
|
|
|
|
|
|
|
# 0, 1, 9, 25, 45, 69, 109, 145, 193, 249, 305, 373, 437, |
|
51
|
|
|
|
|
|
|
# A057655 num points x^2+y^2 <= n |
|
52
|
|
|
|
|
|
|
# 1, 5, 9, 9, 13, 21, 21, 21, 25, 29, 37, 37, 37, 45, 45, |
|
53
|
|
|
|
|
|
|
# |
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
package Math::PlanePath::FilledRings; |
|
56
|
1
|
|
|
1
|
|
9146
|
use 5.004; |
|
|
1
|
|
|
|
|
9
|
|
|
57
|
1
|
|
|
1
|
|
7
|
use strict; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
34
|
|
|
58
|
|
|
|
|
|
|
|
|
59
|
1
|
|
|
1
|
|
6
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
63
|
|
|
60
|
|
|
|
|
|
|
$VERSION = 128; |
|
61
|
1
|
|
|
1
|
|
653
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
53
|
|
|
62
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
63
|
|
|
|
|
|
|
*_divrem = \&Math::PlanePath::_divrem; |
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
66
|
1
|
|
|
|
|
41
|
'is_infinite', |
|
67
|
1
|
|
|
1
|
|
7
|
'round_nearest'; |
|
|
1
|
|
|
|
|
2
|
|
|
68
|
|
|
|
|
|
|
|
|
69
|
1
|
|
|
1
|
|
432
|
use Math::PlanePath::SacksSpiral; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
70
|
|
|
70
|
|
|
|
|
|
|
*_rect_to_radius_corners = \&Math::PlanePath::SacksSpiral::_rect_to_radius_corners; |
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
73
|
|
|
|
|
|
|
#use Smart::Comments; |
|
74
|
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
# N(r) = 1 + 4*sum floor(r^2/(4i+1)) - floor(r^2/(4i+3)) |
|
77
|
|
|
|
|
|
|
# |
|
78
|
|
|
|
|
|
|
# N(r+1) - N(r) |
|
79
|
|
|
|
|
|
|
# = 1 + 4*sum floor((r+1)^2/(4i+1)) - floor((r+1)^2/(4i+3)) |
|
80
|
|
|
|
|
|
|
# - 1 + 4*sum floor(r^2/(4i+1)) - floor(r^2/(4i+3)) |
|
81
|
|
|
|
|
|
|
# = 4*sum floor(((r+1)^2-r^2)/(4i+1)) - floor(((r+1)^2-r^2)/(4i+3)) |
|
82
|
|
|
|
|
|
|
# = 4*sum floor((2r+1)/(4i+1)) - floor((2r+1)/(4i+3)) |
|
83
|
|
|
|
|
|
|
# |
|
84
|
|
|
|
|
|
|
# _cumul[0] index=0 is r=1/2 |
|
85
|
|
|
|
|
|
|
# r = index+1/2 |
|
86
|
|
|
|
|
|
|
# 2r+1 = 2(index+1/2)+1 |
|
87
|
|
|
|
|
|
|
# = 2*index+1+1 |
|
88
|
|
|
|
|
|
|
# = 2*index+2 |
|
89
|
|
|
|
|
|
|
# |
|
90
|
|
|
|
|
|
|
# 2r+1 >= 4i+1 |
|
91
|
|
|
|
|
|
|
# 2r >= 4i |
|
92
|
|
|
|
|
|
|
# i <= (2*index+2)/2 |
|
93
|
|
|
|
|
|
|
# i <= index+1 |
|
94
|
|
|
|
|
|
|
# |
|
95
|
|
|
|
|
|
|
# r=3.5 |
|
96
|
|
|
|
|
|
|
# sqrt(3*3+3*3) = 4.24 out |
|
97
|
|
|
|
|
|
|
# sqrt(3*3+2*2) = 3.60 out |
|
98
|
|
|
|
|
|
|
# sqrt(3*3+1*1) = 3.16 in |
|
