line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::PlanePath::DekkingCentres; |
20
|
2
|
|
|
2
|
|
35
|
use 5.004; |
|
2
|
|
|
|
|
7
|
|
21
|
2
|
|
|
2
|
|
10
|
use strict; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
73
|
|
22
|
|
|
|
|
|
|
#use List::Util 'max'; |
23
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
24
|
|
|
|
|
|
|
|
25
|
2
|
|
|
2
|
|
10
|
use vars '$VERSION', '@ISA'; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
133
|
|
26
|
|
|
|
|
|
|
$VERSION = 128; |
27
|
2
|
|
|
2
|
|
14
|
use Math::PlanePath; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
89
|
|
28
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
31
|
2
|
|
|
|
|
117
|
'is_infinite', |
32
|
2
|
|
|
2
|
|
14
|
'round_nearest'; |
|
2
|
|
|
|
|
3
|
|
33
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
34
|
2
|
|
|
|
|
101
|
'round_down_pow', |
35
|
|
|
|
|
|
|
'round_up_pow', |
36
|
|
|
|
|
|
|
'digit_split_lowtohigh', |
37
|
2
|
|
|
2
|
|
13
|
'digit_join_lowtohigh'; |
|
2
|
|
|
|
|
3
|
|
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
40
|
|
|
|
|
|
|
#use Smart::Comments; |
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
|
43
|
2
|
|
|
2
|
|
11
|
use constant n_start => 0; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
128
|
|
44
|
2
|
|
|
2
|
|
13
|
use constant class_x_negative => 0; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
113
|
|
45
|
2
|
|
|
2
|
|
13
|
use constant class_y_negative => 0; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
115
|
|
46
|
|
|
|
|
|
|
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1; |
47
|
|
|
|
|
|
|
|
48
|
2
|
|
|
2
|
|
26
|
use constant dx_minimum => -1; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
110
|
|
49
|
2
|
|
|
2
|
|
14
|
use constant dx_maximum => 1; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
99
|
|
50
|
2
|
|
|
2
|
|
19
|
use constant dy_minimum => -1; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
122
|
|
51
|
2
|
|
|
2
|
|
13
|
use constant dy_maximum => 1; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
197
|
|
52
|
|
|
|
|
|
|
*_UNDOCUMENTED__dxdy_list = \&Math::PlanePath::_UNDOCUMENTED__dxdy_list_eight; |
53
|
2
|
|
|
2
|
|
15
|
use constant dsumxy_minimum => -2; # diagonals |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
118
|
|
54
|
2
|
|
|
2
|
|
14
|
use constant dsumxy_maximum => 2; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
101
|
|
55
|
2
|
|
|
2
|
|
