line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
# math-image --path=ComplexPlus --all --scale=5 |
21
|
|
|
|
|
|
|
# |
22
|
|
|
|
|
|
|
# math-image --path=ComplexPlus --expression='i<128?i:0' --output=numbers --size=132x40 |
23
|
|
|
|
|
|
|
# |
24
|
|
|
|
|
|
|
# Realpart: |
25
|
|
|
|
|
|
|
# math-image --path=ComplexPlus,realpart=2 --expression='i<50?i:0' --output=numbers --size=180 |
26
|
|
|
|
|
|
|
# |
27
|
|
|
|
|
|
|
# Arms: |
28
|
|
|
|
|
|
|
# math-image --path=ComplexPlus,arms=2 --expression='i<64?i:0' --output=numbers --size=79 |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
package Math::PlanePath::ComplexPlus; |
33
|
1
|
|
|
1
|
|
9151
|
use 5.004; |
|
1
|
|
|
|
|
13
|
|
34
|
1
|
|
|
1
|
|
5
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
51
|
|
35
|
|
|
|
|
|
|
#use List::Util 'max'; |
36
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
37
|
|
|
|
|
|
|
|
38
|
1
|
|
|
1
|
|
7
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
72
|
|
39
|
|
|
|
|
|
|
$VERSION = 128; |
40
|
|
|
|
|
|
|
|
41
|
1
|
|
|
1
|
|
712
|
use Math::PlanePath; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
51
|
|
42
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
43
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
46
|
1
|
|
|
|
|
45
|
'is_infinite', |
47
|
1
|
|
|
1
|
|
7
|
'round_nearest'; |
|
1
|
|
|
|
|
2
|
|
48
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
49
|
1
|
|
|
|
|
66
|
'round_up_pow', |
50
|
|
|
|
|
|
|
'digit_split_lowtohigh', |
51
|
1
|
|
|
1
|
|
433
|
'digit_join_lowtohigh'; |
|
1
|
|
|
|
|
3
|
|
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
54
|
|
|
|
|
|
|
#use Smart::Comments; |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
|
57
|
1
|
|
|
1
|
|
7
|
use constant n_start => 0; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
94
|
|
58
|
1
|
|
|
|
|
1309
|
use constant parameter_info_array => |
59
|
|
|
|
|
|
|
[ { name => 'realpart', |
60
|
|
|
|
|
|
|
display => 'Real Part', |
61
|
|
|
|
|
|
|
type => 'integer', |
62
|
|
|
|
|
|
|
default => 1, |
63
|
|
|
|
|
|
|
minimum => 1, |
64
|
|
|
|
|
|
|
width => 2, |
65
|
|
|
|
|
|
|
description => 'Real part r in the i+r complex base.', |
66
|
|
|
|
|
|
|
}, |
67
|
|
|
|
|
|
|
{ name => 'arms', |
68
|
|
|
|
|
|
|
share_key => 'arms_2', |
69
|
|
|
|
|
|
|
display => 'Arms', |
70
|
|
|
|
|
|
|
type => 'integer', |
71
|
|
|
|
|
|
|
minimum => 1, |
72
|
|
|
|
|
|
|
maximum => 2, |
73
|
|
|
|
|
|
|
default => 1, |
74
|
|
|
|
|
|
|
width => 1, |
75
|
|
|
|
|
|
|
description => 'Arms', |
76
|
|
|
|
|
|
|
when_name => 'realpart', |
77
|
|
|
|
|
|
|
when_value => '1', |
78
|
|
|
|
|
|
|
}, |
79
|
1
|
|
|
1
|
|
7
|
]; |
|
1
|
|
|
|
|
8
|
|
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
# b=i+r |
82
|
|
|
|
|
|
|
# theta = atan(1/r) |
83
|
|
|
|
|
|
|
sub x_negative_at_n { |
84
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
85
|
0
|
0
|
|
|
|
0
|
if ($self->{'realpart'} == 1) { return 8; } |
|
0
|
|
|
|
|
0
|
|
86
|
0
|
|
|
|
|
0
|
return $self->{'norm'} ** _ceil((2*atan2(1,1)) / atan2(1,$self->{'realpart'})); |