99
|
|
|
|
|
|
|
# |
|
100
|
|
|
|
|
|
|
# * * * |
|
101
|
|
|
|
|
|
|
# * * * * * |
|
102
|
|
|
|
|
|
|
# * * * * * * * |
|
103
|
|
|
|
|
|
|
# * * * o * * * 3+5+7+7+7+5+3 = 37 |
|
104
|
|
|
|
|
|
|
# * * * * * * * |
|
105
|
|
|
|
|
|
|
# * * * * * |
|
106
|
|
|
|
|
|
|
# * * * |
|
107
|
|
|
|
|
|
|
# |
|
108
|
|
|
|
|
|
|
# N(r) = 1 + 4*( floor(12.25/1)-floor(12.25/3) |
|
109
|
|
|
|
|
|
|
# + floor(12.25/5)-floor(12.25/7) |
|
110
|
|
|
|
|
|
|
# + floor(12.25/9)-floor(12.25/11) ) |
|
111
|
|
|
|
|
|
|
# = 37 |
|
112
|
|
|
|
|
|
|
# |
|
113
|
|
|
|
|
|
|
# (index+1/2)^2 = index^2 + index + 1/4 |
|
114
|
|
|
|
|
|
|
# >= index*(index+1) |
|
115
|
|
|
|
|
|
|
# (end+1 + 1/2)^2 |
|
116
|
|
|
|
|
|
|
# = (end+3/2)^2 |
|
117
|
|
|
|
|
|
|
# = end^2 + 3*end + 9/4 |
|
118
|
|
|
|
|
|
|
# = end*(end+3) + 2 + 1/4 |
|
119
|
|
|
|
|
|
|
# |
|
120
|
|
|
|
|
|
|
# (r+1/2)^2 = r^2+r+1/4 floor=r*(r+1) |
|
121
|
|
|
|
|
|
|
# (r-1/2)^2 = r^2-r+1/4 ceil=r*(r-1)+1 |
|
122
|
|
|
|
|
|
|
|
|
123
|
1
|
|
|
|
|
56
|
use constant parameter_info_array => |
|
124
|
|
|
|
|
|
|
[ |
|
125
|
|
|
|
|
|
|
Math::PlanePath::Base::Generic::parameter_info_nstart1(), |
|
126
|
1
|
|
|
1
|
|
8
|
]; |
|
|
1
|
|
|
|
|
2
|
|
|
127
|
|
|
|
|
|
|
|
|
128
|
1
|
|
|
1
|
|
5
|
use constant n_frac_discontinuity => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
42
|
|
|
129
|
1
|
|
|
1
|
|
5
|
use constant xy_is_visited => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
41
|
|
|
130
|
|
|
|
|
|
|
|
|
131
|
1
|
|
|
1
|
|
6
|
use constant dx_minimum => -1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
38
|
|
|
132
|
1
|
|
|
1
|
|
5
|
use constant dx_maximum => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
42
|
|
|
133
|
1
|
|
|
1
|
|
5
|
use constant dy_minimum => -1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
38
|
|
|
134
|
1
|
|
|
1
|
|
15
|
use constant dy_maximum => 1; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
127
|
|
|
135
|
|
|
|
|
|
|
sub x_negative_at_n { |
|
136
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
137
|
0
|
|
|
|
|
0
|
return $self->n_start + 4; |
|
138
|
|
|
|
|
|
|
} |
|
139
|
|
|
|
|
|
|
sub y_negative_at_n { |
|
140
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
141
|
0
|
|
|
|
|
0
|
return $self->n_start + 6; |
|
142
|
|
|
|
|
|
|
} |
|
143
|
|
|
|
|
|
|
*_UNDOCUMENTED__dxdy_list = \&Math::PlanePath::_UNDOCUMENTED__dxdy_list_eight; |
|
144