11
|
use constant ddiffxy_minimum => -2; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
103
|
|
56
|
2
|
|
|
2
|
|
13
|
use constant ddiffxy_maximum => 2; |
|
2
|
|
|
|
|
18
|
|
|
2
|
|
|
|
|
109
|
|
57
|
2
|
|
|
2
|
|
11
|
use constant dir_maximum_dxdy => (1,-1); # South-East |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
120
|
|
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
# tables generated by tools/dekking-curve-table.pl |
63
|
|
|
|
|
|
|
# state length 200 in each of 4 tables |
64
|
2
|
|
|
2
|
|
13
|
use vars '@_next_state','@_digit_to_x','@_digit_to_y','@_yx_to_digit'; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
2151
|
|
65
|
|
|
|
|
|
|
@_next_state = ( 0, 0,175,100, 25, # 0 |
66
|
|
|
|
|
|
|
0,175,100, 50,175, |
67
|
|
|
|
|
|
|
0, 0,150, 25,150, |
68
|
|
|
|
|
|
|
75, 75,100, 75,125, |
69
|
|
|
|
|
|
|
150, 25, 0,125,125, |
70
|
|
|
|
|
|
|
25, 25,100,125, 50, # 25 |
71
|
|
|
|
|
|
|
25,100,125, 75,100, |
72
|
|
|
|
|
|
|
25, 25,175, 50,175, |
73
|
|
|
|
|
|
|
0, 0,125, 0,150, |
74
|
|
|
|
|
|
|
175, 50, 25,150,150, |
75
|
|
|
|
|
|
|
50, 50,125,150, 75, # 50 |
76
|
|
|
|
|
|
|
50,125,150, 0,125, |
77
|
|
|
|
|
|
|
50, 50,100, 75,100, |
78
|
|
|
|
|
|
|
25, 25,150, 25,175, |
79
|
|
|
|
|
|
|
100, 75, 50,175,175, |
80
|
|
|
|
|
|
|
75, 75,150,175, 0, # 75 |
81
|
|
|
|
|
|
|
75,150,175, 25,150, |
82
|
|
|
|
|
|
|
75, 75,125, 0,125, |
83
|
|
|
|
|
|
|
50, 50,175, 50,100, |
84
|
|
|
|
|
|
|
125, 0, 75,100,100, |
85
|
|
|
|
|
|
|
25, 25,100,125, 50, # 100 |
86
|
|
|
|
|
|
|
25,175, 0,175,175, |
87
|
|
|
|
|
|
|
50,125, 50,100,100, |
88
|
|
|
|
|
|
|
75,150, 0, 75,100, |
89
|
|
|
|
|
|
|
125, 0, 75,100,100, |
90
|
|
|
|
|
|
|
50, 50,125,150, 75, # 125 |
91
|
|
|
|
|
|
|
50,100, 25,100,100, |
92
|
|
|
|
|
|
|
75,150, 75,125,125, |
93
|
|
|
|
|
|
|
0,175, 25, 0,125, |
94
|
|
|
|
|
|
|
150, 25, 0,125,125, |
95
|
|
|
|
|
|
|
75, 75,150,175, 0, # 150 |
96
|
|
|
|
|
|
|
75,125, 50,125,125, |
97
|
|
|
|
|
|
|
0,175, 0,150,150, |
98
|
|
|
|
|
|
|
25,100, 50, 25,150, |
99
|
|
|
|
|
|
|
175, 50, 25,150,150, |
100
|
|
|
|
|
|
|
0, 0,175,100, 25, # 175 |
101
|
|
|
|
|
|
|
0,150, 75,150,150, |
102
|
|
|
|
|
|
|
25,100, 25,175,175, |
103
|
|
|
|
|
|
|
50,125, 75, 50,175, |
104
|
|
|
|
|
|
|
100, 75, 50,175,175); |
105
|
|
|
|
|
|
|
@_digit_to_x = (0,1,2,1,0, 1,2,1,0,0, 0,1,2,2,3, 4,4,3,3,2, 3,3,4,4,4, |
106
|
|
|
|
|
|
|
4,4,4,3,3, 2,2,1,2,1, 0,0,1,0,0, 0,1,1,2,3, 4,3,2,3,4, |
107
|
|
|
