line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# Multiples of prime make grid. |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
# [13] L. S. Johnston, Denumerability of the rational number system, Amer. Math. Monthly, 55 (Feb. |
22
|
|
|
|
|
|
|
# 1948), no. 2, 65-70. |
23
|
|
|
|
|
|
|
# www.jstor.org/stable/2305738 |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
# prime factors q1,..qk of n |
27
|
|
|
|
|
|
|
# f(m/n) = m^2*n^2/ (q1q2...qk) |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
# Kevin McCrimmon, 1960 |
30
|
|
|
|
|
|
|
# |
31
|
|
|
|
|
|
|
# integer prod p[i]^a[i] -> rational prod p[i]^b[i] |
32
|
|
|
|
|
|
|
# b[i] = a[2i-1] if a[2i-1]!=0 |
33
|
|
|
|
|
|
|
# b[1]=a[1], b[2]=a[3], b[3]=a[5] |
34
|
|
|
|
|
|
|
# b[i] = -a[2k] if a[2i-1]=0 and is kth such |
35
|
|
|
|
|
|
|
# |
36
|
|
|
|
|
|
|
# b[i] = f(a[i]) where f(n) = (-1)^(n+1) * floor((n+1)/2) |
37
|
|
|
|
|
|
|
# f(0) = 0 |
38
|
|
|
|
|
|
|
# f(1) = 1 |
39
|
|
|
|
|
|
|
# f(2) = -1 |
40
|
|
|
|
|
|
|
# f(3) = 2 |
41
|
|
|
|
|
|
|
# f(4) = -2 |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
# Gerald Freilich, 1965 |
44
|
|
|
|
|
|
|
# |
45
|
|
|
|
|
|
|
# f(n) = n/2 if n even n>=0 |
46
|
|
|
|
|
|
|
# = -(n+1)/2 if n odd n>0 |
47
|
|
|
|
|
|
|
# f(0)=0/2 = 0 |
48
|
|
|
|
|
|
|
# f(1)=-(1+1)/2 = -1 |
49
|
|
|
|
|
|
|
# f(2)=2/2 = 1 |
50
|
|
|
|
|
|
|
# f(3)=-(3+1)/2 = -2 |
51
|
|
|
|
|
|
|
# f(4)=4/2 = 2 |
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
# Yoram Sagher, "Counting the rationals", American Math Monthly, Nov 1989, |
54
|
|
|
|
|
|
|
# page 823. http://www.jstor.org/stable/2324846 |
55
|
|
|
|
|
|
|
# |
56
|
|
|
|
|
|
|
# m = p1^e1.p2^e2... |
57
|
|
|
|
|
|
|
# n = q1^f1.q2^f2... |
58
|
|
|
|
|
|
|
# f(m/n) = p1^2e1.p2^2e2... . q1^(2f1-1).q2^(2f2-1)... |
59
|
|
|
|
|
|
|
# so 0 -> 0 0 -> 0 |
60
|
|
|
|
|
|
|
# num 1 -> 2 1 -> -1 |
61
|
|
|
|
|
|
|
# 2 -> 4 2 -> 1 |
62
|
|
|
|
|
|
|
# den -1 1 -> 2*1-1 = 1 3 -> -2 |
63
|
|
|
|
|
|
|
# -2 2 -> 2*2-1 = 3 4 -> 2 |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
# Umberto Cerruti, "Ordinare i razionali Gli alberi di Keplero e di |
66
|
|
|
|
|
|
|
# Calkin-Wilf", following T.J. Heard |
67
|
|
|
|
|
|
|
# B(2k)=-k even=negative and zero |
68
|
|
|
|
|
|
|
# B(2k-1)=k odd=positive |
69
|
|
|
|
|
|
|
# which is Y/X invert |
70
|
|
|
|
|
|
|
# B(0 =2*0) = 0 |
71
|
|
|
|
|
|
|
# B(1 =2*1-1) = 1 |
72
|
|
|
|
|
|
|
# B(2 =2*1) = -1 |
73
|
|
|
|
|
|
|
# B(3 =2*2-1) = 2 |
74
|
|
|
|
|
|
|
# B(4 =2*2) = -2 |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
package Math::PlanePath::FactorRationals; |
78
|
1
|
|
|
1
|
|
1388
|
use 5.004; |
|
1
|
|
|
|
|
4
|
|
79
|
1
|
|
|
1
|
|
5
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
23
|
|
80
|
1
|
|
|
1
|
|
4
|
use Carp 'croak'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
47
|
|
81
|
1
|
|
|
1
|
|
5
|
use List::Util 'min'; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
100
|
|
82
|
|
|
|
|
|
|
#use List::Util 'max'; |
83
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
84
|
|
|
|
|
|
|
|
85
|
1
|
|
|
1
|
|
7
