| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# math-image --path=CubicBase --all --output=numbers --size=60x20 |
|
20
|
|
|
|
|
|
|
# math-image --path=CubicBase --values=Multiples,multiples=27 --output=numbers --size=60x20 |
|
21
|
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
# math-image --path=CubicBase --expression='i<128?i:0' --output=numbers --size=132x20 |
|
23
|
|
|
|
|
|
|
# |
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
package Math::PlanePath::CubicBase; |
|
26
|
1
|
|
|
1
|
|
8915
|
use 5.004; |
|
|
1
|
|
|
|
|
9
|
|
|
27
|
1
|
|
|
1
|
|
6
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
37
|
|
|
28
|
|
|
|
|
|
|
#use List::Util 'max'; |
|
29
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
30
|
|
|
|
|
|
|
|
|
31
|
1
|
|
|
1
|
|
6
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
10
|
|
|
|
1
|
|
|
|
|
69
|
|
|
32
|
|
|
|
|
|
|
$VERSION = 128; |
|
33
|
1
|
|
|
1
|
|
687
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
41
|
|
|
34
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
35
|
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
37
|
1
|
|
|
|
|
45
|
'is_infinite', |
|
38
|
1
|
|
|
1
|
|
7
|
'round_nearest'; |
|
|
1
|
|
|
|
|
2
|
|
|
39
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
40
|
1
|
|
|
|
|
66
|
'parameter_info_array', |
|
41
|
|
|
|
|
|
|
'digit_split_lowtohigh', |
|
42
|
1
|
|
|
1
|
|
439
|
'digit_join_lowtohigh'; |
|
|
1
|
|
|
|
|
2
|
|
|
43
|
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
45
|
|
|
|
|
|
|
#use Smart::Comments; |
|
46
|
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
|
|
48
|
1
|
|
|
1
|
|
7
|
use constant n_start => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
130
|
|
|
49
|
|
|
|
|
|
|
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_even; |
|
50
|
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
# use constant parameter_info_array => |
|
52
|
|
|
|
|
|
|
# [ Math::PlanePath::Base::Digits::parameter_info_radix2(), |
|
53
|
|
|
|
|
|
|
# |
|
54
|
|
|
|
|
|
|
# # Experimental ... |
|
55
|
|
|
|
|
|
|
# # { name => 'skewed', |
|
56
|
|
|
|
|
|
|
# # type => 'boolean', |
|
57
|
|
|
|
|
|
|
# # default => 0, |
|
58
|
|
|
|
|
|
|
# # }, |
|
59
|
|
|
|
|
|
|
# ]; |
|
60
|
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
sub x_negative_at_n { |
|
62
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
63
|
0
|
|
|
|
|
0
|
return $self->{'radix'}; |
|
64
|
|
|
|
|
|
|
} |
|
65
|
|
|
|
|
|
|
sub y_negative_at_n { |
|
66
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
67
|
0
|
|
|
|
|
0
|
return $self->{'radix'}**2; |
|
68
|
|
|
|
|
|
|
} |
|
69
|
1
|
|
|
1
|
|
8
|
use constant absdx_minimum => 2; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
65
|
|
|
70
|
1
|
|
|
1
|
|
6
|
use constant dir_maximum_dxdy => (-1, -3); # supremum |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
992
|
|
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
sub turn_any_straight { |
|
73
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
74
|
0
|
|
|
|
|
0
|
return $self->{'radix'} > 2; # never straight in radix=2 |
|
75
|
|
|
|
|
|
|
} |
|
76
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_left_at_n { |
|
77
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
78
|
0
|
|
|
|
|
0
|
