line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# math-image --path=AnvilSpiral --all --output=numbers_dash |
20
|
|
|
|
|
|
|
# math-image --path=AnvilSpiral,wider=3 --all --output=numbers_dash |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
package Math::PlanePath::AnvilSpiral; |
23
|
1
|
|
|
1
|
|
842
|
use 5.004; |
|
1
|
|
|
|
|
4
|
|
24
|
1
|
|
|
1
|
|
4
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
47
|
|
25
|
|
|
|
|
|
|
#use List::Util 'min','max'; |
26
|
|
|
|
|
|
|
*min = \&Math::PlanePath::_min; |
27
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
28
|
|
|
|
|
|
|
|
29
|
1
|
|
|
1
|
|
6
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
48
|
|
30
|
|
|
|
|
|
|
$VERSION = 128; |
31
|
1
|
|
|
1
|
|
574
|
use Math::PlanePath; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
42
|
|
32
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
33
|
|
|
|
|
|
|
*_sqrtint = \&Math::PlanePath::_sqrtint; |
34
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
36
|
1
|
|
|
1
|
|
5
|
'round_nearest'; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
33
|
|
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
# pentagonal N = (3k-1)*k/2 |
40
|
|
|
|
|
|
|
# preceding |
41
|
|
|
|
|
|
|
# Np = (3k-1)*k/2 - 1 |
42
|
|
|
|
|
|
|
# = (3k^2 - k - 2)/2 |
43
|
|
|
|
|
|
|
# = (3k+2)(k-1)/2 |
44
|
|
|
|
|
|
|
# |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
# parameters "wider","n_start" |
48
|
1
|
|
|
1
|
|
467
|
use Math::PlanePath::SquareSpiral; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
38
|
|
49
|
|
|
|
|
|
|
*parameter_info_array |
50
|
|
|
|
|
|
|
= \&Math::PlanePath::SquareSpiral::parameter_info_array; |
51
|
1
|
|
|
1
|
|
5
|
use constant xy_is_visited => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
42
|
|
52
|
|
|
|
|
|
|
|
53
|
1
|
|
|
1
|
|
4
|
use constant dx_minimum => -1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
32
|
|
54
|
1
|
|
|
1
|
|
5
|
use constant dx_maximum => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
32
|
|
55
|
1
|
|
|
1
|
|
4
|
use constant dy_minimum => -1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
30
|
|
56
|
1
|
|
|
1
|
|
4
|
use constant dy_maximum => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
67
|
|
57
|
1
|
|
|
|
|
146
|
use constant 1.02 _UNDOCUMENTED__dxdy_list => (1,0, # E # no N,S |
58
|
|
|
|
|
|
|
1,1, # NE |
59
|
|
|
|
|
|
|
-1,1, # NW |
60
|
|
|
|
|
|
|
-1,0, # W |
61
|
|
|
|
|
|
|
-1,-1, # SW |
62
|
1
|
|
|
1
|
|
6
|
1,-1); # SE |
|
1
|
|
|
|
|
11
|
|
63
|
|
|
|
|
|
|
# last NW at lower right |
64
|
|
|
|
|
|
|
# 2w+4 ------- w+1 |
65
|
|
|
|
|
|
|
# \ / |
66
|
|
|
|
|
|
|
# * 0---- w * |
67
|
|
|
|
|
|
|
# / \ |
68
|
|
|
|
|
|
|
# 2w+6 ---------- 3w+10 w=3; 1+3*w+10=20 |
69
|
|
|
|