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
70
|
|
86
|
|
|
|
|
|
|
$VERSION = 128; |
87
|
1
|
|
|
1
|
|
760
|
use Math::PlanePath; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
43
|
|
88
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
89
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
91
|
1
|
|
|
|
|
44
|
'is_infinite', |
92
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
1
|
|
|
|
|
2
|
|
93
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
94
|
1
|
|
|
1
|
|
539
|
'digit_join_lowtohigh'; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
68
|
|
95
|
|
|
|
|
|
|
|
96
|
1
|
|
|
1
|
|
524
|
use Math::PlanePath::CoprimeColumns; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
66
|
|
97
|
|
|
|
|
|
|
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime; |
98
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
100
|
|
|
|
|
|
|
# use Smart::Comments; |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
# Not yet. |
104
|
1
|
|
|
|
|
57
|
use constant parameter_info_array => |
105
|
|
|
|
|
|
|
[ { name => 'factor_coding', |
106
|
|
|
|
|
|
|
display => 'Sign Encoding', |
107
|
|
|
|
|
|
|
type => 'enum', |
108
|
|
|
|
|
|
|
default => 'even/odd', |
109
|
|
|
|
|
|
|
choices => ['even/odd','odd/even', |
110
|
|
|
|
|
|
|
'negabinary','revbinary', |
111
|
|
|
|
|
|
|
], |
112
|
|
|
|
|
|
|
choices_display => ['Even/Odd','Odd/Even', |
113
|
|
|
|
|
|
|
'Negabinary','Revbinary', |
114
|
|
|
|
|
|
|
], |
115
|
|
|
|
|
|
|
}, |
116
|
1
|
|
|
1
|
|
6
|
]; |
|
1
|
|
|
|
|
2
|
|
117
|
|
|
|
|
|
|
|
118
|
1
|
|
|
1
|
|
5
|
use constant class_x_negative => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
39
|
|
119
|
1
|
|
|
1
|
|
11
|
use constant class_y_negative => 0; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
40
|
|
120
|
1
|
|
|
1
|
|
5
|
use constant x_minimum => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
40
|
|
121
|
1
|
|
|
1
|
|
13
|
use constant y_minimum => 1; |
|
1
|
|
|
|
|
4
|
|
|
1
|
|
|
|
|
56
|
|
122
|
1
|
|
|
1
|
|
7
|
use constant gcdxy_maximum => 1; # no common factor |
|
1
|
|
|
|
|
9
|
|
|
1
|
|
|
|
|
47
|
|
123
|
1
|
|
|
1
|
|
6
|
use constant absdy_minimum => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
1400
|
|
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
# factor_coding=even/odd |
126
|
|
|
|
|
|
|
# factor_coding=odd/even |
127
|
|
|
|
|
|
|
# dir_minimum_dxdy() suspect dir approaches 0. |
128
|
|
|
|
|
|
|
# Eg. N=5324 = 2^2.11^3 dx=3,dy=92 0.97925 |
129
|
|
|
|
|
|
|
# N=642735 = 3^5.23^2 dX=45 dY=4 Dir4=0.05644 |
130
|
|
|
|
|
|
|
# 642736 = 2^4.17^2.139 |
131
|
|
|
|
|
|
|
# dir_maximum_dxdy() suspect approaches 360 degrees |
132
|
|
|
|
|
|
|
# use constant dir_maximum_dxdy => (0,0); # the default |
133
|
|
|
|
|
|
|
# |
134
|
|
|
|
|
|
|
# factor_coding=negabinary |
135
|
|
|
|
|
|
|
# dir_minimum_dxdy() = East 1,0 at N=1 |
136
|
|
|
|
|
|
|
# dir_maximum_dxdy() believe approaches 360 degrees |
137
|
|
|
|
|
|
|
# Eg. N=40=2^3.5 X=5, Y=2 |
138
|
|
|
|
|
|
|
# N=41=41 X=41, Y=1 |
139
|
|
|
|
|
|
|
# N=multiple 8 and solitary primes, followed by N+1=prime is dX=big, dY=-1 |
140