|
1
|
|
|
1
|
|
7
|
use constant dsumxy_minimum => -2; # diagonals |
|
|
1
|
|
|
|
|
10
|
|
|
|
1
|
|
|
|
|
49
|
|
|
145
|
1
|
|
|
1
|
|
7
|
use constant dsumxy_maximum => 2; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
50
|
|
|
146
|
1
|
|
|
1
|
|
6
|
use constant ddiffxy_minimum => -2; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
54
|
|
|
147
|
1
|
|
|
1
|
|
6
|
use constant ddiffxy_maximum => 2; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
55
|
|
|
148
|
1
|
|
|
1
|
|
7
|
use constant dir_maximum_dxdy => (1,-1); # South-East |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
1121
|
|
|
149
|
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_right_at_n { |
|
151
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
152
|
0
|
|
|
|
|
0
|
return $self->n_start + 40; |
|
153
|
|
|
|
|
|
|
} |
|
154
|
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
156
|
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
sub new { |
|
158
|
3
|
|
|
3
|
1
|
1004
|
my $self = shift->SUPER::new(@_); |
|
159
|
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
# parameters |
|
161
|
3
|
50
|
|
|
|
15
|
if (! defined $self->{'n_start'}) { |
|
162
|
3
|
|
|
|
|
13
|
$self->{'n_start'} = $self->default_n_start; |
|
163
|
|
|
|
|
|
|
} |
|
164
|
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
# internals |
|
166
|
3
|
|
|
|
|
10
|
$self->{'cumul'} = [ 1 ]; # N=0 basis |
|
167
|
3
|
|
50
|
|
|
20
|
$self->{'offset'} ||= 0; |
|
168
|
|
|
|
|
|
|
|
|
169
|
3
|
|
|
|
|
9
|
return $self; |
|
170
|
|
|
|
|
|
|
} |
|
171
|
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
sub _cumul_extend { |
|
173
|
55
|
|
|
55
|
|
187788
|
my ($self) = @_; |
|
174
|
|
|
|
|
|
|
### _cumul_extend() ... |
|
175
|
|
|
|
|
|
|
|
|
176
|
55
|
|
|
|
|
109
|
my $cumul = $self->{'cumul'}; |
|
177
|
55
|
|
|
|
|
104
|
my $r2 = ($#$cumul + 3) * $#$cumul + 2; |
|
178
|
55
|
|
|
|
|
93
|
my $c = 0; |
|
179
|
55
|
|
|
|
|
131
|
for (my $d = 1; $d <= $r2; $d += 4) { |
|
180
|
11737
|
|
|
|
|
23223
|
$c += int($r2/$d) - int($r2/($d+2)); |
|
181
|
|
|
|
|
|
|
} |
|
182
|
55
|
|
|
|
|
156
|
push @$cumul, 4*$c + 1; |
|
183
|
|
|
|
|
|
|
### $cumul |
|
184
|
|
|
|
|
|
|
} |
|
185
|
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
sub n_to_xy { |
|
187
|
27
|
|
|
27
|
1
|
1761
|
my ($self, $n) = @_; |
|
188
|
|
|
|
|
|
|
### FilledRings n_to_xy(): $n |
|
189
|
|
|
|
|
|
|
|
|
190
|
27