|
|
|
# |
70
|
|
|
|
|
|
|
sub x_negative_at_n { |
71
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
72
|
0
|
0
|
|
|
|
0
|
return $self->n_start + ($self->{'wider'} ? 0 : 3); |
73
|
|
|
|
|
|
|
} |
74
|
|
|
|
|
|
|
sub y_negative_at_n { |
75
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
76
|
0
|
|
|
|
|
0
|
return $self->n_start + 2*$self->{'wider'} + 6; |
77
|
|
|
|
|
|
|
} |
78
|
|
|
|
|
|
|
sub _UNDOCUMENTED__dxdy_list_at_n { |
79
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
80
|
0
|
|
|
|
|
0
|
return $self->n_start + 3*$self->{'wider'} + 10; |
81
|
|
|
|
|
|
|
} |
82
|
|
|
|
|
|
|
|
83
|
1
|
|
|
1
|
|
6
|
use constant absdx_minimum => 1; # abs(dX)=1 always |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
47
|
|
84
|
1
|
|
|
1
|
|
5
|
use constant dsumxy_minimum => -2; # diagonals |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
50
|
|
85
|
1
|
|
|
1
|
|
6
|
use constant dsumxy_maximum => 2; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
35
|
|
86
|
1
|
|
|
1
|
|
4
|
use constant ddiffxy_minimum => -2; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
45
|
|
87
|
1
|
|
|
1
|
|
5
|
use constant ddiffxy_maximum => 2; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
47
|
|
88
|
1
|
|
|
1
|
|
5
|
use constant dir_maximum_dxdy => (1,-1); # South-East |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
744
|
|
89
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_left_at_n { |
91
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
92
|
|
|
|
|
|
|
# left turn at w when w!=0 or at w+1 when w==0 |
93
|
0
|
|
0
|
|
|
0
|
return $self->n_start + ($self->{'wider'} || 1); |
94
|
|
|
|
|
|
|
} |
95
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_right_at_n { |
96
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
97
|
0
|
|
|
|
|
0
|
return $self->n_start + 2*$self->{'wider'} + 5; |
98
|
|
|
|
|
|
|
} |
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
sub new { |
104
|
20
|
|
|
20
|
1
|
3417
|
my $self = shift->SUPER::new (@_); |
105
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
# parameters |
107
|
20
|
100
|
|
|
|
69
|
if (! defined $self->{'n_start'}) { |
108
|
8
|
|
|
|
|
28
|
$self->{'n_start'} = $self->default_n_start; |
109
|
|
|
|
|
|
|
} |
110
|
20
|
|
100
|
|
|
64
|
$self->{'wider'} ||= 0; # default |
111
|
|
|
|
|
|
|
|
112
|
20
|
|
|
|
|
38
|
return $self; |
113
|
|
|
|
|
|
|
} |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
# [1,2,3,4],[1,12,35,70] # horizontal |
116
|
|
|
|
|
|
|
# N = (6 d^2 - 7 d + 2) |
117
|
|
|
|
|
|
|
# = (6*$d**2 - 7*$d + 2) |
118
|
|
|
|
|
|
|
# = ((6*$d - 7)*$d + 2) |
119
|
|
|
|
|
|
|
# d = 7/12 + sqrt(1/6 * $n + 1/144) |
120
|
|
|
|
|
|
|
# = (7 + 12*sqrt(1/6 * $n + 1/144))/12 |
121
|
|
|
|
|
|
|