|
|
|
|
|
|
|
# |
141
|
|
|
|
|
|
|
# factor_coding=revbinary |
142
|
|
|
|
|
|
|
# dir_maximum_dxdy() approaches 360 degrees dY=-1, dX=big |
143
|
|
|
|
|
|
|
# Eg. N=7208=2^3*17*53 X=17*53 Y=2 |
144
|
|
|
|
|
|
|
# N=7209=3^4*89 X=3^4*89 Y=1 |
145
|
|
|
|
|
|
|
# dX=6308 dY=-1 |
146
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
149
|
|
|
|
|
|
|
# even/odd |
150
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
# $n>=0, return a positive if even or negative if odd |
152
|
|
|
|
|
|
|
# $n==0 return 0 |
153
|
|
|
|
|
|
|
# $n==1 return -1 |
154
|
|
|
|
|
|
|
# $n==2 return +1 |
155
|
|
|
|
|
|
|
# $n==3 return -2 |
156
|
|
|
|
|
|
|
# $n==4 return +2 |
157
|
|
|
|
|
|
|
sub _pos_to_pn__even_odd { |
158
|
81
|
|
|
81
|
|
122
|
my ($n) = @_; |
159
|
81
|
100
|
|
|
|
177
|
return ($n % 2 ? -1-$n : $n) / 2; |
160
|
|
|
|
|
|
|
} |
161
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
# # $n is positive or negative, return even for positive or odd for negative. |
163
|
|
|
|
|
|
|
# # $n==0 return 0 |
164
|
|
|
|
|
|
|
# # $n==-1 return 1 |
165
|
|
|
|
|
|
|
# # $n==+1 return 2 |
166
|
|
|
|
|
|
|
# # $n==-2 return 3 |
167
|
|
|
|
|
|
|
# # $n==+2 return 4 |
168
|
|
|
|
|
|
|
# sub _pn_to_pos__even_odd { |
169
|
|
|
|
|
|
|
# my ($n) = @_; |
170
|
|
|
|
|
|
|
# return ($n >= 0 ? 2*$n : -1-2*$n); |
171
|
|
|
|
|
|
|
# } |
172
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
174
|
|
|
|
|
|
|
# odd/even |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
# $n>=0, return a positive if even or negative if odd |
177
|
|
|
|
|
|
|
# $n==0 return 0 |
178
|
|
|
|
|
|
|
# $n==1 return +1 |
179
|
|
|
|
|
|
|
# $n==2 return -1 |
180
|
|
|
|
|
|
|
# $n==3 return +2 |
181
|
|
|
|
|
|
|
# $n==4 return -2 |
182
|
|
|
|
|
|
|
sub _pos_to_pn__odd_even { |
183
|
0
|
|
|
0
|
|
0
|
my ($n) = @_; |
184
|
0
|
0
|
|
|
|
0
|
return ($n % 2 ? $n+1 : -$n) / 2; |
185
|
|
|
|
|
|
|
} |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
# # $n is positive or negative, return odd for positive or even for negative. |
188
|
|
|
|
|
|
|
# # $n==0 return 0 |
189
|
|
|
|
|
|
|
# # $n==+1 return 1 |
190
|
|
|
|
|
|
|
# # $n==-1 return 2 |
191
|
|
|
|
|
|
|
# # $n==+2 return 3 |
192
|
|
|
|
|
|
|
# # $n==-2 return 4 |
193
|
|
|
|
|
|
|
# sub _pn_to_pos__odd_even { |
194
|
|
|
|
|
|
|
# my ($n) = @_; |
195
|
|
|
|
|
|
|
# return ($n <= 0 ? -2*$n : 2*$n-1); |
196
|
|
|
|
|
|
|
# } |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
199
|
|
|
|
|
|
|
# negabinary |
200
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
sub _pn_to_pos__negabinary { |
202
|
0
|
|
|
0
|
|
0
|
my ($n) = @_; |
203
|
0
|
|
|
|
|
0
|
my @bits; |
204
|
0
|
|
|
|
|
0
|
while ($n) { |
205
|
0
|
|
|
|
|
0
|
my $bit = ($n % 2); |
206
|
0
|
|
|
|
|
0
|
push @bits, $bit; |
207
|
0
|
|
|
|
|
0
|
$n -= $bit; |
208
|
0
|
|
|
|
|
0
|
$n /= 2; |
209
|
0
|
|
|
|
|
0
|
$n = -$n; |
210
|
|
|
|
|
|
|
} |
211
|
0
|
|
|
|
|
0
|
return digit_join_lowtohigh(\@bits, 2, |
212
|
|
|
|
|
|
|
$n); # zero |
213
|
|
|
|
|
|
|
} |
214
|
|
|
|
|
|
|
sub _pos_to_pn__negabinary { |
215
|
0
|
|
|
0
|
|