|
|
|
|
|
53
|
$n = $n - $self->{'n_start'}; # to N=0 basis, warning if $n==undef |
|
191
|
27
|
100
|
|
|
|
56
|
if ($n <= 1) { |
|
192
|
5
|
50
|
|
|
|
12
|
if ($n < 0) { |
|
193
|
0
|
|
|
|
|
0
|
return; |
|
194
|
|
|
|
|
|
|
} else { |
|
195
|
5
|
|
|
|
|
19
|
return ($n, 0); # 0<=N<=1 |
|
196
|
|
|
|
|
|
|
} |
|
197
|
|
|
|
|
|
|
} |
|
198
|
22
|
50
|
|
|
|
54
|
if (is_infinite($n)) { |
|
199
|
0
|
|
|
|
|
0
|
return ($n,$n); |
|
200
|
|
|
|
|
|
|
} |
|
201
|
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
{ |
|
203
|
|
|
|
|
|
|
# ENHANCE-ME: direction of N+1 from the cumulative lookup |
|
204
|
22
|
|
|
|
|
39
|
my $int = int($n); |
|
|
22
|
|
|
|
|
47
|
|
|
205
|
22
|
100
|
|
|
|
44
|
if ($n != $int) { |
|
206
|
6
|
|
|
|
|
9
|
my $frac = $n - $int; |
|
207
|
6
|
|
|
|
|
24
|
my ($x1,$y1) = $self->n_to_xy($int + $self->{'n_start'}); |
|
208
|
6
|
|
|
|
|
19
|
my ($x2,$y2) = $self->n_to_xy($int+1 + $self->{'n_start'}); |
|
209
|
6
|
100
|
66
|
|
|
31
|
if ($y2 == 0 && $x2 > 0) { $x2 -= 1; } |
|
|
3
|
|
|
|
|
6
|
|
|
210
|
6
|
|
|
|
|
10
|
my $dx = $x2-$x1; |
|
211
|
6
|
|
|
|
|
11
|
my $dy = $y2-$y1; |
|
212
|
6
|
|
|
|
|
25
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
|
213
|
|
|
|
|
|
|
} |
|
214
|
16
|
|
|
|
|
24
|
$n = $int; |
|
215
|
|
|
|
|
|
|
} |
|
216
|
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
### search cumul for: "n=$n" |
|
218
|
16
|
|
|
|
|
30
|
my $cumul = $self->{'cumul'}; |
|
219
|
16
|
|
|
|
|
22
|
my $r = 1; |
|
220
|
16
|
|
|
|
|
27
|
for (;;) { |
|
221
|
32
|
100
|
|
|
|
58
|
if ($r > $#$cumul) { |
|
222
|
4
|
|
|
|
|
8
|
_cumul_extend ($self); |
|
223
|
|
|
|
|
|
|
} |
|
224
|
32
|
100
|
|
|
|
59
|
if ($cumul->[$r] > $n) { |
|
225
|
16
|
|
|
|
|
27
|
last; |
|
226
|
|
|
|
|
|
|
} |
|
227
|
16
|
|
|
|
|
22
|
$r++; |
|
228
|
|
|
|
|
|
|
} |
|
229
|
|
|
|
|
|
|
### $r |
|
230
|
|
|
|
|
|
|
|
|
231
|
16
|
|
|
|
|
27
|
$n -= $cumul->[$r-1]; |
|
232
|
16
|
|
|
|
|
29
|
my $len = $cumul->[$r] - $cumul->[$r-1]; # length of this ring |
|
233
|
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
### cumul: "$cumul->[$r-1] to $cumul->[$r]" |
|
235
|
|
|
|
|
|
|
### $len |
|
236
|
|
|
|
|
|
|
### n rem: $n |
|
237
|
|
|
|
|
|
|
|
|
238
|
16
|
|
|
|
|
25
|
$len /= 4; # length of a quadrant of this ring |
|
239
|
16
|
|
|
|
|
41
|
(my $quadrant, $n) = _divrem ($n, $len); |
|
240
|
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