# = (7 + sqrt(144/6*$n + 1))/12 |
122
|
|
|
|
|
|
|
# = (7 + sqrt(24*$n + 1))/12 |
123
|
|
|
|
|
|
|
# |
124
|
|
|
|
|
|
|
# wider=1 |
125
|
|
|
|
|
|
|
# [1,2,3,4],[1+1,12+1+2,35+1+2+2,70+1+2+2+2] |
126
|
|
|
|
|
|
|
# N = (6 d^2 - 5 d + 1) |
127
|
|
|
|
|
|
|
# d = 5/12 + sqrt(1/6 * $n + 1/144) |
128
|
|
|
|
|
|
|
# |
129
|
|
|
|
|
|
|
# wider=2 |
130
|
|
|
|
|
|
|
# [1,2,3,4],[1+2,12+2+4,35+2+4+4,70+2+4+4+4] |
131
|
|
|
|
|
|
|
# N = (6 d^2 - 3 d) |
132
|
|
|
|
|
|
|
# d = 3/12 + sqrt(1/6 * $n + 9/144) |
133
|
|
|
|
|
|
|
# |
134
|
|
|
|
|
|
|
# wider=3 |
135
|
|
|
|
|
|
|
# [1,2,3,4],[1+3,12+3+6,35+3+6+6,70+3+6+6+6] |
136
|
|
|
|
|
|
|
# N = (6 d^2 - d - 1) |
137
|
|
|
|
|
|
|
# d = 1/12 + sqrt(1/6 * $n + 25/144) |
138
|
|
|
|
|
|
|
# |
139
|
|
|
|
|
|
|
# wider=4 |
140
|
|
|
|
|
|
|
# [1,2,3,4],[1+4,12+4+8,35+4+8+8,70+4+8+8+8] |
141
|
|
|
|
|
|
|
# N = (6 d^2 + d - 2) |
142
|
|
|
|
|
|
|
# d = -1/12 + sqrt(1/6 * $n + 49/144) # 49=7*7=(2w-1)*(2w-1) |
143
|
|
|
|
|
|
|
# |
144
|
|
|
|
|
|
|
# in general |
145
|
|
|
|
|
|
|
# N = (6 d^2 - (7-2w) d + 2-w) |
146
|
|
|
|
|
|
|
# = (6d - (7-2w)) d + 2-w |
147
|
|
|
|
|
|
|
# = (6d - 7 + 2w))*d + 2-w |
148
|
|
|
|
|
|
|
# d = (7-2w)/12 + sqrt(1/6 * $n + (w-1)^2/144) |
149
|
|
|
|
|
|
|
# = [ 7-2w + 12*sqrt(1/6 * $n + (w-1)^2/144) ] / 12 |
150
|
|
|
|
|
|
|
# = [ 7-2w + sqrt(144/6*$n + (w-1)^2) ] / 12 |
151
|
|
|
|
|
|
|
# = [ 7-2w + sqrt(24*$n + (w-1)^2) ] / 12 |
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
sub n_to_xy { |
156
|
9234
|
|
|
9234
|
1
|
35131
|
my ($self, $n) = @_; |
157
|
|
|
|
|
|
|
### AnvilSpiral n_to_xy(): $n |
158
|
|
|
|
|
|
|
|
159
|
9234
|
|
|
|
|
10546
|
$n = $n - $self->{'n_start'}; # to N=0 basis, warning if $n==undef |
160
|
9234
|
50
|
|
|
|
13389
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
161
|
9234
|
|
|
|
|
10953
|
my $w = $self->{'wider'}; |
162
|
9234
|
|
|
|
|
11641
|
my $w_right = int($w/2); |
163
|
9234
|
|
|
|
|
9923
|
my $w_left = $w - $w_right; |
164
|
|
|
|
|
|
|
### $w |
165
|
|
|
|
|
|
|
### $w_left |
166
|
|
|
|
|
|
|
### $w_right |
167
|
|
|
|
|
|
|
|
168
|
9234
|
100
|
|
|
|
12531
|
if ($n <= $w) { |
169
|
|
|
|
|
|
|
### centre horizontal |
170
|
114
|
|
|
|
|
209
|
return ($n - $w_left, # N=0 at $w_left |
171
|
|
|
|
|
|
|
0); |
172
|
|
|
|
|
|
|
} |
173
|
|
|
|
|
|
|
|
174
|
9120
|
|
|
|
|
17554
|
my $d = int((_sqrtint(24*($n+1) + (2*$w-1)**2) + 7-2*$w) / 12); |
175
|
|
|
|
|
|
|
### ($n+1) |
176
|
|
|
|
|
|
|
### $d |
177
|
|
|
|
|
|
|
### d frac: ((sqrt(int(24*($n+1)) + (2*$w-1)**2) + 7-2*$w) / 12) |
178
|
|
|
|
|
|
|
### d sqrt add: ($w-1)*($w-1) |
179
|
|
|
|
|
|
|
### d const part: 7-2*$w |
180
|
|
|
|
|
|
|
|
181
|
9120
|
|
|
|
|
13512
|
$n -= (6*$d - 7 + 2*$w)*$d + 2-$w; |
182
|
|
|
|
|
|
|