0
|
my ($n) = @_; |
216
|
0
|
|
|
|
|
0
|
return (($n & 0x55555555) - ($n & 0xAAAAAAAA)); |
217
|
|
|
|
|
|
|
} |
218
|
|
|
|
|
|
|
|
219
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
220
|
|
|
|
|
|
|
# revbinary |
221
|
|
|
|
|
|
|
# A065620 pos -> pn |
222
|
|
|
|
|
|
|
# A065621 pn(+ve) -> pos |
223
|
|
|
|
|
|
|
# A048724 pn(-ve) -> pos n XOR 2n |
224
|
|
|
|
|
|
|
# A048725 A048724 twice |
225
|
|
|
|
|
|
|
# cf |
226
|
|
|
|
|
|
|
# A073122 minimizing by taking +/- powers cf A072219 A072339 |
227
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
# rev = 2^e0 - 2^e1 + 2^e2 - 2^e3 + ... + (-1)^t*2^et |
229
|
|
|
|
|
|
|
# 0 <= e0 < e1 < e2 ... |
230
|
|
|
|
|
|
|
sub _pos_to_pn__revbinary { |
231
|
0
|
|
|
0
|
|
0
|
my ($n) = @_; |
232
|
0
|
|
|
|
|
0
|
my $sign = 1; |
233
|
0
|
|
|
|
|
0
|
my $ret = 0; |
234
|
0
|
|
|
|
|
0
|
for (my $bit = 1; $bit <= $n; $bit *= 2) { |
235
|
0
|
0
|
|
|
|
0
|
if ($n & $bit) { |
236
|
0
|
|
|
|
|
0
|
$ret += $bit*$sign; |
237
|
0
|
|
|
|
|
0
|
$sign = -$sign; |
238
|
|
|
|
|
|
|
} |
239
|
|
|
|
|
|
|
} |
240
|
0
|
|
|
|
|
0
|
return $ret; |
241
|
|
|
|
|
|
|
} |
242
|
|
|
|
|
|
|
sub _pn_to_pos__revbinary { |
243
|
0
|
|
|
0
|
|
0
|
my ($n) = @_; |
244
|
0
|
|
|
|
|
0
|
my @bits; |
245
|
0
|
|
|
|
|
0
|
while ($n) { |
246
|
0
|
|
|
|
|
0
|
my $bit = ($n % 2); |
247
|
0
|
|
|
|
|
0
|
push @bits, $bit; |
248
|
0
|
|
|
|
|
0
|
$n -= $bit; |
249
|
0
|
|
|
|
|
0
|
$n /= 2; |
250
|
0
|
0
|
|
|
|
0
|
if ($bit) { |
251
|
0
|
|
|
|
|
0
|
$n = -$n; |
252
|
|
|
|
|
|
|
} |
253
|
|
|
|
|
|
|
} |
254
|
0
|
|
|
|
|
0
|
return digit_join_lowtohigh(\@bits, 2, |
255
|
|
|
|
|
|
|
$n); # zero |
256
|
|
|
|
|
|
|
} |
257
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
259
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
my %factor_coding__pos_to_pn = ('even/odd' => \&_pos_to_pn__even_odd, |
261
|
|
|
|
|
|
|
'odd/even' => \&_pos_to_pn__odd_even, |
262
|
|
|
|
|
|
|
negabinary => \&_pos_to_pn__negabinary, |
263
|
|
|
|
|
|
|
revbinary => \&_pos_to_pn__revbinary, |
264
|
|
|
|
|
|
|
); |
265
|
|
|
|
|
|
|
my %factor_coding__pn_to_pos = (# 'even/odd' => \&_pn_to_pos__even_odd, |
266
|
|
|
|
|
|
|
# 'odd/even' => \&_pn_to_pos__odd_even, |
267
|
|
|
|
|
|
|
negabinary => \&_pn_to_pos__negabinary, |
268
|
|
|
|
|
|
|
revbinary => \&_pn_to_pos__revbinary, |
269
|
|
|
|
|
|
|
); |
270
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
sub new { |
272
|
1
|
|
|
1
|
1
|
11
|
my $self = shift->SUPER::new(@_); |
273
|
|
|
|
|
|
|
|
274
|
1
|
|
50
|
|
|
12
|
my $factor_coding = ($self->{'factor_coding'} ||= 'even/odd'); |
275
|
1
|
50
|
|
|
|
4
|
$factor_coding__pos_to_pn{$factor_coding} |
276
|
|
|
|
|
|
|
or croak "Unrecognised factor_coding: ",$factor_coding; |
277
|
|
|
|
|
|
|
|
278
|
1
|
|
|
|
|
3
|
return $self; |
279
|
|
|
|
|
|
|
} |
280
|
|
|
|
|
|
|
|
281
|
|
|
|
|
|
|
sub n_to_xy { |
282
|
45
|
|
|
45
|
1
|
4928
|
my ($self, $n) = @_; |
283
|
|
|
|
|
|
|
### FactorRationals n_to_xy(): "$n" |
284
|
|
|
|
|
|
|
|
285
|
45
|
50
|
|
|
|
110
|
if ($n < 1) { return; } |
|
0
|
|
|
|
|
0
|
|
286
|
45
|
50
|
|
|
|
104