87
|
|
|
|
|
|
|
} |
88
|
|
|
|
|
|
|
sub y_negative_at_n { |
89
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
90
|
0
|
0
|
|
|
|
0
|
if ($self->{'realpart'} == 1) { return 32; } |
|
0
|
|
|
|
|
0
|
|
91
|
0
|
|
|
|
|
0
|
return $self->{'norm'} ** _ceil((4*atan2(1,1)) / atan2(1,$self->{'realpart'})); |
92
|
|
|
|
|
|
|
} |
93
|
|
|
|
|
|
|
sub _ceil { |
94
|
0
|
|
|
0
|
|
0
|
my ($x) = @_; |
95
|
0
|
|
|
|
|
0
|
my $int = int($x); |
96
|
0
|
0
|
|
|
|
0
|
return ($x > $int ? $int+1 : $int); |
97
|
|
|
|
|
|
|
} |
98
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
sub absdx_minimum { |
100
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
101
|
0
|
0
|
|
|
|
0
|
return ($self->{'realpart'} == 1 |
102
|
|
|
|
|
|
|
? 0 # i+1 N=1 dX=0,dY=1 |
103
|
|
|
|
|
|
|
: 1); # i+r otherwise always diff |
104
|
|
|
|
|
|
|
} |
105
|
|
|
|
|
|
|
# use constant dir_maximum_dxdy => (0,0); # supremum, almost full way |
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
sub turn_any_straight { |
108
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
109
|
0
|
|
|
|
|
0
|
return ($self->{'realpart'} != 1); # realpart=1 never straight |
110
|
|
|
|
|
|
|
} |
111
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
114
|
|
|
|
|
|
|
sub new { |
115
|
5
|
|
|
5
|
1
|
1297
|
my $self = shift->SUPER::new(@_); |
116
|
|
|
|
|
|
|
|
117
|
5
|
|
|
|
|
12
|
my $realpart = $self->{'realpart'}; |
118
|
5
|
100
|
66
|
|
|
18
|
if (! defined $realpart || $realpart < 1) { |
119
|
4
|
|
|
|
|
11
|
$self->{'realpart'} = $realpart = 1; |
120
|
|
|
|
|
|
|
} |
121
|
5
|
|
|
|
|
10
|
$self->{'norm'} = $realpart*$realpart + 1; |
122
|
|
|
|
|
|
|
|
123
|
5
|
|
|
|
|
8
|
my $arms = $self->{'arms'}; |
124
|
5
|
100
|
66
|
|
|
23
|
if (! defined $arms || $arms <= 0 || $realpart != 1) { $arms = 1; } |
|
4
|
50
|
66
|
|
|
8
|
|
125
|
0
|
|
|
|
|
0
|
elsif ($arms > 2) { $arms = 2; } |
126
|
5
|
|
|
|
|
8
|
$self->{'arms'} = $arms; |
127
|
|
|
|
|
|
|
|
128
|
5
|
|
|
|
|
11
|
return $self; |
129
|
|
|
|
|
|
|
} |
130
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
sub n_to_xy { |
132
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
133
|
|
|
|
|
|
|
### ComplexPlus n_to_xy(): $n |
134
|
|
|
|
|
|
|
|
135
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
136
|
0
|
0
|
|
|
|
0
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
{ |
139
|
0
|
|
|
|
|
0
|
my $int = int($n); |
|
0
|
|
|
|
|
0
|
|
140
|
|
|
|
|
|
|
### $int |
141
|
|
|
|
|
|
|
### $n |
142
|
0
|
0
|
|
|
|
0
|
if ($n != $int) { |
143
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
144
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'}); |
145
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat |
146
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
147
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
148
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
149
|
|
|
|
|
|
|
} |
150
|
0
|
|
|
|
|
0
|
$n = $int; # BigFloat int() gives BigInt, use that |
151
|
|
|
|
|
|
|
} |
152
|
|
|
|
|
|
|
|
153
