| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
20
|
|
|
|
|
|
|
# cf |
|
21
|
|
|
|
|
|
|
# Ulam/Warburton with cells turning off too |
|
22
|
|
|
|
|
|
|
# A079315 cells OFF -> ON |
|
23
|
|
|
|
|
|
|
# A079317 cells ON at stage n |
|
24
|
|
|
|
|
|
|
# A079316 cells ON at stage n, in first quadrant |
|
25
|
|
|
|
|
|
|
# A151921 net gain ON cells |
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
package Math::PlanePath::UlamWarburton; |
|
31
|
1
|
|
|
1
|
|
9273
|
use 5.004; |
|
|
1
|
|
|
|
|
11
|
|
|
32
|
1
|
|
|
1
|
|
5
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
24
|
|
|
33
|
1
|
|
|
1
|
|
4
|
use Carp 'croak'; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
81
|
|
|
34
|
1
|
|
|
1
|
|
8
|
use List::Util 'sum'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
119
|
|
|
35
|
|
|
|
|
|
|
|
|
36
|
1
|
|
|
1
|
|
7
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
80
|
|
|
37
|
|
|
|
|
|
|
$VERSION = 127; |
|
38
|
1
|
|
|
1
|
|
668
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
63
|
|
|
39
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
40
|
|
|
|
|
|
|
*_divrem = \&Math::PlanePath::_divrem; |
|
41
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
|
42
|
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
44
|
1
|
|
|
|
|
48
|
'is_infinite', |
|
45
|
1
|
|
|
1
|
|
7
|
'round_nearest'; |
|
|
1
|
|
|
|
|
2
|
|
|
46
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
47
|
1
|
|
|
|
|
64
|
'round_up_pow', |
|
48
|
|
|
|
|
|
|
'round_down_pow', |
|
49
|
1
|
|
|
1
|
|
481
|
'digit_split_lowtohigh'; |
|
|
1
|
|
|
|
|
3
|
|
|
50
|
|
|
|
|
|
|
|
|
51
|
1
|
|
|
1
|
|
518
|
use Math::PlanePath::UlamWarburtonQuarter; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
79
|
|
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
54
|
|
|
|
|
|
|
# use Smart::Comments; |
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
|
|
57
|
1
|
|
|
|
|
1572
|
use constant parameter_info_array => |
|
58
|
|
|
|
|
|
|
[ |
|
59
|
|
|
|
|
|
|
{ name => 'parts', |
|
60
|
|
|
|
|
|
|
share_key => 'parts_ulamwarburton', |
|
61
|
|
|
|
|
|
|
display => 'Parts', |
|
62
|
|
|
|
|
|
|
type => 'enum', |
|
63
|
|
|
|
|
|
|
default => '4', |
|
64
|
|
|
|
|
|
|
choices => ['4','2','1','octant','octant_up' ], |
|
65
|
|
|
|
|
|
|
choices_display => ['4','2','1','Octant','Octant Up' ], |
|
66
|
|
|
|
|
|
|
description => 'Which parts of the plane to fill.', |
|
67
|
|
|
|
|
|
|
}, |
|
68
|
|
|
|
|
|
|
Math::PlanePath::Base::Generic::parameter_info_nstart1(), |
|
69
|
1
|
|
|
1
|
|
8
|
]; |
|
|
1
|
|
|
|
|
2
|
|
|
70
|
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
# octant_up goes up the Y axis spine, dX=0 |
|
72
|
|
|
|
|
|
|
# all others always have dX!=0 |
|
73
|
|
|
|
|
|
|
sub absdx_minimum { |
|
74
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
75
|
0
|
0
|
|
|
|
0
|
return ($self->{'parts'} eq 'octant_up' ? 0 : 1); |
|
76
|
|
|
|
|
|
|
} |
|
77
|