### base: (6*$d - 7 + 2*$w)*$d + 2-$w |
183
|
|
|
|
|
|
|
### remainder: $n |
184
|
|
|
|
|
|
|
|
185
|
9120
|
100
|
|
|
|
13982
|
if ($n <= 5*$d+$w-2) { |
186
|
4268
|
100
|
|
|
|
5746
|
if ($n+1 <= $d) { |
187
|
|
|
|
|
|
|
### upper right slope ... |
188
|
874
|
|
|
|
|
1700
|
return ($n + $d + $w_right, |
189
|
|
|
|
|
|
|
$n+1); |
190
|
|
|
|
|
|
|
} else { |
191
|
|
|
|
|
|
|
### top ... |
192
|
3394
|
|
|
|
|
6801
|
return (-$n + 3*$d + $w_right - 2, |
193
|
|
|
|
|
|
|
$d); |
194
|
|
|
|
|
|
|
} |
195
|
|
|
|
|
|
|
} |
196
|
|
|
|
|
|
|
|
197
|
4852
|
|
|
|
|
5808
|
$n -= 7*$d + $w - 2; |
198
|
4852
|
100
|
|
|
|
6720
|
if ($n <= 0) { |
199
|
|
|
|
|
|
|
### left slopes: $n |
200
|
1320
|
|
|
|
|
2711
|
return (-abs($n+$d) - $d - $w_left, |
201
|
|
|
|
|
|
|
-$n - $d); |
202
|
|
|
|
|
|
|
} |
203
|
|
|
|
|
|
|
|
204
|
3532
|
|
|
|
|
3884
|
$n -= 4*$d + $w; |
205
|
3532
|
100
|
|
|
|
4720
|
if ($n < 0) { |
206
|
|
|
|
|
|
|
### bottom ... |
207
|
2944
|
|
|
|
|
5955
|
return ($n + 2*$d + $w_right, |
208
|
|
|
|
|
|
|
-$d); |
209
|
|
|
|
|
|
|
} else { |
210
|
|
|
|
|
|
|
### right lower ... |
211
|
588
|
|
|
|
|
1283
|
return (-$n + 2*$d + $w_right, |
212
|
|
|
|
|
|
|
$n - $d); |
213
|
|
|
|
|
|
|
} |
214
|
|
|
|
|
|
|
} |
215
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
sub xy_to_n { |
217
|
9234
|
|
|
9234
|
1
|
44423
|
my ($self, $x, $y) = @_; |
218
|
|
|
|
|
|
|
### AnvilSpiral xy_to_1 n(): "$x, $y" |
219
|
|
|
|
|
|
|
|
220
|
9234
|
|
|
|
|
14025
|
$x = round_nearest ($x); |
221
|
9234
|
|
|
|
|
15100
|
$y = round_nearest ($y); |
222
|
|
|
|
|
|
|
|
223
|
9234
|
|
|
|
|
13056
|
my $w = $self->{'wider'}; |
224
|
9234
|
|
|
|
|
11777
|
my $w_right = int($w/2); |
225
|
9234
|
|
|
|
|
10269
|
my $w_left = $w - $w_right; |
226
|
|
|
|
|
|
|
### $w |
227
|
|
|
|
|
|
|
### $w_left |
228
|
|
|
|
|
|
|
### $w_right |
229
|
|
|
|
|
|
|
|
230
|
9234
|
|
|
|
|
9984
|
my $abs_y = abs($y); |
231
|
9234
|
100
|
|
|
|
13917
|
if ($x-$w_right >= 2*$abs_y) { |
232
|
|
|
|
|
|
|
### right slopes: "d=".($x-$w_right - $abs_y) |
233
|
1327
|
|
|
|
|
1575
|
my $d = $x-$w_right - $abs_y; # zero based |
234
|
|
|
|
|
|
|
return ((6*$d + 5 + 2*$w)*$d + $w |
235
|
|
|
|
|
|
|
+ $y |
236
|
1327
|
|
|
|
|
2606
|
+ $self->{'n_start'}); |
237
|
|
|
|
|
|
|
} |
238
|
|
|
|
|
|
|
|
239
|
7907
|
100
|
|
|
|
11981
|
if ($x+$w_left < -2*$abs_y) { |
240
|
|
|
|
|
|
|
### left slopes: "d=".($x+$w_left + $abs_y) |
241
|
1178
|
|
|
|
|
1450
|
my $d = $x+$w_left + $abs_y; # negative, and zero based |
242
|
|
|
|
|
|
|
return ((6*$d + 1 - 2*$w)*$d |
243
|
|
|
|
|
|
|
- $y |
244
|
1178
|
|
|
|
|
2364
|
+ $self->{'n_start'}); |
245
|
|
|
|
|
|
|
} |
246
|
|
|
|
|
|
|
|
247
|
6729
|
100
|
|
|
|
9015
|
if ($y > 0) { |
248
|
|
|
|
|
|
|
### top horizontal ... |
249