|
|
|
|
4,3,2,3,4, 3,2,3,4,4, 4,3,2,2,1, 0,0,1,1,2, 1,1,0,0,0, |
108
|
|
|
|
|
|
|
0,0,0,1,1, 2,2,3,2,3, 4,4,3,4,4, 4,3,3,2,1, 0,1,2,1,0, |
109
|
|
|
|
|
|
|
4,4,4,3,3, 2,3,3,4,4, 3,2,2,1,0, 0,0,1,2,1, 0,1,2,1,0, |
110
|
|
|
|
|
|
|
4,3,2,3,4, 3,2,1,1,0, 0,0,1,0,0, 1,2,1,2,2, 3,3,4,4,4, |
111
|
|
|
|
|
|
|
0,0,0,1,1, 2,1,1,0,0, 1,2,2,3,4, 4,4,3,2,3, 4,3,2,3,4, |
112
|
|
|
|
|
|
|
0,1,2,1,0, 1,2,3,3,4, 4,4,3,4,4, 3,2,3,2,2, 1,1,0,0,0); |
113
|
|
|
|
|
|
|
@_digit_to_y = (0,0,0,1,1, 2,2,3,2,3, 4,4,3,4,4, 4,3,3,2,1, 0,1,2,1,0, |
114
|
|
|
|
|
|
|
0,1,2,1,0, 1,2,1,0,0, 0,1,2,2,3, 4,4,3,3,2, 3,3,4,4,4, |
115
|
|
|
|
|
|
|
4,4,4,3,3, 2,2,1,2,1, 0,0,1,0,0, 0,1,1,2,3, 4,3,2,3,4, |
116
|
|
|
|
|
|
|
4,3,2,3,4, 3,2,3,4,4, 4,3,2,2,1, 0,0,1,1,2, 1,1,0,0,0, |
117
|
|
|
|
|
|
|
0,1,2,1,0, 1,2,3,3,4, 4,4,3,4,4, 3,2,3,2,2, 1,1,0,0,0, |
118
|
|
|
|
|
|
|
4,4,4,3,3, 2,3,3,4,4, 3,2,2,1,0, 0,0,1,2,1, 0,1,2,1,0, |
119
|
|
|
|
|
|
|
4,3,2,3,4, 3,2,1,1,0, 0,0,1,0,0, 1,2,1,2,2, 3,3,4,4,4, |
120
|
|
|
|
|
|
|
0,0,0,1,1, 2,1,1,0,0, 1,2,2,3,4, 4,4,3,2,3, 4,3,2,3,4); |
121
|
|
|
|
|
|
|
@_yx_to_digit = (0, 1, 2,20,24, # 0 |
122
|
|
|
|
|
|
|
4, 3,19,21,23, |
123
|
|
|
|
|
|
|
8, 5, 6,18,22, |
124
|
|
|
|
|
|
|
9, 7,12,17,16, |
125
|
|
|
|
|
|
|
10,11,13,14,15, |
126
|
|
|
|
|
|
|
10, 9, 8, 4, 0, # 25 |
127
|
|
|
|
|
|
|
11, 7, 5, 3, 1, |
128
|
|
|
|
|
|
|
13,12, 6,19, 2, |
129
|
|
|
|
|
|
|
14,17,18,21,20, |
130
|
|
|
|
|
|
|
15,16,22,23,24, |
131
|
|
|
|
|
|
|
15,14,13,11,10, # 50 |
132
|
|
|
|
|
|
|
16,17,12, 7, 9, |
133
|
|
|
|
|
|
|
22,18, 6, 5, 8, |
134
|
|
|
|
|
|
|
23,21,19, 3, 4, |
135
|
|
|
|
|
|
|
24,20, 2, 1, 0, |
136
|
|
|
|
|
|
|
24,23,22,16,15, # 75 |
137
|
|
|
|
|
|
|
20,21,18,17,14, |
138
|
|
|
|
|
|
|
2,19, 6,12,13, |
139
|
|
|
|
|
|
|
1, 3, 5, 7,11, |
140
|
|
|
|
|
|
|
0, 4, 8, 9,10, |
141
|
|
|
|
|
|
|
24,23,22, 4, 0, # 100 |
142
|
|
|
|
|
|
|
20,21, 5, 3, 1, |
143
|
|
|
|
|
|
|
16,19,18, 6, 2, |
144
|
|
|
|
|
|
|
15,17,12, 7, 8, |
145
|
|
|
|
|
|
|
14,13,11,10, 9, |
146
|
|
|
|
|
|
|
14,15,16,20,24, # 125 |
147
|
|
|
|
|
|
|
13,17,19,21,23, |
148
|
|
|
|
|
|
|
11,12,18, 5,22, |
149
|
|
|
|
|
|
|
10, 7, 6, 3, 4, |
150
|
|
|
|
|
|
|
9, 8, 2, 1, 0, |
151
|
|
|
|
|
|
|
9,10,11,13,14, # 150 |
152
|
|
|
|
|
|
|
8, 7,12,17,15, |
153
|
|
|
|
|
|
|
2, 6,18,19,16, |
154
|
|
|
|
|
|
|
1, 3, 5,21,20, |
155
|
|
|
|
|
|
|
0, 4,22,23,24, |
156
|
|
|
|
|
|
|
0, 1, 2, 8, 9, # 175 |
157
|
|
|
|
|
|
|
4, 3, 6, 7,10, |
158
|
|
|
|
|
|
|