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
287
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
# what to do for fractional $n? |
289
|
|
|
|
|
|
|
{ |
290
|
45
|
|
|
|
|
75
|
my $int = int($n); |
|
45
|
|
|
|
|
69
|
|
291
|
45
|
50
|
|
|
|
85
|
if ($n != $int) { |
292
|
|
|
|
|
|
|
### frac ... |
293
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat/BigRat |
294
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
295
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
296
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
297
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
298
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
299
|
|
|
|
|
|
|
} |
300
|
45
|
|
|
|
|
64
|
$n = $int; |
301
|
|
|
|
|
|
|
} |
302
|
|
|
|
|
|
|
|
303
|
45
|
|
|
|
|
69
|
my $zero = $n * 0; |
304
|
|
|
|
|
|
|
|
305
|
45
|
|
|
|
|
95
|
my $pos_to_pn = $factor_coding__pos_to_pn{$self->{'factor_coding'}}; |
306
|
45
|
|
|
|
|
66
|
my $x = my $y = ($n * 0) + 1; # inherit bignum 1 |
307
|
45
|
|
|
|
|
83
|
my ($limit,$overflow) = _limit($n); |
308
|
|
|
|
|
|
|
### $limit |
309
|
45
|
|
|
|
|
68
|
my $divisor = 2; |
310
|
45
|
|
|
|
|
59
|
my $dstep = 1; |
311
|
45
|
|
|
|
|
90
|
while ($divisor <= $limit) { |
312
|
69
|
100
|
|
|
|
137
|
if (($n % $divisor) == 0) { |
313
|
36
|
|
|
|
|
52
|
my $count = 0; |
314
|
36
|
|
|
|
|
46
|
for (;;) { |
315
|
309
|
|
|
|
|
372
|
$count++; |
316
|
309
|
|
|
|
|
420
|
$n /= $divisor; |
317
|
309
|
100
|
|
|
|
530
|
if ($n % $divisor) { |
318
|
36
|
|
|
|
|
62
|
my $pn = &$pos_to_pn($count); |
319
|
|
|
|
|
|
|
### $count |
320
|
|
|
|
|
|
|
### $pn |
321
|
36
|
|
|
|
|
63
|
my $pow = ($divisor+$zero) ** abs($pn); |
322
|
36
|
100
|
|
|
|
124
|
if ($pn >= 0) { |
323
|
17
|
|
|
|
|
24
|
$x *= $pow; |
324
|
|
|
|
|
|
|
} else { |
325
|
19
|
|
|
|
|
33
|
$y *= $pow; |
326
|
|
|
|
|
|
|
} |
327
|
36
|
|
|
|
|
53
|
last; |
328
|
|
|
|
|
|
|
} |
329
|
|
|
|
|
|
|
} |
330
|
36
|
|
|
|
|
85
|
($limit,$overflow) = _limit($n); |
331
|
|
|
|
|
|
|
### $limit |
332
|
|
|
|
|
|
|
} |
333
|
69
|
|
|
|
|
98
|
$divisor += $dstep; |
334
|
69
|
|
|
|
|
125
|
$dstep = 2; |
335
|
|
|
|
|
|
|
} |
336
|
45
|
50
|
|
|
|
77
|
if ($overflow) { |
337
|
|
|
|
|
|
|
### n too big ... |
338
|
0
|
|
|
|
|
0
|
return; |
339
|
|
|
|
|
|
|
} |
340
|
|
|
|
|
|
|
|
341
|
|
|
|
|
|
|
### remaining $n is prime, count=1: "n=$n" |
342
|
45
|
|
|
|
|
82
|
my $pn = &$pos_to_pn(1); |
343
|
|
|
|
|
|
|
### $pn |
344
|
45
|
|
|
|
|
77
|
my $pow = $n ** abs($pn); |
345
|
45
|
50
|
|
|
|
70
|
if ($pn >= 0) { |
346
|
0
|
|
|
|
|
0
|
$x *= $pow; |
347
|
|
|
|
|
|
|
} else { |
348
|
45
|
|
|
|
|
84
|
$y *= $pow; |
349
|
|
|
|
|
|
|
} |
350
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
### result: "$x, $y" |
352
|
45
|
|
|
|
|
107
|
return ($x, $y); |
353
|
|
|
|
|
|
|
} |
354
|
|
|
|
|
|
|
|
355
|
|
|
|
|
|
|
sub xy_to_n { |
356
|
5670
|
|
|
5670
|
1
|
56224
|
my ($self, $x, $y) = @_; |
357
|
|
|
|
|
|
|
|
358
|
5670
|
|
|
|
|
10156
|
$x = round_nearest ($x); |
359
|
5670
|
|
|
|
|
11084
|
$y = round_nearest ($y); |
360
|
|
|
|
|
|
|