|
|
|
|
|
|
|
return ((6*$y - 4 + 2*$w)*$y - $w |
250
|
|
|
|
|
|
|
+ $w_right-$x |
251
|
3547
|
|
|
|
|
7130
|
+ $self->{'n_start'}); |
252
|
|
|
|
|
|
|
} else { |
253
|
|
|
|
|
|
|
### bottom horizontal ... |
254
|
|
|
|
|
|
|
# y negative |
255
|
|
|
|
|
|
|
return ((6*$y - 2 - 2*$w)*$y |
256
|
|
|
|
|
|
|
+ $x+$w_left |
257
|
3182
|
|
|
|
|
6318
|
+ $self->{'n_start'}); |
258
|
|
|
|
|
|
|
} |
259
|
|
|
|
|
|
|
} |
260
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
262
|
|
|
|
|
|
|
#use Smart::Comments; |
263
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
# ...-78-77-76-75-74 |
265
|
|
|
|
|
|
|
# / |
266
|
|
|
|
|
|
|
# 43-42-41-40-39-38 73 |
267
|
|
|
|
|
|
|
# / / |
268
|
|
|
|
|
|
|
# 17-16-15-14 37 72 |
269
|
|
|
|
|
|
|
# / / / |
270
|
|
|
|
|
|
|
# -3--2 13 36 71 |
271
|
|
|
|
|
|
|
# / / / / |
272
|
|
|
|
|
|
|
# 1 12 35 70 |
273
|
|
|
|
|
|
|
# |
274
|
|
|
|
|
|
|
# column X=2, dmin decreasing until Y=1=floor(x/2) |
275
|
|
|
|
|
|
|
# column X=3, dmin decreasing until Y=2=ceil(x/2) |
276
|
|
|
|
|
|
|
# so x1 - min(y2,int((x1+1)/2)) |
277
|
|
|
|
|
|
|
# |
278
|
|
|
|
|
|
|
# |
279
|
|
|
|
|
|
|
# column Xmax=2, dmax increasing down until x2-y1 |
280
|
|
|
|
|
|
|
# |
281
|
|
|
|
|
|
|
# horizontal Y>=0 N increases left and right of X=Y*3/2 |
282
|
|
|
|
|
|
|
# so candidate max at top-left x1,y2 or top-right x2,y2 |
283
|
|
|
|
|
|
|
# |
284
|
|
|
|
|
|
|
# horizontal Y<0 N increases left and right of X=-Y*3/2 |
285
|
|
|
|
|
|
|
# so candidate max at bottom-left x1,y1 or bottom-right x2,y1 |
286
|
|
|
|
|
|
|
# |
287
|
|
|
|
|
|
|
# vertical Y>=0 N increases above and below Y=ceil(X/2) |
288
|
|
|
|
|
|
|
# so candidate max at top-right or bottom-right, or Y=0 |
289
|
|
|
|
|
|
|
# |
290
|
|
|
|
|
|
|
# vertical Y<0 N increases above and below Y=ceil(X/2) |
291
|
|
|
|
|
|
|
# so candidate max at top-right or bottom-right, or Y=0 |
292
|
|
|
|
|
|
|
# |
293
|
|
|
|
|
|
|
# int(($y2+1)/2), $y2 |
294
|
|
|
|
|
|
|
# int(($y1+1)/2), $y1 |
295
|
|
|
|
|
|
|
# |
296
|
|
|
|
|
|
|
# my @corners = ($self->xy_to_n($x1,$y1), |
297
|
|
|
|
|
|
|
# $self->xy_to_n($x2,$y1), |
298
|
|
|
|
|
|
|
# $self->xy_to_n($x1,$y2), |
299
|
|
|
|
|
|
|
# $self->xy_to_n($x2,$y2)); |
300
|
|
|
|
|
|
|
# return (($x_zero && $y_zero ? 1 : min (@corners)), |
301
|
|
|
|
|
|
|
# max (@corners, |
302
|
|
|
|
|
|
|
# ($y_zero ? ($self->xy_to_n($x1,0), |
303
|
|
|
|
|
|
|
# $self->xy_to_n($x2,0)) : ()))); |
304
|
|
|
|
|
|
|
|
305
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
# not exact |
309
|
|
|
|
|
|
|
sub rect_to_n_range { |
310
|
18468
|
|
|
18468
|
1
|
79816
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
311
|
|
|
|
|
|
|
### AnvilSpiral rect_to_n_range(): "$x1,$y1 $x2,$y2" |
312
|
|
|
|
|
|