### len of quadrant: $len |
|
242
|
|
|
|
|
|
|
### $quadrant |
|
243
|
|
|
|
|
|
|
### n into quadrant: $n |
|
244
|
|
|
|
|
|
|
### assert: $quadrant >= 0 |
|
245
|
|
|
|
|
|
|
### assert: $quadrant < 4 |
|
246
|
|
|
|
|
|
|
|
|
247
|
16
|
|
|
|
|
27
|
my $rev; |
|
248
|
16
|
100
|
|
|
|
38
|
if ($rev = ($n > $len/2)) { |
|
249
|
3
|
|
|
|
|
11
|
$n = $len - $n; |
|
250
|
|
|
|
|
|
|
} |
|
251
|
|
|
|
|
|
|
### $rev |
|
252
|
|
|
|
|
|
|
### $n |
|
253
|
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
# my $rhi = ($r+1)*$r; |
|
255
|
|
|
|
|
|
|
# my $rlo = ($r-1)*$r+1; |
|
256
|
|
|
|
|
|
|
|
|
257
|
16
|
|
|
|
|
38
|
my $rlo = ($r-0.5+$self->{'offset'})**2; |
|
258
|
16
|
|
|
|
|
32
|
my $rhi = ($r+0.5+$self->{'offset'})**2; |
|
259
|
16
|
|
|
|
|
31
|
my $x = $r; |
|
260
|
16
|
|
|
|
|
23
|
my $y = 0; |
|
261
|
16
|
|
|
|
|
38
|
while ($n > 0) { |
|
262
|
|
|
|
|
|
|
### at: "$x,$y n=$n" |
|
263
|
|
|
|
|
|
|
|
|
264
|
10
|
|
|
|
|
12
|
$y++; |
|
265
|
|
|
|
|
|
|
### inc y to: $y |
|
266
|
|
|
|
|
|
|
|
|
267
|
10
|
50
|
|
|
|
25
|
if ($x*$x + $y*$y > $rhi) { |
|
268
|
0
|
|
|
|
|
0
|
$x--; |
|
269
|
|
|
|
|
|
|
### dec x to: $x |
|
270
|
|
|
|
|
|
|
### assert: $x*$x + $y*$y <= $rhi |
|
271
|
|
|
|
|
|
|
### assert: $x*$x + $y*$y >= $rlo |
|
272
|
|
|
|
|
|
|
} |
|
273
|
10
|
|
|
|
|
16
|
$n--; |
|
274
|
10
|
50
|
|
|
|
22
|
last if $n <= 0; |
|
275
|
|
|
|
|
|
|
|
|
276
|
0
|
0
|
|
|
|
0
|
if (($x-1)*($x-1) + $y*$y >= $rlo) { |
|
277
|
|
|
|
|
|
|
### another dec x to: $x |
|
278
|
0
|
|
|
|
|
0
|
$x--; |
|
279
|
0
|
|
|
|
|
0
|
$n--; |
|
280
|
0
|
0
|
|
|
|
0
|
last if $n <= 0; |
|
281
|
|
|
|
|
|
|
} |
|
282
|
|
|
|
|
|
|
} |
|
283
|
|
|
|
|
|
|
|
|
284
|
|
|
|
|
|
|
# if ($n) { |
|
285
|
|
|
|
|
|
|
# ### n frac: $n |
|
286
|
|
|
|
|
|
|
# } |
|
287
|
|
|
|
|
|
|
|
|
288
|
16
|
100
|
|
|
|
33
|
if ($rev) { |
|
289
|
3
|
|
|
|
|
7
|
($x,$y) = ($y,$x); |
|
290
|
|
|
|
|
|
|
} |
|
291
|
16
|
100
|
|
|
|
42
|
if ($quadrant & 2) { |
|
292
|
4
|
|
|
|
|
9
|
$x = -$x; |
|
293
|
4
|
|
|
|
|
43
|
$y = -$y; |
|
294
|
|
|
|
|
|
|
} |
|
295
|
16
|
100
|
|
|
|
35
|
if ($quadrant & 1) { |
|
296
|
8
|
|
|
|
|
84
|
($x,$y) = (-$y, $x); |
|
297
|
|
|
|
|
|
|
} |
|
298
|
|
|
|
|
|
|
### return: "$x, $y" |
|
299
|
16
|
|
|
|
|
42
|
return ($x, $y); |
|
300
|
|
|
|
|
|
|
} |
|
301
|
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
# h=x^2+y^2 |
|
304
|
|
|
|
|
|
|
# h >= (r-1/2)^2 |
|