### FactorRationals xy_to_n(): "x=$x y=$y" |
361
|
|
|
|
|
|
|
|
362
|
5670
|
100
|
100
|
|
|
16766
|
if ($x < 1 || $y < 1) { |
363
|
625
|
|
|
|
|
1094
|
return undef; # negatives and -infinity |
364
|
|
|
|
|
|
|
} |
365
|
5045
|
50
|
|
|
|
9373
|
if (is_infinite($x)) { return $x; } # +infinity or nan |
|
0
|
|
|
|
|
0
|
|
366
|
5045
|
50
|
|
|
|
10472
|
if (is_infinite($y)) { return $y; } # +infinity or nan |
|
0
|
|
|
|
|
0
|
|
367
|
|
|
|
|
|
|
|
368
|
5045
|
50
|
33
|
|
|
16026
|
if ($self->{'factor_coding'} eq 'negabinary' |
369
|
|
|
|
|
|
|
|| $self->{'factor_coding'} eq 'revbinary') { |
370
|
|
|
|
|
|
|
### negabinary or revbinary ... |
371
|
0
|
|
|
|
|
0
|
my $pn_to_pos = $factor_coding__pn_to_pos{$self->{'factor_coding'}}; |
372
|
0
|
|
|
|
|
0
|
my $n = 1; |
373
|
0
|
|
|
|
|
0
|
my $zero = $x * 0 * $y; |
374
|
|
|
|
|
|
|
|
375
|
|
|
|
|
|
|
# Factorize both $x and $y and apply their pn_to_pos encoded powers to |
376
|
|
|
|
|
|
|
# make $n. A common factor between $x and $y is noticed if $divisor |
377
|
|
|
|
|
|
|
# divides both. |
378
|
|
|
|
|
|
|
|
379
|
0
|
|
|
|
|
0
|
my ($limit,$overflow) = _limit(max($x,$y)); |
380
|
0
|
|
|
|
|
0
|
my $dstep = 1; |
381
|
0
|
|
|
|
|
0
|
for (my $divisor = 2; $divisor <= $limit; $divisor += $dstep, $dstep=2) { |
382
|
0
|
|
|
|
|
0
|
my $count = 0; |
383
|
0
|
0
|
|
|
|
0
|
if ($x % $divisor == 0) { |
|
|
0
|
|
|
|
|
|
384
|
0
|
0
|
|
|
|
0
|
if ($y % $divisor == 0) { |
385
|
0
|
|
|
|
|
0
|
return undef; # common factor |
386
|
|
|
|
|
|
|
} |
387
|
0
|
|
|
|
|
0
|
while ($x % $divisor == 0) { |
388
|
0
|
|
|
|
|
0
|
$count++; |
389
|
0
|
|
|
|
|
0
|
$x /= $divisor; # mutate loop variable |
390
|
|
|
|
|
|
|
} |
391
|
|
|
|
|
|
|
} elsif ($y % $divisor == 0) { |
392
|
0
|
|
|
|
|
0
|
while ($y % $divisor == 0) { |
393
|
0
|
|
|
|
|
0
|
$count--; |
394
|
0
|
|
|
|
|
0
|
$y /= $divisor; # mutate loop variable |
395
|
|
|
|
|
|
|
} |
396
|
|
|
|
|
|
|
} else { |
397
|
0
|
|
|
|
|
0
|
next; |
398
|
|
|
|
|
|
|
} |
399
|
|
|
|
|
|
|
|
400
|
|
|
|
|
|
|
# Here $count > 0 if from $x or $count < 0 if from $y. |
401
|
|
|
|
|
|
|
### $count |
402
|
|
|
|
|
|
|
### pn: &$pn_to_pos($count) |
403
|
|
|
|
|
|
|
|
404
|
0
|
|
|
|
|
0
|
$count = &$pn_to_pos($count); |
405
|
0
|
|
|
|
|
0
|
$n *= ($divisor+$zero) ** $count; |
406
|
|
|
|
|
|
|
|
407
|
|
|
|
|
|
|
# new search limit, perhaps smaller than before |
408
|
0
|
|
|
|
|
0
|
($limit,$overflow) = _limit(max($x,$y)); |
409
|
|
|
|
|
|
|
} |
410
|
|
|
|
|
|
|
|
411
|
0
|
0
|
|
|
|
0
|
if ($overflow) { |
412
|
|
|
|
|
|
|
### x,y too big to find all primes ... |
413
|
0
|
|
|
|
|
0
|
return undef; |
414
|
|
|
|
|
|
|
} |
415
|
|
|
|
|
|
|
|
416
|
|
|
|
|
|
|
# Here $x and $y are primes. |
417
|
0
|
0
|
0
|
|
|
0
|
if ($x > 1 && $x == $y) { |
418
|
|
|
|
|
|
|
### common factor final remaining prime x,y ... |
419
|
0
|
|
|
|
|
0
|
return undef; |
420
|
|
|
|
|
|
|
} |
421
|
|
|
|
|
|
|
|
422
|
|
|
|
|
|
|
# $x is power p^1 which is negabinary=1 or revbinary=1 so multiply into |
423
|
|
|
|
|
|
|
# $n. $y is power p^-1 and -1 is negabinary=3 so cube and multiply into |
424