|
|
313
|
18468
|
|
|
|
|
22167
|
my $w = $self->{'wider'}; |
314
|
18468
|
|
|
|
|
22946
|
my $w_right = int($w/2); |
315
|
18468
|
|
|
|
|
19917
|
my $w_left = $w - $w_right; |
316
|
|
|
|
|
|
|
|
317
|
18468
|
|
|
|
|
27464
|
$x1 = round_nearest($x1); |
318
|
18468
|
|
|
|
|
28804
|
$x2 = round_nearest($x2); |
319
|
18468
|
|
|
|
|
28780
|
$y1 = round_nearest($y1); |
320
|
18468
|
|
|
|
|
29861
|
$y2 = round_nearest($y2); |
321
|
|
|
|
|
|
|
|
322
|
18468
|
|
|
|
|
26404
|
my $x_zero = (($x1<0) != ($x2<0)); |
323
|
18468
|
|
|
|
|
21789
|
my $y_zero = (($y1<0) != ($y2<0)); |
324
|
|
|
|
|
|
|
### $x_zero |
325
|
|
|
|
|
|
|
### $y_zero |
326
|
|
|
|
|
|
|
|
327
|
18468
|
|
|
|
|
19936
|
$x1 += $w_left; |
328
|
18468
|
|
|
|
|
18659
|
$x2 += $w_left; |
329
|
|
|
|
|
|
|
|
330
|
18468
|
100
|
|
|
|
24501
|
if ($x1 < 0) { $x1 = $w-$x1; } |
|
7598
|
|
|
|
|
8447
|
|
331
|
18468
|
100
|
|
|
|
25059
|
if ($x2 < 0) { $x2 = $w-$x2; } |
|
3799
|
|
|
|
|
4090
|
|
332
|
18468
|
|
|
|
|
19701
|
$y1 = abs($y1); |
333
|
18468
|
|
|
|
|
19167
|
$y2 = abs($y2); |
334
|
|
|
|
|
|
|
|
335
|
18468
|
100
|
|
|
|
27046
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
336
|
18468
|
100
|
|
|
|
26856
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
337
|
|
|
|
|
|
|
|
338
|
18468
|
100
|
|
|
|
25676
|
if ($x_zero) { $x1 = 0; } |
|
4621
|
|
|
|
|
5081
|
|
339
|
18468
|
100
|
|
|
|
24136
|
if ($y_zero) { $y1 = 0; } |
|
4186
|
|
|
|
|
4717
|
|
340
|
|
|
|
|
|
|
|
341
|
|
|
|
|
|
|
### abs: "$x1,$y1 $x2,$y2" |
342
|
|
|
|
|
|
|
### d1 slope max y: int(($x1+1)/2) |
343
|
|
|
|
|
|
|
### d1 slope: $x1 - min($y2,int(($x1+1)/2)) |
344
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
# --------* |
346
|
|
|
|
|
|
|
# / |
347
|
|
|
|
|
|
|
# / |
348
|
|
|
|
|
|
|
# * <-y=0 |
349
|
|
|
|
|
|
|
# x=0....w |
350
|
|
|
|
|
|
|
# |
351
|
|
|
|
|
|
|
# d=x-w-y on the slope |
352
|
|
|
|
|
|
|
# d=y on the top horizontal |
353
|
|
|
|
|
|
|
# |
354
|
18468
|
|
|
|
|
35398
|
my $d1 = min ($x1-$w - min($y2,int(($x1-$w+1)/2)) - 1, |
355
|
|
|
|
|
|
|
$y2); |
356
|
18468
|
|
|
|
|
31806
|
my $d2 = 1 + max ($x2-$w - $y1, |
357
|
|
|
|
|
|
|
$y2); |
358
|
|
|
|
|
|
|
### $d1 |
359
|
|
|
|
|
|
|
### $d2 |
360
|
|
|
|
|
|
|
### d2 right slope would be: $x2-$w_right - $y2 |
361
|
|
|
|
|
|
|
|
362
|
|
|
|
|
|
|
# d1==0 is the centre horizontal |
363
|
|
|
|
|
|
|
# |
364
|
|
|
|
|
|
|
|
365
|
|
|
|
|
|
|
return ($d1 <= 0 |
366
|
|
|
|
|
|
|
? $self->{'n_start'} |
367
|
|
|
|
|
|
|
: (6*$d1 - 7 + 2*$w)*$d1 + 1-$w + $self->{'n_start'}, |
368
|
|
|
|
|
|
|
|
369
|
18468
|
100
|
|
|
|
49683
|
(6*$d2 - 6 + 2*$w)*$d2 - $w + $self->{'n_start'}); |
370
|
|
|
|
|
|
|
} |
371
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
1; |
373
|
|
|
|
|
|
|
__END__ |