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
# used also to validate $self->{'parts'} |
|
79
|
|
|
|
|
|
|
my %x_negative = (4 => 1, |
|
80
|
|
|
|
|
|
|
2 => 1, |
|
81
|
|
|
|
|
|
|
1 => 0, |
|
82
|
|
|
|
|
|
|
octant => 0, |
|
83
|
|
|
|
|
|
|
octant_up => 0, |
|
84
|
|
|
|
|
|
|
); |
|
85
|
|
|
|
|
|
|
sub x_negative { |
|
86
|
1
|
|
|
1
|
1
|
3
|
my ($self) = @_; |
|
87
|
1
|
|
|
|
|
29
|
return $x_negative{$self->{'parts'}}; |
|
88
|
|
|
|
|
|
|
} |
|
89
|
|
|
|
|
|
|
sub y_negative { |
|
90
|
1
|
|
|
1
|
1
|
4
|
my ($self) = @_; |
|
91
|
1
|
|
|
|
|
4
|
return $self->{'parts'} eq '4'; |
|
92
|
|
|
|
|
|
|
} |
|
93
|
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
sub x_negative_at_n { |
|
95
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
96
|
0
|
0
|
|
|
|
0
|
return ($x_negative{$self->{'parts'}} ? $self->n_start + 3 : undef); |
|
97
|
|
|
|
|
|
|
} |
|
98
|
|
|
|
|
|
|
sub y_negative_at_n { |
|
99
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
100
|
0
|
0
|
|
|
|
0
|
return ($self->{'parts'} eq '4' ? $self->n_start + 4 : undef); |
|
101
|
|
|
|
|
|
|
} |
|
102
|
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
sub diffxy_minimum { |
|
104
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
105
|
0
|
0
|
|
|
|
0
|
return ($self->{'parts'} eq 'octant' ? 0 : undef); |
|
106
|
|
|
|
|
|
|
} |
|
107
|
|
|
|
|
|
|
sub diffxy_maximum { |
|
108
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
109
|
0
|
0
|
|
|
|
0
|
return ($self->{'parts'} eq 'octant_up' ? 0 : undef); |
|
110
|
|
|
|
|
|
|
} |
|
111
|
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
{ |
|
113
|
|
|
|
|
|
|
my %dir_maximum_dxdy = (4 => [1,-1], # N=4 South-East |
|
114
|
|
|
|
|
|
|
2 => [1,-1], # N=44 South-East |
|
115
|
|
|
|
|
|
|
1 => [2,-1], # N=3 ESE |
|
116
|
|
|
|
|
|
|
octant => [10,-3], # N=51 |
|
117
|
|
|
|
|
|
|
octant_up => [2,-1], # N=8 ESE |
|
118
|
|
|
|
|
|
|
); |
|
119
|
|
|
|
|
|
|
sub dir_maximum_dxdy { |
|
120
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
121
|
0
|
|
|
|
|
0
|
return @{$dir_maximum_dxdy{$self->{'parts'}}}; |
|
|
0
|
|
|
|
|
0
|
|
|
122
|
|
|
|
|
|
|
} |
|
123
|
|
|
|
|
|
|
} |
|
124
|
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
{ |
|
126
|
|
|
|
|
|
|
my %_UNDOCUMENTED__turn_any_right_at_n |
|
127
|
|
|
|
|
|
|
= ( |
|
128
|
|
|
|
|
|
|
4 => 20, |
|
129
|
|
|
|
|
|
|
2 => 35, |
|
130
|
|
|
|
|
|
|
1 => 2, |
|
131
|
|
|
|
|
|
|
octant => 4, |
|
132
|
|
|
|
|
|
|
octant_up => 2, |
|
133
|
|
|
|
|
|
|
); |
|
134
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_right_at_n { |
|
135
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
136
|
|
|
|
|
|
|
return $self->n_start |
|
137
|
0
|
|
|
|
|
0
|
+ $_UNDOCUMENTED__turn_any_right_at_n{$self->{'parts'}}; |
|
138
|
|
|
|
|
|
|
} |
|
139
|
|
|
|
|
|
|
} |
|
140
|
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
sub tree_num_children_list { |
|
142