|
0
|
|
|
|
|
0
|
my $realpart = $self->{'realpart'}; |
154
|
0
|
|
|
|
|
0
|
my $norm = $self->{'norm'}; |
155
|
|
|
|
|
|
|
### $norm |
156
|
|
|
|
|
|
|
### $realpart |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
# for i+1, arm=0 start X=0,Y=0, arm=1 start X=0,Y=1 |
159
|
0
|
|
|
|
|
0
|
my $x = 0; |
160
|
0
|
|
|
|
|
0
|
my $y = _divrem_mutate ($n, $self->{'arms'}); |
161
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
# for i+1, arm=0 start dX=1,dY=0, arm=1 start dX=-1,dY=0 |
163
|
0
|
|
|
|
|
0
|
my $dy = ($n * 0); # 0, inheriting bignum from $n |
164
|
0
|
0
|
|
|
|
0
|
my $dx = ($y ? -1 : 1) + $dy; # inheriting bignum from $n |
165
|
|
|
|
|
|
|
|
166
|
0
|
|
|
|
|
0
|
foreach my $digit (digit_split_lowtohigh($n,$norm)) { |
167
|
|
|
|
|
|
|
### at: "$x,$y digit=$digit dxdy=$dx,$dy" |
168
|
|
|
|
|
|
|
|
169
|
0
|
|
|
|
|
0
|
$x += $dx * $digit; |
170
|
0
|
|
|
|
|
0
|
$y += $dy * $digit; |
171
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
# multiply i+r, ie. (dx,dy) = (dx + i*dy)*(i+$realpart) |
173
|
0
|
|
|
|
|
0
|
($dx,$dy) = ($realpart*$dx - $dy, $dx + $realpart*$dy); |
174
|
|
|
|
|
|
|
} |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
### final: "$x,$y" |
177
|
0
|
|
|
|
|
0
|
return ($x,$y); |
178
|
|
|
|
|
|
|
} |
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
sub xy_to_n { |
181
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x, $y) = @_; |
182
|
|
|
|
|
|
|
### ComplexPlus xy_to_n(): "$x, $y" |
183
|
|
|
|
|
|
|
|
184
|
0
|
|
|
|
|
0
|
$x = round_nearest ($x); |
185
|
0
|
|
|
|
|
0
|
$y = round_nearest ($y); |
186
|
|
|
|
|
|
|
|
187
|
0
|
|
|
|
|
0
|
my $realpart = $self->{'realpart'}; |
188
|
|
|
|
|
|
|
{ |
189
|
0
|
|
|
|
|
0
|
my $rx = $realpart*$x; |
|
0
|
|
|
|
|
0
|
|
190
|
0
|
|
|
|
|
0
|
my $ry = $realpart*$y; |
191
|
0
|
|
|
|
|
0
|
foreach my $overflow ($rx+$ry, $rx-$ry) { |
192
|
0
|
0
|
|
|
|
0
|
if (is_infinite($overflow)) { return $overflow; } |
|
0
|
|
|
|
|
0
|
|
193
|
|
|
|
|
|
|
} |
194
|
|
|
|
|
|
|
} |
195
|
|
|
|
|
|
|
|
196
|
0
|
|
|
|
|
0
|
my $orig_x = $x; |
197
|
0
|
|
|
|
|
0
|
my $orig_y = $y; |
198
|
|
|
|
|
|
|
|
199
|
0
|
|
|
|
|
0
|
my $norm = $self->{'norm'}; |
200
|
0
|
|
|
|
|
0
|
my $zero = ($x * 0 * $y); # inherit bignum 0 |
201
|
0
|
|
|
|
|
0
|
my @n; # digits low to high |
202
|
|
|
|
|
|
|
|
203
|
0
|
|
|
|
|
0
|
my $prev_x = 0; |
204
|
0
|
|
|
|
|
0
|
my $prev_y = 0; |
205
|
0
|
|
0
|
|
|
0
|
while ($x || $y) { |
206
|
0
|
|
|
|
|
0
|
my $neg_y = $x - $y*$realpart; |
207
|
0
|
|
|
|
|
0
|
my $digit = $neg_y % $norm; |
208
|
|
|
|
|
|
|
### at: "$x,$y n=$n digit $digit" |
209
|
|
|
|
|
|
|
|
210
|
0
|
|
|
|
|
0
|
push @n, $digit; |
211
|
0
|
|
|
|
|
0
|
$x -= $digit; |
212
|
0
|
|
|
|
|
0
|
$neg_y -= $digit; |
213
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
### assert: ($neg_y % $norm) == 0 |
215
|
|
|
|
|
|
|
### assert: (($x * $realpart + $y) % $norm) == 0 |
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
# divide i+r = mul (i-r)/(i^2 - r^2) |
218
|
|
|
|
|
|
|
# = mul (i-r)/-norm |
219
|