305
|
|
|
|
|
|
|
# sqrt(h) >= r-1/2 |
|
306
|
|
|
|
|
|
|
# sqrt(h)+1/2 >= r |
|
307
|
|
|
|
|
|
|
# r = int (sqrt(h)+1/2) |
|
308
|
|
|
|
|
|
|
# = int( (2*sqrt(h)+1)/2 } |
|
309
|
|
|
|
|
|
|
# = int( (sqrt(4*h) + 1)/2 } |
|
310
|
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
sub xy_to_n { |
|
312
|
7
|
|
|
7
|
1
|
554
|
my ($self, $x, $y) = @_; |
|
313
|
|
|
|
|
|
|
### FilledRings xy_to_n(): "$x, $y" |
|
314
|
7
|
|
|
|
|
19
|
$x = round_nearest ($x); |
|
315
|
7
|
|
|
|
|
13
|
$y = round_nearest ($y); |
|
316
|
|
|
|
|
|
|
|
|
317
|
7
|
100
|
66
|
|
|
24
|
if ($x == 0 && $y == 0) { |
|
318
|
1
|
|
|
|
|
4
|
return $self->{'n_start'}; |
|
319
|
|
|
|
|
|
|
} |
|
320
|
|
|
|
|
|
|
|
|
321
|
6
|
|
|
|
|
20
|
my $r = int ((sqrt(4*($x*$x+$y*$y)) + 1) / 2); |
|
322
|
|
|
|
|
|
|
### $r |
|
323
|
6
|
50
|
|
|
|
18
|
if (is_infinite($r)) { |
|
324
|
0
|
|
|
|
|
0
|
return undef; |
|
325
|
|
|
|
|
|
|
} |
|
326
|
|
|
|
|
|
|
|
|
327
|
6
|
|
|
|
|
13
|
my $cumul = $self->{'cumul'}; |
|
328
|
6
|
|
|
|
|
17
|
while ($#$cumul < $r) { |
|
329
|
0
|
|
|
|
|
0
|
_cumul_extend ($self); |
|
330
|
|
|
|
|
|
|
} |
|
331
|
6
|
|
|
|
|
14
|
my $n = $cumul->[$r-1]; |
|
332
|
|
|
|
|
|
|
### n base: $n |
|
333
|
|
|
|
|
|
|
|
|
334
|
6
|
|
|
|
|
12
|
my $len = $cumul->[$r] - $n; |
|
335
|
|
|
|
|
|
|
### $len |
|
336
|
6
|
|
|
|
|
10
|
$len /= 4; |
|
337
|
|
|
|
|
|
|
### len/4: $len |
|
338
|
|
|
|
|
|
|
|
|
339
|
6
|
100
|
|
|
|
17
|
if ($y < 0) { |
|
340
|
|
|
|
|
|
|
### y neg, rotate 180 |
|
341
|
1
|
|
|
|
|
2
|
$y = -$y; |
|
342
|
1
|
|
|
|
|
3
|
$x = -$x; |
|
343
|
1
|
|
|
|
|
3
|
$n += 2*$len; |
|
344
|
|
|
|
|
|
|
} |
|
345
|
|
|
|
|
|
|
|
|
346
|
6
|
100
|
|
|
|
12
|
if ($x < 0) { |
|
347
|
2
|
|
|
|
|
3
|
$n += $len; |
|
348
|
2
|
|
|
|
|
6
|
($x,$y) = ($y,-$x); |
|
349
|
|
|
|
|
|
|
### neg x, rotate 90 |
|
350
|
|
|
|
|
|
|
### n base now: $n |
|
351
|
|
|
|
|
|
|
} |
|
352
|
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
### assert: $x >= 0 |
|
354
|
|
|
|
|
|
|
### assert: $y >= 0 |
|
355
|
|
|
|
|
|
|
|
|
356
|
6
|
|
|
|
|
19
|
my $rev; |
|
357
|
6
|
50
|
|
|
|
14
|
if ($rev = ($x < $y)) { |
|
358
|
|
|
|
|
|
|
### top octant, reverse: "x=$x len/4=".($len/4)." gives ".($len/4 - $x) |
|
359
|
0
|
|
|
|
|
0
|
($x,$y) = ($y,$x); |
|
360
|
|
|
|
|
|
|
} |
|
361
|
|
|
|
|
|
|
|
|
362
|
6
|
|
|
|
|
10
|
my $offset = 0; |
|
363
|
6
|
|
|
|
|
9
|
my $rhi = ($r+1)*$r; |