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
143
|
0
|
0
|
|
|
|
0
|
return ($self->{'parts'} eq '4' |
|
144
|
|
|
|
|
|
|
? (0, 1, 3, 4) |
|
145
|
|
|
|
|
|
|
: (0, 1, 2, 3 )); |
|
146
|
|
|
|
|
|
|
} |
|
147
|
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
149
|
|
|
|
|
|
|
sub new { |
|
150
|
20
|
|
|
20
|
1
|
3592
|
my $self = shift->SUPER::new(@_); |
|
151
|
20
|
100
|
|
|
|
69
|
if (! defined $self->{'n_start'}) { |
|
152
|
9
|
|
|
|
|
32
|
$self->{'n_start'} = $self->default_n_start; |
|
153
|
|
|
|
|
|
|
} |
|
154
|
20
|
|
100
|
|
|
79
|
my $parts = ($self->{'parts'} ||= '4'); |
|
155
|
20
|
50
|
|
|
|
52
|
if (! exists $x_negative{$parts}) { |
|
156
|
0
|
|
|
|
|
0
|
croak "Unrecognised parts option: ", $parts; |
|
157
|
|
|
|
|
|
|
} |
|
158
|
20
|
|
|
|
|
43
|
return $self; |
|
159
|
|
|
|
|
|
|
} |
|
160
|
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
sub n_to_xy { |
|
162
|
370
|
|
|
370
|
1
|
8325
|
my ($self, $n) = @_; |
|
163
|
|
|
|
|
|
|
### UlamWarburton n_to_xy(): "$n parts=$self->{'parts'}" |
|
164
|
|
|
|
|
|
|
|
|
165
|
370
|
50
|
|
|
|
808
|
if ($n < $self->{'n_start'}) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
166
|
370
|
50
|
|
|
|
779
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
167
|
|
|
|
|
|
|
{ |
|
168
|
370
|
|
|
|
|
639
|
my $int = int($n); |
|
|
370
|
|
|
|
|
553
|
|
|
169
|
|
|
|
|
|
|
### $int |
|
170
|
|
|
|
|
|
|
### $n |
|
171
|
370
|
50
|
|
|
|
711
|
if ($n != $int) { |
|
172
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
|
173
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
|
174
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat |
|
175
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
|
176
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
|
177
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
|
178
|
|
|
|
|
|
|
} |
|
179
|
370
|
|
|
|
|
536
|
$n = $int; # BigFloat int() gives BigInt, use that |
|
180
|
|
|
|
|
|
|
} |
|
181
|
|
|
|
|
|
|
|
|
182
|
370
|
|
|
|
|
556
|
$n = $n - $self->{'n_start'}; # N=0 basis |
|
183
|
370
|
100
|
|
|
|
646
|
if ($n == 0) { return (0,0); } |
|
|
10
|
|
|
|
|
30
|
|
|
184
|
|
|
|
|
|
|
|
|
185
|
360
|
|
|
|
|
574
|
my $parts = $self->{'parts'}; |
|
186
|
360
|
50
|
|
|
|
702
|
my ($depthsum, $factor, $nrem) = _n0_to_depthsum_factor_rem($n, $parts) |
|
187
|
|
|
|
|
|
|
or return $n; # N=nan or +inf |
|
188
|
|
|
|
|
|
|
### depthsum: join(',',@$depthsum) |
|
189
|
|
|
|
|
|
|
### $factor |
|
190
|
|
|
|
|
|
|
### n rem within row: $nrem |
|
191
|
|
|
|
|
|
|
|
|
192
|
360
|
50
|
|
|
|
742
|
if ($parts eq '4') { |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
193
|
360
|
|
|
|
|
535
|
$factor /= 4; |
|
194
|
|
|
|
|
|
|
} elsif ($parts eq '2') { |
|
195
|
0
|
|
|
|
|
0
|
$factor /= 2; |
|
196
|
0
|
|
|
|
|
0
|
$nrem += ($factor-1)/2; |
|
197
|
|
|
|
|
|
|
} elsif ($parts eq 'octant_up') { |
|
198
|
0
|
|
|
|
|
0
|
$nrem += $factor; |
|
199
|
|
|
|
|
|