return $self->{'radix'} - 1; |
|
79
|
|
|
|
|
|
|
} |
|
80
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_right_at_n { |
|
81
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
82
|
0
|
|
|
|
|
0
|
return $self->{'radix'}; |
|
83
|
|
|
|
|
|
|
} |
|
84
|
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
87
|
|
|
|
|
|
|
sub new { |
|
88
|
6
|
|
|
6
|
1
|
1685
|
my $self = shift->SUPER::new(@_); |
|
89
|
|
|
|
|
|
|
|
|
90
|
6
|
|
|
|
|
15
|
my $radix = $self->{'radix'}; |
|
91
|
6
|
100
|
66
|
|
|
30
|
if (! defined $radix || $radix <= 2) { $radix = 2; } |
|
|
3
|
|
|
|
|
5
|
|
|
92
|
6
|
|
|
|
|
10
|
$self->{'radix'} = $radix; |
|
93
|
|
|
|
|
|
|
|
|
94
|
6
|
|
|
|
|
13
|
return $self; |
|
95
|
|
|
|
|
|
|
} |
|
96
|
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
sub n_to_xy { |
|
98
|
33
|
|
|
33
|
1
|
3247
|
my ($self, $n) = @_; |
|
99
|
|
|
|
|
|
|
### CubicBase n_to_xy(): "$n" |
|
100
|
|
|
|
|
|
|
|
|
101
|
33
|
50
|
|
|
|
78
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
102
|
33
|
50
|
|
|
|
78
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
103
|
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
# is this sort of midpoint worthwhile? not documented yet |
|
105
|
|
|
|
|
|
|
{ |
|
106
|
33
|
|
|
|
|
59
|
my $int = int($n); |
|
|
33
|
|
|
|
|
47
|
|
|
107
|
|
|
|
|
|
|
### $int |
|
108
|
|
|
|
|
|
|
### $n |
|
109
|
33
|
50
|
|
|
|
68
|
if ($n != $int) { |
|
110
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
|
111
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
|
112
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat |
|
113
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
|
114
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
|
115
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
|
116
|
|
|
|
|
|
|
} |
|
117
|
33
|
|
|
|
|
49
|
$n = $int; # BigFloat int() gives BigInt, use that |
|
118
|
|
|
|
|
|
|
} |
|
119
|
|
|
|
|
|
|
|
|
120
|
33
|
|
|
|
|
47
|
my $x = 0; |
|
121
|
33
|
|
|
|
|
43
|
my $y = 0; |
|
122
|
|
|
|
|
|
|
|
|
123
|
33
|
|
|
|
|
55
|
my $radix = $self->{'radix'}; |
|
124
|
33
|
100
|
|
|
|
78
|
if (my @digits = digit_split_lowtohigh($n,$radix)) { |
|
125
|
31
|
|
|
|
|
57
|
my $len = ($n * 0) + 1; # inherit bignum 1 |
|
126
|
31
|
|
|
|
|
39
|
my $ext = 1; |
|
127
|
31
|
|
|
|
|
39
|
for (;;) { |
|
128
|
|
|
|
|
|
|
{ # 0 degrees |
|
129
|
37
|
|
|
|
|
52
|
$x += (2*(shift @digits)) * $len; # low to high |
|
|
37
|
|
|
|
|
52
|
|
|
130
|
|
|
|
|
|
|
} |
|
131
|
37
|
100
|
|
|
|
104
|
@digits || last; |
|
132
|
|
|
|
|
|
|
|
|
133
|
29
|
100
|
|
|
|
58
|
if ($ext ^= 1) { |
|
134
|
4
|
|
|
|
|
9
|
$len *= $radix; |
|
135
|
|
|
|
|
|
|
} |
|
136
|
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
{ # +120 degrees |
|
138
|
29
|
|
|
|
|
34
|
my $dlen = (shift @digits) * $len; # low to high |
|
|
29
|
|
|
|
|
45
|
|
|
139
|
29
|
|
|
|
|
36
|
$x -= $dlen; |
|
140
|
29
|
|
|
|
|
36
|
$y += $dlen; |
|
141
|
|
|
|
|
|
|
} |
|
142
|
29
|
100
|
|
|
|
55
|
@digits || last; |
|
143
|
|
|
|
|
|
|
|
|
144
|
10
|
100
|
|
|
|
28
|
if ($ext ^= 1) { |
|
145
|
8
|
|
|
|
|
18
|
$len *= $radix; |
|
146
|
|
|
|
|
|
|
} |
|
147
|
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
{ # +240 degrees |
|
149
|
10
|
|
|
|
|
14
|
my $dlen = (shift @digits) * $len; # low to high |