|
|
|
|
|
|
|
# $n. |
425
|
0
|
|
|
|
|
0
|
$n *= $x; |
426
|
0
|
|
|
|
|
0
|
$n *= $y*$y*$y; |
427
|
|
|
|
|
|
|
|
428
|
0
|
|
|
|
|
0
|
return $n; |
429
|
|
|
|
|
|
|
|
430
|
|
|
|
|
|
|
} else { |
431
|
|
|
|
|
|
|
### assert: $self->{'factor_coding'} eq 'even/odd' || $self->{'factor_coding'} eq 'odd/even' |
432
|
5045
|
50
|
|
|
|
9292
|
if ($self->{'factor_coding'} eq 'odd/even') { |
433
|
0
|
|
|
|
|
0
|
($x,$y) = ($y,$x); |
434
|
|
|
|
|
|
|
} |
435
|
|
|
|
|
|
|
|
436
|
|
|
|
|
|
|
# Factorize $y so as to make an odd power of its primes. Only need to |
437
|
|
|
|
|
|
|
# divide out one copy of each prime, but by dividing out them all the |
438
|
|
|
|
|
|
|
# $limit to search up to is reduced, usually by a lot. |
439
|
|
|
|
|
|
|
# |
440
|
|
|
|
|
|
|
# $ymult is $y with one copy of each prime factor divided out. |
441
|
|
|
|
|
|
|
# $ychop is $y with all primes divided out as they're found. |
442
|
|
|
|
|
|
|
# $y itself is unchanged. |
443
|
|
|
|
|
|
|
# |
444
|
5045
|
|
|
|
|
7302
|
my $ychop = my $ymult = $y; |
445
|
|
|
|
|
|
|
|
446
|
5045
|
|
|
|
|
7884
|
my ($limit,$overflow) = _limit($ychop); |
447
|
5045
|
|
|
|
|
7357
|
my $dstep = 1; |
448
|
5045
|
|
|
|
|
9615
|
for (my $divisor = 2; $divisor <= $limit; $divisor += $dstep, $dstep=2) { |
449
|
9349
|
100
|
|
|
|
18931
|
next if $ychop % $divisor; |
450
|
|
|
|
|
|
|
|
451
|
3751
|
100
|
|
|
|
6573
|
if ($x % $divisor == 0) { |
452
|
|
|
|
|
|
|
### common factor with X ... |
453
|
2810
|
|
|
|
|
5549
|
return undef; |
454
|
|
|
|
|
|
|
} |
455
|
941
|
|
|
|
|
1341
|
$ymult /= $divisor; # one of $divisor divided out |
456
|
941
|
|
|
|
|
1216
|
do { |
457
|
1370
|
|
|
|
|
2495
|
$ychop /= $divisor; # all of $divisor divided out |
458
|
|
|
|
|
|
|
} until ($ychop % $divisor); |
459
|
941
|
|
|
|
|
1498
|
($limit,$overflow) = _limit($ychop); # new lower $limit, perhaps |
460
|
|
|
|
|
|
|
} |
461
|
|
|
|
|
|
|
|
462
|
2235
|
50
|
|
|
|
3733
|
if ($overflow) { |
463
|
0
|
|
|
|
|
0
|
return undef; # Y too big to find all primes |
464
|
|
|
|
|
|
|
} |
465
|
|
|
|
|
|
|
|
466
|
|
|
|
|
|
|
# remaining $ychop is a prime, or $ychop==1 |
467
|
2235
|
100
|
|
|
|
3829
|
if ($ychop > 1) { |
468
|
1958
|
100
|
|
|
|
3522
|
if ($x % $ychop == 0) { |
469
|
|
|
|
|
|
|
### common factor with X ... |
470
|
183
|
|
|
|
|
386
|
return undef; |
471
|
|
|
|
|
|
|
} |
472
|
1775
|
|
|
|
|
2662
|
$ymult /= $ychop; |
473
|
|
|
|
|
|
|
} |
474
|
|
|
|
|
|
|
|
475
|
2052
|
|
|
|
|
5167
|
return $x*$x * $y*$ymult; |
476
|
|
|
|
|
|
|
} |
477
|
|
|
|
|
|
|
} |
478
|
|
|
|
|
|
|
|
479
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
480
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
# all rationals X,Y >= 1 with no common factor |
482
|
1
|
|
|
1
|
|
584
|
use Math::PlanePath::DiagonalRationals; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
222
|
|
483
|
|
|
|
|
|
|
*xy_is_visited = Math::PlanePath::DiagonalRationals->can('xy_is_visited'); |
484
|
|
|
|
|
|
|
|
485
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
486
|
|
|
|
|
|
|
|
487
|
|
|
|
|
|
|
# even/odd |
488
|
|
|
|
|
|
|