|
} else { |
|
200
|
0
|
|
|
|
|
0
|
$nrem += ($factor-1)/2; |
|
201
|
|
|
|
|
|
|
} |
|
202
|
360
|
|
|
|
|
1048
|
(my $quad, $nrem) = _divrem ($nrem, $factor); |
|
203
|
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
### factor modulus: $factor |
|
205
|
|
|
|
|
|
|
### $quad |
|
206
|
|
|
|
|
|
|
### n rem within quad: $nrem |
|
207
|
|
|
|
|
|
|
### assert: $quad >= 0 |
|
208
|
|
|
|
|
|
|
### assert: $quad <= 3 |
|
209
|
|
|
|
|
|
|
|
|
210
|
360
|
|
|
|
|
707
|
my $dhigh = shift @$depthsum; # highest term |
|
211
|
360
|
|
|
|
|
842
|
my @ndigits = digit_split_lowtohigh($nrem,3); |
|
212
|
|
|
|
|
|
|
### $dhigh |
|
213
|
|
|
|
|
|
|
### ndigits low to high: join(',',@ndigits) |
|
214
|
|
|
|
|
|
|
|
|
215
|
360
|
|
|
|
|
516
|
my $x = 0; |
|
216
|
360
|
|
|
|
|
488
|
my $y = 0; |
|
217
|
360
|
|
|
|
|
1022
|
foreach my $depthterm (reverse @$depthsum) { # depth terms low to high |
|
218
|
743
|
|
|
|
|
1012
|
my $ndigit = shift @ndigits; # N digits low to high |
|
219
|
|
|
|
|
|
|
### $depthterm |
|
220
|
|
|
|
|
|
|
### $ndigit |
|
221
|
|
|
|
|
|
|
|
|
222
|
743
|
|
|
|
|
1050
|
$x += $depthterm; |
|
223
|
|
|
|
|
|
|
### bit to x: "$x,$y" |
|
224
|
|
|
|
|
|
|
|
|
225
|
743
|
100
|
|
|
|
1171
|
if ($ndigit) { |
|
226
|
476
|
100
|
|
|
|
835
|
if ($ndigit == 2) { |
|
227
|
270
|
|
|
|
|
545
|
($x,$y) = (-$y,$x); # rotate +90 |
|
228
|
|
|
|
|
|
|
} |
|
229
|
|
|
|
|
|
|
} else { |
|
230
|
|
|
|
|
|
|
# $ndigit==0 (or undef when @ndigits shorter than @$depthsum) |
|
231
|
267
|
|
|
|
|
491
|
($x,$y) = ($y,-$x); # rotate -90 |
|
232
|
|
|
|
|
|
|
} |
|
233
|
|
|
|
|
|
|
### rotate to: "$x,$y" |
|
234
|
|
|
|
|
|
|
} |
|
235
|
360
|
|
|
|
|
511
|
$x += $dhigh; |
|
236
|
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
### xy before quad: "$x,$y" |
|
238
|
360
|
100
|
|
|
|
722
|
if ($quad & 2) { |
|
239
|
178
|
|
|
|
|
258
|
$x = -$x; |
|
240
|
178
|
|
|
|
|
253
|
$y = -$y; |
|
241
|
|
|
|
|
|
|
} |
|
242
|
360
|
100
|
|
|
|
722
|
if ($quad & 1) { |
|
243
|
177
|
|
|
|
|
293
|
($x,$y) = (-$y,$x); # rotate +90 |
|
244
|
|
|
|
|
|
|
} |
|
245
|
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
### final: "$x,$y" |
|
247
|
360
|
|
|
|
|
1076
|
return $x,$y; |
|
248
|
|
|
|
|
|
|
} |
|
249
|
|
|
|
|
|
|
# no Smart::Comments; |
|
250
|
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
sub xy_to_n { |
|
252
|
564
|
|
|
564
|
1
|
42557
|
my ($self, $x, $y) = @_; |
|
253
|
|
|
|
|
|
|
### UlamWarburton xy_to_n(): "$x, $y" |
|
254
|
|
|
|
|
|
|
|
|
255
|
564
|
|
|
|
|
1435
|
$x = round_nearest ($x); |
|
256
|
564
|
|
|
|
|
1072
|
$y = round_nearest ($y); |
|
257
|
564
|
100
|
100
|
|
|
1307
|
if ($x == 0 && $y == 0) { |
|
258
|
17
|
|
|
|
|
38
|
return $self->{'n_start'}; |
|
259
|
|
|
|
|
|
|
} |
|
260
|
|
|
|
|
|
|
|
|
261
|
547
|
|
|
|
|
958
|
my $parts = $self->{'parts'}; |
|
262
|
547
|
0
|
0
|
|
|
1150
|
if ($parts ne '4' |
|
|
|
|
33
|
|
|
|
|
|
263
|
|
|
|
|
|
|