|
|
10
|
|
|
|
|
17
|
|
|
150
|
10
|
|
|
|
|
14
|
$x -= $dlen; |
|
151
|
10
|
|
|
|
|
16
|
$y -= $dlen; |
|
152
|
|
|
|
|
|
|
} |
|
153
|
10
|
100
|
|
|
|
16
|
@digits || last; |
|
154
|
|
|
|
|
|
|
|
|
155
|
6
|
50
|
|
|
|
14
|
if ($ext ^= 1) { |
|
156
|
0
|
|
|
|
|
0
|
$len *= $radix; |
|
157
|
|
|
|
|
|
|
} |
|
158
|
|
|
|
|
|
|
} |
|
159
|
|
|
|
|
|
|
|
|
160
|
31
|
50
|
|
|
|
64
|
if ($self->{'skewed'}) { |
|
161
|
0
|
|
|
|
|
0
|
$x = ($x + $y) / 2; |
|
162
|
|
|
|
|
|
|
} |
|
163
|
|
|
|
|
|
|
} |
|
164
|
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
### result: "$x,$y" |
|
166
|
33
|
|
|
|
|
80
|
return ($x,$y); |
|
167
|
|
|
|
|
|
|
} |
|
168
|
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
sub xy_to_n { |
|
170
|
33
|
|
|
33
|
1
|
2648
|
my ($self, $x, $y) = @_; |
|
171
|
|
|
|
|
|
|
### CubicBase xy_to_n(): "$x, $y" |
|
172
|
|
|
|
|
|
|
|
|
173
|
33
|
|
|
|
|
87
|
$x = round_nearest ($x); |
|
174
|
33
|
|
|
|
|
63
|
$y = round_nearest ($y); |
|
175
|
33
|
50
|
|
|
|
69
|
if (is_infinite($x)) { return ($x); } |
|
|
0
|
|
|
|
|
0
|
|
|
176
|
33
|
50
|
|
|
|
69
|
if (is_infinite($y)) { return ($y); } |
|
|
0
|
|
|
|
|
0
|
|
|
177
|
|
|
|
|
|
|
|
|
178
|
33
|
50
|
|
|
|
74
|
if ($self->{'skewed'}) { |
|
179
|
0
|
|
|
|
|
0
|
$x = 2*$x - $y; |
|
180
|
|
|
|
|
|
|
} else { |
|
181
|
33
|
50
|
|
|
|
73
|
if (($x + $y) % 2) { |
|
182
|
|
|
|
|
|
|
# nothing on odd squares, only A2 even squares |
|
183
|
0
|
|
|
|
|
0
|
return undef; |
|
184
|
|
|
|
|
|
|
} |
|
185
|
|
|
|
|
|
|
} |
|
186
|
|
|
|
|
|
|
# $x = ($x-$y)/2; # into i,j coordinates |
|
187
|
|
|
|
|
|
|
|
|
188
|
33
|
|
|
|
|
66
|
foreach my $overflow ($x+$y, $x-$y) { |
|
189
|
66
|
50
|
|
|
|
125
|
if (is_infinite($overflow)) { return $overflow; } |
|
|
0
|
|
|
|
|
0
|
|
|
190
|
|
|
|
|
|
|
} |
|
191
|
|
|
|
|
|
|
|
|
192
|
33
|
|
|
|
|
60
|
my $radix = $self->{'radix'}; |
|
193
|
33
|
|
|
|
|
47
|
my $zero = ($x * 0 * $y); # inherit bignum 0 |
|
194
|
33
|
|
|
|
|
54
|
my @n; # digits low to high |
|
195
|
|
|
|
|
|
|
|
|
196
|
33
|
100
|
100
|
|
|
69
|
if ($x || $y) { |
|
197
|
31
|
|
|
|
|
36
|
my $ext = 1; |
|
198
|
|
|
|
|
|
|
|
|
199
|
31
|
|
|
|
|
44
|
for (;;) { |
|
200
|
|
|
|
|
|
|
### at: "x=$x y=$y" |
|
201
|
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
{ |
|
203
|
37
|
|
|
|
|
52
|
my $digit = (($x+$y)/2) % $radix; |
|
|
37
|
|
|
|
|
70
|
|
|
204
|
37
|
|
|
|
|
63
|
push @n, $digit; |
|
205
|
37
|
|
|
|
|
67
|
$x -= 2*$digit; |
|
206
|
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
### 0deg digit: $digit |
|
208
|
|
|
|
|
|
|
### subtract to: "x=$x y=$y" |
|
209
|
|
|
|
|
|
|
} |
|
210
|
|
|
|
|
|
|
|
|
211
|
37
|
100
|
66
|
|
|
82
|
last unless $x || $y; |
|
212
|
29
|
100
|
|
|
|
59
|
if ($ext ^= 1) { |
|
213
|
|
|
|
|
|
|
### assert: ($x % $radix) == 0 |
|
214
|
|
|
|
|
|
|
### assert: ($y % $radix) == 0 |
|
215
|
4
|
|
|
|
|
7
|
$x = int($x/$radix); |
|
216
|
4
|
|
|
|
|
7
|
$y = int($y/$radix); |
|
217
|
|
|
|
|
|
|
### divide out to: "x=$x y=$y" |
|
218
|
|
|
|
|
|
|
} |
|
219
|
|
|
|
|
|
|
|
|
220
|
|
|
|
|
|
|
{ |
|
221
|
29
|
|
|
|
|
33
|
my $digit = (($y-$x)/2) % $radix; |
|
|
29
|
|
|
|
|
50
|
|
|
222
|
29
|
|
|
|
|
39
|
push @n, $digit; |
|
223
|
29
|
|
|
|
|
35
|
$x += $digit; |
|
224
|
29
|
|
|
|