|
364
|
6
|
|
|
|
|
13
|
my $rlo = ($r-1)*$r+1; |
|
365
|
|
|
|
|
|
|
### assert: $x*$x + $y*$y <= $rhi |
|
366
|
|
|
|
|
|
|
### assert: $x*$x + $y*$y >= $rlo |
|
367
|
|
|
|
|
|
|
|
|
368
|
6
|
|
|
|
|
7
|
my $tx = $r; |
|
369
|
6
|
|
|
|
|
8
|
my $ty = 0; |
|
370
|
6
|
|
|
|
|
14
|
while ($ty < $y) { |
|
371
|
|
|
|
|
|
|
### at: "$tx,$ty offset=$offset" |
|
372
|
|
|
|
|
|
|
|
|
373
|
3
|
|
|
|
|
7
|
$ty++; |
|
374
|
|
|
|
|
|
|
### inc ty to: $ty |
|
375
|
3
|
50
|
|
|
|
7
|
if ($tx*$tx + $ty*$ty > $rhi) { |
|
376
|
0
|
|
|
|
|
0
|
$tx--; |
|
377
|
|
|
|
|
|
|
### dec tx to: $tx |
|
378
|
|
|
|
|
|
|
### assert: $tx*$tx + $ty*$ty <= $rhi |
|
379
|
|
|
|
|
|
|
### assert: $tx*$tx + $ty*$ty >= $rlo |
|
380
|
|
|
|
|
|
|
} |
|
381
|
3
|
|
|
|
|
6
|
$offset++; |
|
382
|
3
|
50
|
33
|
|
|
14
|
last if $x == $tx && $y == $ty; |
|
383
|
|
|
|
|
|
|
|
|
384
|
0
|
0
|
|
|
|
0
|
if (($tx-1)*($tx-1) + $ty*$ty >= $rlo) { |
|
385
|
|
|
|
|
|
|
### another dec tx to: "tx=$tx" |
|
386
|
0
|
|
|
|
|
0
|
$tx--; |
|
387
|
0
|
|
|
|
|
0
|
$offset++; |
|
388
|
0
|
0
|
|
|
|
0
|
last if $y == $ty; |
|
389
|
|
|
|
|
|
|
} |
|
390
|
|
|
|
|
|
|
} |
|
391
|
|
|
|
|
|
|
|
|
392
|
6
|
|
|
|
|
12
|
$n += $self->{'n_start'}; |
|
393
|
6
|
50
|
|
|
|
12
|
if ($rev) { |
|
394
|
0
|
|
|
|
|
0
|
return $n + $len - $offset; |
|
395
|
|
|
|
|
|
|
} else { |
|
396
|
6
|
|
|
|
|
15
|
return $n + $offset; |
|
397
|
|
|
|
|
|
|
} |
|
398
|
|
|
|
|
|
|
} |
|
399
|
|
|
|
|
|
|
|
|
400
|
|
|
|
|
|
|
# not exact |
|
401
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
402
|
0
|
|
|
0
|
1
|
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
403
|
|
|
|
|
|
|
### FilledRings rect_to_n_range(): "$x1,$y1 $x2,$y2" |
|
404
|
|
|
|
|
|
|
|
|
405
|
0
|
|
|
|
|
|
($x1,$y1, $x2,$y2) = _rect_to_radius_corners ($x1,$y1, $x2,$y2); |
|
406
|
|
|
|
|
|
|
### radius range: "$x1,$y1 $x2,$y2" |
|
407
|
|
|
|
|
|
|
|
|
408
|
0
|
0
|
|
|
|
|
if ($x1 >= 1) { $x1 -= 1; } |
|
|
0
|
|
|
|
|
|
|
|
409
|
0
|
0
|
|
|
|
|
if ($y1 >= 1) { $y1 -= 1; } |
|
|
0
|
|
|
|
|
|
|
|
410
|
0
|
|
|
|
|
|
$x2 += 1; |
|
411
|
0
|
|
|
|
|
|
$y2 += 1; |
|
412
|
|
|
|
|
|
|
|
|
413
|
|
|
|
|
|
|
return (int((21*($x1*$x1 + $y1*$y1)) / 7) + $self->{'n_start'}, |
|
414
|
0
|
|
|
|
|
|
int((22*($x2*$x2 + $y2*$y2)) / 7) + $self->{'n_start'} - 1); |
|
415
|
|
|
|
|
|
|
} |
|
416
|
|
|
|
|
|
|
|
|
417
|
|
|
|
|
|
|
1; |
|
418
|
|
|
|
|
|
|
__END__ |