&& ($y < 0 |
|
264
|
|
|
|
|
|
|
|| ($parts ne '2' && $x < ($parts eq 'octant' ? $y : 0)) |
|
265
|
|
|
|
|
|
|
|| ($parts eq 'octant_up' && $x > $y))) { |
|
266
|
0
|
|
|
|
|
0
|
return undef; |
|
267
|
|
|
|
|
|
|
} |
|
268
|
|
|
|
|
|
|
|
|
269
|
547
|
|
|
|
|
714
|
my $quad; |
|
270
|
547
|
100
|
|
|
|
966
|
if ($y > $x) { |
|
271
|
|
|
|
|
|
|
### quad above leading diagonal ... |
|
272
|
|
|
|
|
|
|
# / |
|
273
|
|
|
|
|
|
|
# above / |
|
274
|
|
|
|
|
|
|
# / |
|
275
|
262
|
100
|
|
|
|
478
|
if ($y > -$x) { |
|
276
|
|
|
|
|
|
|
### quad above opposite diagonal, top quarter ... |
|
277
|
|
|
|
|
|
|
# top |
|
278
|
|
|
|
|
|
|
# \ / |
|
279
|
|
|
|
|
|
|
# \/ |
|
280
|
128
|
|
|
|
|
164
|
$quad = 1; |
|
281
|
128
|
|
|
|
|
236
|
($x,$y) = ($y,-$x); # rotate -90 |
|
282
|
|
|
|
|
|
|
} else { |
|
283
|
|
|
|
|
|
|
### quad below opposite diagonal, left quarter ... |
|
284
|
|
|
|
|
|
|
# \ |
|
285
|
|
|
|
|
|
|
# left \ |
|
286
|
|
|
|
|
|
|
# / |
|
287
|
|
|
|
|
|
|
# / |
|
288
|
134
|
|
|
|
|
223
|
$quad = 2; |
|
289
|
134
|
|
|
|
|
406
|
$x = -$x; # rotate -180 |
|
290
|
134
|
|
|
|
|
173
|
$y = -$y; |
|
291
|
|
|
|
|
|
|
} |
|
292
|
|
|
|
|
|
|
} else { |
|
293
|
|
|
|
|
|
|
### quad below leading diagonal ... |
|
294
|
|
|
|
|
|
|
# / |
|
295
|
|
|
|
|
|
|
# / below |
|
296
|
|
|
|
|
|
|
# / |
|
297
|
285
|
100
|
|
|
|
530
|
if ($y > -$x) { |
|
298
|
|
|
|
|
|
|
### quad above opposite diagonal, right quarter ... |
|
299
|
|
|
|
|
|
|
# / |
|
300
|
|
|
|
|
|
|
# / right |
|
301
|
|
|
|
|
|
|
# \ |
|
302
|
|
|
|
|
|
|
# \ |
|
303
|
144
|
|
|
|
|
197
|
$quad = 0; |
|
304
|
|
|
|
|
|
|
} else { |
|
305
|
|
|
|
|
|
|
### quad below opposite diagonal, bottom quarter ... |
|
306
|
|
|
|
|
|
|
# /\ |
|
307
|
|
|
|
|
|
|
# / \ |
|
308
|
|
|
|
|
|
|
# bottom |
|
309
|
141
|
|
|
|
|
347
|
$quad = 3; |
|
310
|
141
|
|
|
|
|
312
|
($x,$y) = (-$y,$x); # rotate +90 |
|
311
|
|
|
|
|
|
|
} |
|
312
|
|
|
|
|
|
|
} |
|
313
|
|
|
|
|
|
|
### $quad |
|
314
|
|
|
|
|
|
|
### quad rotated xy: "$x,$y" |
|
315
|
|
|
|
|
|
|
### assert: ! ($y > $x) |
|
316
|
|
|
|
|
|
|
### assert: ! ($y < -$x) |
|
317
|
|
|
|
|
|
|
|
|
318
|
547
|
|
|
|
|
1417
|
my ($len, $exp) = round_down_pow ($x + abs($y), 2); |
|
319
|
547
|
50
|
|
|
|
1304
|
if (is_infinite($exp)) { return ($exp); } |
|
|
0
|
|
|
|
|
0
|
|
|
320
|
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
|
|
322
|
547
|
|
|
|
|
1081
|
my $depth = |
|
323
|
|
|
|
|
|
|
my $ndigits = |
|
324
|
|
|
|
|
|
|
my $n = ($x * 0 * $y); # inherit bignum 0 |
|
325
|
|
|
|
|
|
|
|
|
326
|
547
|
|
|
|
|
1091
|
while ($exp-- >= 0) { |
|
327
|
|
|
|
|
|
|
### at: "$x,$y n=$n len=$len" |
|
328
|
|
|
|
|
|
|
|
|
329
|
1718
|
|
|
|
|
2327
|
my $abs_y = abs($y); |
|
330
|
1718
|
100
|
100
|
|
|
4542
|
if ($x && $x == $abs_y) { |
|
331
|
165
|
|
|
|
|
406
|
return undef; |
|
332
|
|
|
|
|
|
|
} |
|
333
|
|
|
|
|
|
|
|
|
334
|
|
|
|
|
|
|
# right quarter diamond |
|
335