|
42
|
$y -= $digit; |
|
225
|
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
### 120deg digit: $digit |
|
227
|
|
|
|
|
|
|
### subtract to: "x=$x y=$y" |
|
228
|
|
|
|
|
|
|
} |
|
229
|
|
|
|
|
|
|
|
|
230
|
29
|
100
|
66
|
|
|
84
|
last unless $x || $y; |
|
231
|
10
|
100
|
|
|
|
20
|
if ($ext ^= 1) { |
|
232
|
|
|
|
|
|
|
### assert: ($x % $radix) == 0 |
|
233
|
|
|
|
|
|
|
### assert: ($y % $radix) == 0 |
|
234
|
8
|
|
|
|
|
16
|
$x = int($x/$radix); |
|
235
|
8
|
|
|
|
|
11
|
$y = int($y/$radix); |
|
236
|
|
|
|
|
|
|
### divide out to: "x=$x y=$y" |
|
237
|
|
|
|
|
|
|
} |
|
238
|
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
{ |
|
240
|
10
|
|
|
|
|
10
|
my $digit = (-$y) % $radix; |
|
|
10
|
|
|
|
|
19
|
|
|
241
|
10
|
|
|
|
|
13
|
push @n, $digit; |
|
242
|
10
|
|
|
|
|
13
|
$x += $digit; |
|
243
|
10
|
|
|
|
|
88
|
$y += $digit; |
|
244
|
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
### 240deg digit: $digit |
|
246
|
|
|
|
|
|
|
### subtract to: "x=$x y=$y" |
|
247
|
|
|
|
|
|
|
} |
|
248
|
|
|
|
|
|
|
|
|
249
|
10
|
100
|
66
|
|
|
33
|
last unless $x || $y; |
|
250
|
6
|
50
|
|
|
|
9
|
if ($ext ^= 1) { |
|
251
|
|
|
|
|
|
|
### assert: ($x % $radix) == 0 |
|
252
|
|
|
|
|
|
|
### assert: ($y % $radix) == 0 |
|
253
|
0
|
|
|
|
|
0
|
$x = int($x/$radix); |
|
254
|
0
|
|
|
|
|
0
|
$y = int($y/$radix); |
|
255
|
|
|
|
|
|
|
### divide out to: "x=$x y=$y" |
|
256
|
|
|
|
|
|
|
} |
|
257
|
|
|
|
|
|
|
} |
|
258
|
|
|
|
|
|
|
} |
|
259
|
|
|
|
|
|
|
|
|
260
|
33
|
|
|
|
|
93
|
return digit_join_lowtohigh (\@n, $radix, $zero); |
|
261
|
|
|
|
|
|
|
} |
|
262
|
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
# ENHANCE-ME: Can probably do better by measuring extents in 3 directions |
|
264
|
|
|
|
|
|
|
# for a hexagonal boundary. |
|
265
|
|
|
|
|
|
|
# |
|
266
|
|
|
|
|
|
|
# not exact |
|
267
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
268
|
33
|
|
|
33
|
1
|
3300
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
269
|
|
|
|
|
|
|
### CubicBase rect_to_n_range(): "$x1,$y1 $x2,$y2" |
|
270
|
|
|
|
|
|
|
|
|
271
|
33
|
|
|
|
|
85
|
$x1 = round_nearest ($x1); |
|
272
|
33
|
|
|
|
|
66
|
$y1 = round_nearest ($y1); |
|
273
|
33
|
|
|
|
|
60
|
$x2 = round_nearest ($x2); |
|
274
|
33
|
|
|
|
|
58
|
$y2 = round_nearest ($y2); |
|
275
|
|
|
|
|
|
|
|
|
276
|
33
|
|
|
|
|
60
|
my $radix = $self->{'radix'}; |
|
277
|
33
|
|
|
|
|
76
|
my $xm = max(abs($x1),abs($x2)) * $radix*$radix*$radix; |
|
278
|
33
|
|
|
|
|
73
|
my $ym = max(abs($y1),abs($y2)) * $radix*$radix*$radix; |
|
279
|
|
|
|
|
|
|
|
|
280
|
33
|
|
|
|
|
79
|
return (0, |
|
281
|
|
|
|
|
|
|
$xm*$xm+$ym*$ym); |
|
282
|
|
|
|
|
|
|
} |
|
283
|
|
|
|
|
|
|
|
|
284
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
285
|
|
|
|
|
|
|
# levels |
|
286
|
|
|
|
|
|
|
|
|
287
|
1
|
|
|
1
|
|
500
|
use Math::PlanePath::ImaginaryBase; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
63
|
|
|
288
|
|
|
|
|
|
|
*level_to_n_range = \&Math::PlanePath::ImaginaryBase::level_to_n_range; |
|
289
|
|
|
|
|
|
|
*n_to_level = \&Math::PlanePath::ImaginaryBase::n_to_level; |
|
290
|
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
|
|
292
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
293
|
|
|
|
|
|
|
1; |
|
294
|
|
|
|
|
|
|
__END__ |