22, 5,18,12,11, |
159
|
|
|
|
|
|
|
23,21,19,17,13, |
160
|
|
|
|
|
|
|
24,20,16,15,14); |
161
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
sub n_to_xy { |
163
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
164
|
|
|
|
|
|
|
### DekkingCurve n_to_xy(): $n |
165
|
|
|
|
|
|
|
|
166
|
0
|
0
|
|
|
|
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
|
|
167
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
|
169
|
0
|
|
|
|
|
|
my $int = int($n); |
170
|
0
|
|
|
|
|
|
$n -= $int; |
171
|
|
|
|
|
|
|
|
172
|
0
|
|
|
|
|
|
my @digits = digit_split_lowtohigh($int,25); |
173
|
0
|
|
|
|
|
|
my $state = my $dirstate = 0; |
174
|
0
|
|
|
|
|
|
my @x; |
175
|
|
|
|
|
|
|
my @y; |
176
|
0
|
|
|
|
|
|
foreach my $i (reverse 0 .. $#digits) { |
177
|
0
|
|
|
|
|
|
$state += $digits[$i]; |
178
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
### $state |
180
|
|
|
|
|
|
|
### digit_to_x: $digit_to_x[$state] |
181
|
|
|
|
|
|
|
### digit_to_y: $digit_to_y[$state] |
182
|
|
|
|
|
|
|
### next_state: $next_state[$state] |
183
|
|
|
|
|
|
|
|
184
|
0
|
0
|
|
|
|
|
if ($digits[$i] != 24) { # lowest non-24 digit |
185
|
0
|
|
|
|
|
|
$dirstate = $state; |
186
|
|
|
|
|
|
|
} |
187
|
0
|
|
|
|
|
|
$x[$i] = $_digit_to_x[$state]; |
188
|
0
|
|
|
|
|
|
$y[$i] = $_digit_to_y[$state]; |
189
|
0
|
|
|
|
|
|
$state = $_next_state[$state]; |
190
|
|
|
|
|
|
|
} |
191
|
|
|
|
|
|
|
|
192
|
0
|
|
|
|
|
|
my $zero = $int * 0; |
193
|
0
|
|
|
|
|
|
return ($n * ($_digit_to_x[$dirstate+1] - $_digit_to_x[$dirstate]) |
194
|
|
|
|
|
|
|
+ digit_join_lowtohigh(\@x, 5, $zero), |
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
$n * ($_digit_to_y[$dirstate+1] - $_digit_to_y[$dirstate]) |
197
|
|
|
|
|
|
|
+ digit_join_lowtohigh(\@y, 5, $zero)); |
198
|
|
|
|
|
|
|
} |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
sub xy_to_n { |
201
|
0
|
|
|
0
|
1
|
|
my ($self, $x, $y) = @_; |
202
|
|
|
|
|
|
|
### DekkingCurve xy_to_n(): "$x, $y" |
203
|
|
|
|
|
|
|
|
204
|
0
|
|
|
|
|
|
$x = round_nearest ($x); |
205
|
0
|
|
|
|
|
|
$y = round_nearest ($y); |
206
|
0
|
0
|
0
|
|
|
|
if ($x < 0 || $y < 0) { |
207
|
0
|
|
|
|
|
|
return undef; |
208
|
|
|
|
|
|
|
} |
209
|
0
|
0
|
|
|
|
|
if (is_infinite($x)) { |
210
|
0
|
|
|
|
|
|
return $x; |
211
|
|
|
|
|
|
|
} |
212
|
0
|
0
|
|
|
|
|
if (is_infinite($y)) { |
213
|
0
|
|
|
|
|
|
return $y; |
214
|
|
|
|
|
|
|
} |
215
|
|
|
|
|
|
|
|
216
|
0
|
|
|
|
|
|
my @x = digit_split_lowtohigh($x,5); |