|
|
|
|
|
|
|
### assert: $x >= 0 |
|
336
|
|
|
|
|
|
|
### assert: $x >= abs($y) |
|
337
|
|
|
|
|
|
|
### assert: $x+abs($y) < 2*$len || $x==abs($y) |
|
338
|
|
|
|
|
|
|
|
|
339
|
1553
|
100
|
|
|
|
2847
|
if ($x + $abs_y >= $len) { |
|
340
|
|
|
|
|
|
|
# one of the three quarter diamonds away from the origin |
|
341
|
1279
|
|
|
|
|
1722
|
$x -= $len; |
|
342
|
|
|
|
|
|
|
### shift to: "$x,$y" |
|
343
|
|
|
|
|
|
|
|
|
344
|
1279
|
|
|
|
|
1617
|
$depth += $len; |
|
345
|
1279
|
100
|
100
|
|
|
2873
|
if ($x || $y) { |
|
346
|
897
|
|
|
|
|
1249
|
$n *= 3; |
|
347
|
897
|
|
|
|
|
1123
|
$ndigits++; |
|
348
|
|
|
|
|
|
|
|
|
349
|
897
|
100
|
|
|
|
1661
|
if ($y < -$x) { |
|
|
|
100
|
|
|
|
|
|
|
350
|
|
|
|
|
|
|
### bottom, digit 0 ... |
|
351
|
321
|
|
|
|
|
634
|
($x,$y) = (-$y,$x); # rotate +90 |
|
352
|
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
} elsif ($y > $x) { |
|
354
|
|
|
|
|
|
|
### top, digit 2 ... |
|
355
|
326
|
|
|
|
|
586
|
($x,$y) = ($y,-$x); # rotate -90 |
|
356
|
326
|
|
|
|
|
454
|
$n += 2; |
|
357
|
|
|
|
|
|
|
} else { |
|
358
|
|
|
|
|
|
|
### right, digit 1 ... |
|
359
|
250
|
|
|
|
|
337
|
$n += 1; |
|
360
|
|
|
|
|
|
|
} |
|
361
|
|
|
|
|
|
|
} |
|
362
|
|
|
|
|
|
|
} |
|
363
|
|
|
|
|
|
|
|
|
364
|
1553
|
|
|
|
|
2939
|
$len /= 2; |
|
365
|
|
|
|
|
|
|
} |
|
366
|
|
|
|
|
|
|
|
|
367
|
|
|
|
|
|
|
### $n |
|
368
|
|
|
|
|
|
|
### $depth |
|
369
|
|
|
|
|
|
|
### $ndigits |
|
370
|
|
|
|
|
|
|
### npower: 3**$ndigits |
|
371
|
|
|
|
|
|
|
### $quad |
|
372
|
|
|
|
|
|
|
### quad powered: $quad*3**$ndigits |
|
373
|
|
|
|
|
|
|
|
|
374
|
382
|
|
|
|
|
679
|
my $npower = 3**$ndigits; |
|
375
|
382
|
50
|
|
|
|
872
|
if ($parts eq 'octant_up') { |
|
|
|
50
|
|
|
|
|
|
|
376
|
0
|
|
|
|
|
0
|
$n -= $npower; |
|
377
|
|
|
|
|
|
|
} elsif ($parts ne '4') { |
|
378
|
0
|
|
|
|
|
0
|
$n -= ($npower-1)/2; |
|
379
|
|
|
|
|
|
|
} |
|
380
|
|
|
|
|
|
|
|
|
381
|
382
|
|
|
|
|
1006
|
return $n + $quad*$npower + $self->tree_depth_to_n($depth); |
|
382
|
|
|
|
|
|
|
} |
|
383
|
|
|
|
|
|
|
|
|
384
|
|
|
|
|
|
|
# not exact |
|
385
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
386
|
50
|
|
|
50
|
1
|
4313
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
387
|
|
|
|
|
|
|
### UlamWarburton rect_to_n_range(): "$x1,$y1 $x2,$y2" |
|
388
|
|
|
|
|
|
|
|
|
389
|
50
|
|
|
|
|
150
|
my ($dlo, $dhi) |
|
390
|
|
|
|
|
|
|
= _rect_to_diamond_range (round_nearest($x1), round_nearest($y1), |
|
391
|
|
|
|
|
|
|
round_nearest($x2), round_nearest($y2)); |
|
392
|
|
|
|
|
|
|
### $dlo |
|
393
|
|
|
|
|
|
|
### $dhi |
|
394
|
|
|
|
|
|
|
|
|
395
|
50
|
100
|
|
|
|
126
|
if ($dlo) { |
|
396
|
42
|
|
|
|
|
106
|
($dlo) = round_down_pow ($dlo,2); |
|
397
|
|
|
|
|
|
|
} |
|
398
|
50
|
|
|
|
|
118
|
($dhi) = round_down_pow ($dhi,2); |
|
399
|
|
|
|
|
|
|
|
|
400
|
|
|
|
|
|
|
### rounded to pow2: "$dlo ".(2*$dhi) |
|
401
|
|
|
|
|
|
|
|
|
402
|
50
|
|
|
|
|
123
|