# X=2^10 -> N=2^20 is X^2 |
489
|
|
|
|
|
|
|
# Y=3 -> N=3 |
490
|
|
|
|
|
|
|
# Y=3^2 -> N=3^3 |
491
|
|
|
|
|
|
|
# Y=3^3 -> N=3^5 |
492
|
|
|
|
|
|
|
# Y=3^4 -> N=3^7 |
493
|
|
|
|
|
|
|
# Y*Y / distinct prime factors |
494
|
|
|
|
|
|
|
# |
495
|
|
|
|
|
|
|
# negabinary |
496
|
|
|
|
|
|
|
# X=prime^2 -> N=prime^6 is X^3 |
497
|
|
|
|
|
|
|
# X=prime^6 -> N=prime^26 is X^4.33 |
498
|
|
|
|
|
|
|
# maximum 101010...10110 -> 1101010...10 approaches factor 5 |
499
|
|
|
|
|
|
|
# same for negatives |
500
|
|
|
|
|
|
|
# |
501
|
|
|
|
|
|
|
# revbinary |
502
|
|
|
|
|
|
|
# X=prime^k -> N=prime^(3k) ix X^3 |
503
|
|
|
|
|
|
|
|
504
|
|
|
|
|
|
|
# not exact |
505
|
|
|
|
|
|
|
sub rect_to_n_range { |
506
|
47
|
|
|
47
|
1
|
7622
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
507
|
|
|
|
|
|
|
### rect_to_n_range() |
508
|
|
|
|
|
|
|
|
509
|
47
|
|
|
|
|
123
|
$x1 = round_nearest ($x1); |
510
|
47
|
|
|
|
|
95
|
$y1 = round_nearest ($y1); |
511
|
47
|
|
|
|
|
88
|
$x2 = round_nearest ($x2); |
512
|
47
|
|
|
|
|
90
|
$y2 = round_nearest ($y2); |
513
|
|
|
|
|
|
|
|
514
|
47
|
|
|
|
|
99
|
my $n = max($x1,$x2) * max($y1,$y2); |
515
|
47
|
|
|
|
|
74
|
my $n_squared = $n * $n; |
516
|
|
|
|
|
|
|
return (1, |
517
|
|
|
|
|
|
|
($self->{'factor_coding'} eq 'negabinary' |
518
|
|
|
|
|
|
|
? ($n_squared*$n_squared) * $n # X^5*Y^5 |
519
|
47
|
50
|
|
|
|
177
|
: $self->{'factor_coding'} eq 'revbinary' |
|
|
50
|
|
|
|
|
|
520
|
|
|
|
|
|
|
? $n_squared * $n # X^3*Y^3 |
521
|
|
|
|
|
|
|
# even/odd, odd/even |
522
|
|
|
|
|
|
|
: $n_squared)); # X^2*Y^2 |
523
|
|
|
|
|
|
|
} |
524
|
|
|
|
|
|
|
|
525
|
|
|
|
|
|
|
|
526
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
527
|
|
|
|
|
|
|
|
528
|
|
|
|
|
|
|
# _limit() returns ($limit,$overflow). |
529
|
|
|
|
|
|
|
# |
530
|
|
|
|
|
|
|
# $limit is the biggest divisor to attempt trial division of $n. If $n < |
531
|
|
|
|
|
|
|
# 2^32 then $limit=sqrt($n) and that will find all primes. If $n >= 2^32 |
532
|
|
|
|
|
|
|
# then $limit is smaller than sqrt($n), being calculated from the length of |
533
|
|
|
|
|
|
|
# $n so as to make a roughly constant amount of time doing divisions. But |
534
|
|
|
|
|
|
|
# $limit is always at least 50 so as to divide by primes up to 50. |
535
|
|
|
|
|
|
|
# |
536
|
|
|
|
|
|
|
# $overflow is a boolean, true if $n is too big to search for all primes and |
537
|
|
|
|
|
|
|
# $limit is something smaller than sqrt($n). $overflow is false if $limit |
538
|
|
|
|
|
|
|
# has not been capped and is enough to find all primes. |
539
|
|
|
|
|
|
|
# |
540
|
|
|
|
|
|
|
sub _limit { |
541
|
6067
|
|
|
6067
|
|
9380
|
my ($n) = @_; |
542
|
6067
|
|
|
|
|
10249
|
my $limit = int(sqrt($n)); |
543
|
6067
|
|
|
|
|
13763
|
my $cap = max (int(65536 * 10 / length($n)), |
544
|
|
|
|
|
|
|
50); |
545
|
6067
|
100
|
|
|
|
10389
|
if ($limit > $cap) { |
546
|
1
|
|
|
|
|
3
|
return ($cap, 1); |
547
|
|
|
|
|
|
|
} else { |
548
|
6066
|
|
|
|
|
13686
|
return ($limit, 0); |
549
|
|
|
|
|
|
|
} |
550
|
|
|
|
|
|
|
} |
551
|
|
|
|
|
|
|
|
552
|
|
|
|
|
|
|
1; |
553
|
|
|
|
|
|
|
__END__ |