|
|
|
|
|
|
# is (i*y + x) * (i-realpart)/-norm |
220
|
|
|
|
|
|
|
# x = [ x*-realpart - y ] / -norm |
221
|
|
|
|
|
|
|
# = [ x*realpart + y ] / norm |
222
|
|
|
|
|
|
|
# y = [ y*-realpart + x ] / -norm |
223
|
|
|
|
|
|
|
# = [ y*realpart - x ] / norm |
224
|
|
|
|
|
|
|
# |
225
|
0
|
|
|
|
|
0
|
($x,$y) = (($x*$realpart+$y)/$norm, -$neg_y/$norm); |
226
|
|
|
|
|
|
|
|
227
|
0
|
0
|
0
|
|
|
0
|
if ($x == $prev_x && $y == $prev_y) { |
228
|
0
|
|
|
|
|
0
|
last; |
229
|
|
|
|
|
|
|
} |
230
|
0
|
|
|
|
|
0
|
$prev_x = $x; |
231
|
0
|
|
|
|
|
0
|
$prev_y = $y; |
232
|
|
|
|
|
|
|
} |
233
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
### final: "$x,$y n=$n cf arms $self->{'arms'}" |
235
|
|
|
|
|
|
|
|
236
|
0
|
0
|
|
|
|
0
|
if ($y) { |
237
|
0
|
0
|
|
|
|
0
|
if ($self->{'arms'} > 1) { |
238
|
|
|
|
|
|
|
### not on first arm, re-run as: -$orig_x, 1-$orig_y |
239
|
0
|
|
|
|
|
0
|
local $self->{'arms'} = 1; |
240
|
0
|
|
|
|
|
0
|
my $n = $self->xy_to_n(-$orig_x,1-$orig_y); |
241
|
0
|
0
|
|
|
|
0
|
if (defined $n) { |
242
|
0
|
|
|
|
|
0
|
return 1 + 2*$n; # 180 degrees |
243
|
|
|
|
|
|
|
} |
244
|
|
|
|
|
|
|
} |
245
|
|
|
|
|
|
|
### X,Y not visited |
246
|
0
|
|
|
|
|
0
|
return undef; |
247
|
|
|
|
|
|
|
} |
248
|
|
|
|
|
|
|
|
249
|
0
|
|
|
|
|
0
|
my $n = digit_join_lowtohigh (\@n, $norm, $zero); |
250
|
0
|
0
|
|
|
|
0
|
if ($self->{'arms'} > 1) { |
251
|
0
|
|
|
|
|
0
|
$n *= 2; |
252
|
|
|
|
|
|
|
} |
253
|
0
|
|
|
|
|
0
|
return $n; |
254
|
|
|
|
|
|
|
} |
255
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
# not exact |
257
|
|
|
|
|
|
|
sub rect_to_n_range { |
258
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
259
|
|
|
|
|
|
|
### ComplexPlus rect_to_n_range(): "$x1,$y1 $x2,$y2" |
260
|
|
|
|
|
|
|
|
261
|
0
|
|
|
|
|
0
|
my $xm = max(abs($x1),abs($x2)); |
262
|
0
|
|
|
|
|
0
|
my $ym = max(abs($y1),abs($y2)); |
263
|
0
|
|
|
|
|
0
|
my $n_hi = ($xm*$xm + $ym*$ym) * $self->{'arms'}; |
264
|
0
|
0
|
|
|
|
0
|
if ($self->{'realpart'} == 1) { |
265
|
0
|
|
|
|
|
0
|
$n_hi *= 16; # 2**4 |
266
|
|
|
|
|
|
|
} |
267
|
0
|
|
|
|
|
0
|
return (0, int($n_hi)); |
268
|
|
|
|
|
|
|
} |
269
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
271
|
|
|
|
|
|
|
# levels |
272
|
|
|
|
|
|
|
|
273
|
|
|
|
|
|
|
sub level_to_n_range { |
274
|
9
|
|
|
9
|
1
|
600
|
my ($self, $level) = @_; |
275
|
9
|
|
|
|
|
31
|
return (0, $self->{'norm'}**$level * $self->{'arms'} - 1); |
276
|
|
|
|
|
|
|
} |
277
|
|
|
|
|
|
|
sub n_to_level { |
278
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
279
|
0
|
0
|
|
|
|
|
if ($n < 0) { return undef; } |
|
0
|
|
|
|
|
|
|
280
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
0
|
|
|
|
|
|
|
281
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
282
|
0
|
|
|
|
|
|
_divrem_mutate ($n, $self->{'arms'}); |
283
|
0
|
|
|
|
|
|
my ($pow, $exp) = round_up_pow ($n+1, $self->{'norm'}); |
284
|
0
|
|
|
|
|
|
return $exp; |
285
|
|
|
|
|
|
|
} |
286
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
288
|
|
|
|
|
|
|
1; |
289
|
|
|
|
|
|
|
__END__ |