return ($self->tree_depth_to_n($dlo), |
|
403
|
|
|
|
|
|
|
$self->tree_depth_to_n(2*$dhi) - 1); |
|
404
|
|
|
|
|
|
|
} |
|
405
|
|
|
|
|
|
|
|
|
406
|
|
|
|
|
|
|
# x1 | x2 |
|
407
|
|
|
|
|
|
|
# +--------|-------+ y2 xzero true, yzero false |
|
408
|
|
|
|
|
|
|
# | | | diamond min is y1 |
|
409
|
|
|
|
|
|
|
# +--------|-------+ y1 |
|
410
|
|
|
|
|
|
|
# | |
|
411
|
|
|
|
|
|
|
# ----------O------------- |
|
412
|
|
|
|
|
|
|
# |
|
413
|
|
|
|
|
|
|
# | x1 x2 |
|
414
|
|
|
|
|
|
|
# | +--------+ y2 xzero false, yzero true |
|
415
|
|
|
|
|
|
|
# | | | diamond min is x1 |
|
416
|
|
|
|
|
|
|
# -O-------------------- |
|
417
|
|
|
|
|
|
|
# | | | |
|
418
|
|
|
|
|
|
|
# | +--------+ y1 |
|
419
|
|
|
|
|
|
|
# | |
|
420
|
|
|
|
|
|
|
# |
|
421
|
|
|
|
|
|
|
sub _rect_to_diamond_range { |
|
422
|
50
|
|
|
50
|
|
102
|
my ($x1,$y1, $x2,$y2) = @_; |
|
423
|
|
|
|
|
|
|
|
|
424
|
50
|
|
|
|
|
106
|
my $xzero = ($x1 < 0) != ($x2 < 0); # x range covers x=0 |
|
425
|
50
|
|
|
|
|
85
|
my $yzero = ($y1 < 0) != ($y2 < 0); # y range covers y=0 |
|
426
|
|
|
|
|
|
|
|
|
427
|
50
|
|
|
|
|
74
|
$x1 = abs($x1); |
|
428
|
50
|
|
|
|
|
66
|
$y1 = abs($y1); |
|
429
|
50
|
|
|
|
|
61
|
$x2 = abs($x2); |
|
430
|
50
|
|
|
|
|
66
|
$y2 = abs($y2); |
|
431
|
|
|
|
|
|
|
|
|
432
|
50
|
50
|
|
|
|
98
|
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1) } |
|
|
0
|
|
|
|
|
0
|
|
|
433
|
50
|
50
|
|
|
|
87
|
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1) } |
|
|
0
|
|
|
|
|
0
|
|
|
434
|
|
|
|
|
|
|
|
|
435
|
50
|
50
|
|
|
|
152
|
return (($yzero ? 0 : $y1) + ($xzero ? 0 : $x1), |
|
|
|
50
|
|
|
|
|
|
|
436
|
|
|
|
|
|
|
$x2+$y2); |
|
437
|
|
|
|
|
|
|
} |
|
438
|
|
|
|
|
|
|
|
|
439
|
|
|
|
|
|
|
|
|
440
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
441
|
1
|
|
|
1
|
|
8
|
use constant tree_num_roots => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
1292
|
|
|
442
|
|
|
|
|
|
|
|
|
443
|
|
|
|
|
|
|
# ENHANCE-ME: step by the bits, not by X,Y |
|
444
|
|
|
|
|
|
|
# ENHANCE-ME: tree_n_to_depth() by probe |
|
445
|
|
|
|
|
|
|
sub tree_n_children { |
|
446
|
9
|
|
|
9
|
1
|
689
|
my ($self, $n) = @_; |
|
447
|
|
|
|
|
|
|
### UlamWarburton tree_n_children(): $n |
|
448
|
|
|
|
|
|
|
|
|
449
|
9
|
50
|
|
|
|
32
|
if ($n < $self->{'n_start'}) { |
|
450
|
0
|
|
|
|
|
0
|
return; |
|
451
|
|
|
|
|
|
|
} |
|
452
|
9
|
|
|
|
|
23
|
my ($x,$y) = $self->n_to_xy($n); |
|
453
|
9
|
|
|
|
|
16
|
my @ret; |
|
454
|
9
|
|
|
|
|
14
|
my $dx = 1; |
|
455
|
9
|
|
|
|
|
13
|
my $dy = 0; |
|
456
|
9
|
|
|
|
|
21
|
foreach (1 .. 4) { |
|
457
|
36
|
100
|
|
|
|
96
|
if (defined (my $n_child = $self->xy_to_n($x+$dx,$y+$dy))) { |
|
458
|
28
|
100
|
|
|
|
57
|
if ($n_child > $n) { |
|
459
|
20
|
|
|
|
|
30
|
push @ret, $n_child; |
|
460
|
|
|
|
|
|
|
} |
|
461
|
|
|
|
|
|
|
} |
|
462
|
36
|
|
|
|
|
84
|
($dx,$dy) = (-$dy,$dx); # rotate +90 |
|
463
|
|
|
|
|
|
|
} |
|
464
|
9
|
|
|
|
|
38
|
return sort {$a<=>$b} @ret; |