217
|
0
|
|
|
|
|
|
my @y = digit_split_lowtohigh($y,5); |
218
|
|
|
|
|
|
|
### @x |
219
|
|
|
|
|
|
|
### @y |
220
|
|
|
|
|
|
|
|
221
|
0
|
|
|
|
|
|
my $state = 0; |
222
|
0
|
|
|
|
|
|
my @n; |
223
|
|
|
|
|
|
|
|
224
|
0
|
|
|
|
|
|
foreach my $i (reverse 0 .. max($#x,$#y)) { |
225
|
0
|
|
0
|
|
|
|
my $digit = $n[$i] = $_yx_to_digit[$state + 5*($y[$i]||0) + ($x[$i]||0)]; |
|
|
|
0
|
|
|
|
|
226
|
0
|
|
|
|
|
|
$state = $_next_state[$state+$digit]; |
227
|
|
|
|
|
|
|
} |
228
|
|
|
|
|
|
|
|
229
|
0
|
|
|
|
|
|
return digit_join_lowtohigh(\@n, 25, $x*0*$y); # preserve bignum |
230
|
|
|
|
|
|
|
} |
231
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
# not exact |
233
|
|
|
|
|
|
|
sub rect_to_n_range { |
234
|
0
|
|
|
0
|
1
|
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
235
|
|
|
|
|
|
|
### DekkingCurve rect_to_n_range(): "$x1,$y1, $x2,$y2" |
236
|
|
|
|
|
|
|
|
237
|
0
|
|
|
|
|
|
$x1 = round_nearest ($x1); |
238
|
0
|
|
|
|
|
|
$x2 = round_nearest ($x2); |
239
|
0
|
|
|
|
|
|
$y1 = round_nearest ($y1); |
240
|
0
|
|
|
|
|
|
$y2 = round_nearest ($y2); |
241
|
|
|
|
|
|
|
|
242
|
0
|
|
|
|
|
|
$x2 = max($x1,$x2); |
243
|
0
|
|
|
|
|
|
$y2 = max($y1,$y2); |
244
|
|
|
|
|
|
|
|
245
|
0
|
0
|
0
|
|
|
|
if ($x2 < 0 || $y2 < 0) { |
246
|
|
|
|
|
|
|
### rectangle all negative, no N values ... |
247
|
0
|
|
|
|
|
|
return (1, 0); |
248
|
|
|
|
|
|
|
} |
249
|
|
|
|
|
|
|
|
250
|
0
|
|
|
|
|
|
my ($pow) = round_down_pow (max($x2,$y2), 5); |
251
|
|
|
|
|
|
|
### $pow |
252
|
0
|
|
|
|
|
|
return (0, 25*$pow*$pow-1); |
253
|
|
|
|
|
|
|
} |
254
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
256
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
# shared by Math::PlanePath::CincoCurve |
258
|
|
|
|
|
|
|
sub level_to_n_range { |
259
|
0
|
|
|
0
|
1
|
|
my ($self, $level) = @_; |
260
|
0
|
|
|
|
|
|
return (0, 25**$level - 1); |
261
|
|
|
|
|
|
|
} |
262
|
|
|
|
|
|
|
sub n_to_level { |
263
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
264
|
0
|
0
|
|
|
|
|
if ($n < 0) { return undef; } |
|
0
|
|
|
|
|
|
|
265
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
0
|
|
|
|
|
|
|
266
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
267
|
0
|
|
|
|
|
|
my ($pow, $exp) = round_up_pow ($n+1, 25); |
268
|
0
|
|
|
|
|
|
return $exp; |
269
|
|
|
|
|
|
|
} |
270
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
272
|
|
|
|
|
|
|
1; |
273
|
|
|
|
|
|
|
__END__ |