|
|
15
|
|
|
|
|
45
|
|
|
465
|
|
|
|
|
|
|
} |
|
466
|
|
|
|
|
|
|
sub tree_n_parent { |
|
467
|
15
|
|
|
15
|
1
|
1083
|
my ($self, $n) = @_; |
|
468
|
|
|
|
|
|
|
### UlamWarburton tree_n_parent(): $n |
|
469
|
|
|
|
|
|
|
|
|
470
|
15
|
100
|
|
|
|
47
|
if ($n <= $self->{'n_start'}) { |
|
471
|
1
|
|
|
|
|
3
|
return undef; |
|
472
|
|
|
|
|
|
|
} |
|
473
|
14
|
|
|
|
|
31
|
my ($x,$y) = $self->n_to_xy($n); |
|
474
|
14
|
|
|
|
|
25
|
my $dx = 1; |
|
475
|
14
|
|
|
|
|
19
|
my $dy = 0; |
|
476
|
14
|
|
|
|
|
29
|
foreach (1 .. 4) { |
|
477
|
37
|
100
|
|
|
|
81
|
if (defined (my $n_parent = $self->xy_to_n($x+$dx,$y+$dy))) { |
|
478
|
24
|
100
|
|
|
|
47
|
if ($n_parent < $n) { |
|
479
|
14
|
|
|
|
|
32
|
return $n_parent; |
|
480
|
|
|
|
|
|
|
} |
|
481
|
|
|
|
|
|
|
} |
|
482
|
23
|
|
|
|
|
53
|
($dx,$dy) = (-$dy,$dx); # rotate +90 |
|
483
|
|
|
|
|
|
|
} |
|
484
|
0
|
|
|
|
|
0
|
return undef; |
|
485
|
|
|
|
|
|
|
} |
|
486
|
|
|
|
|
|
|
# sub tree_n_children { |
|
487
|
|
|
|
|
|
|
# my ($self, $n) = @_; |
|
488
|
|
|
|
|
|
|
# my ($power, $exp) = _round_down_pow (3*$n-2, 4); |
|
489
|
|
|
|
|
|
|
# $exp -= 1; |
|
490
|
|
|
|
|
|
|
# $power /= 4; |
|
491
|
|
|
|
|
|
|
# |
|
492
|
|
|
|
|
|
|
# ### $power |
|
493
|
|
|
|
|
|
|
# ### $exp |
|
494
|
|
|
|
|
|
|
# ### pow base: 2 + 4*(4**$exp - 1)/3 |
|
495
|
|
|
|
|
|
|
# |
|
496
|
|
|
|
|
|
|
# $n -= ($power - 1)/3 * 4 + 2; |
|
497
|
|
|
|
|
|
|
# ### n less pow base: $n |
|
498
|
|
|
|
|
|
|
# |
|
499
|
|
|
|
|
|
|
# my @$depthsum = (2**$exp); |
|
500
|
|
|
|
|
|
|
# $power = 3**$exp; |
|
501
|
|
|
|
|
|
|
# |
|
502
|
|
|
|
|
|
|
# # find the cumulative levelpoints total <= $n, being the start of the |
|
503
|
|
|
|
|
|
|
# # level containing $n |
|
504
|
|
|
|
|
|
|
# # |
|
505
|
|
|
|
|
|
|
# my $factor = 4; |
|
506
|
|
|
|
|
|
|
# while (--$exp >= 0) { |
|
507
|
|
|
|
|
|
|
# $power /= 3; |
|
508
|
|
|
|
|
|
|
# my $sub = 4**$exp * $factor; |
|
509
|
|
|
|
|
|
|
# ### $sub |
|
510
|
|
|
|
|
|
|
# # $power*$factor; |
|
511
|
|
|
|
|
|
|
# my $rem = $n - $sub; |
|
512
|
|
|
|
|
|
|
# |
|
513
|
|
|
|
|
|
|
# ### $n |
|
514
|
|
|
|
|
|
|
# ### $power |
|
515
|
|
|
|
|
|
|
# ### $factor |
|
516
|
|
|
|
|
|
|
# ### consider subtract: $sub |
|
517
|
|
|
|
|
|
|
# ### $rem |
|
518
|
|
|
|
|
|
|
# |
|
519
|
|
|
|
|
|
|
# if ($rem >= 0) { |
|
520
|
|
|
|
|
|
|
# $n = $rem; |
|
521
|
|
|
|
|
|
|
# push @$depthsum, 2**$exp; |
|
522
|
|
|
|
|
|
|
# $factor *= 3; |
|
523
|
|
|
|
|
|
|
# } |
|
524
|
|
|
|
|
|
|
# } |
|
525
|
|
|
|
|
|
|
# |
|
526
|
|
|
|
|
|
|
# $n += $factor; |
|
527
|
|
|
|
|
|
|
# if (1) { |
|
528
|
|
|
|
|
|
|
# return ($n,$n+1,$n+2); |
|
529
|
|
|
|
|
|
|
# } else { |
|
530
|
|
|
|
|
|
|
# return $n,$n+1,$n+2; |
|
531
|
|
|
|
|
|
|
# } |
|
532
|
|
|
|
|
|
|
# } |
|
533
|
|
|
|
|
|
|
|
|
534
|
|
|
|
|
|
|
# Converting quarter ... |
|
535
|
|
|
|
|
|
|
# (N-start)*4+1+start = 4*N-4*start+1+start |
|
536
|
|
|
|
|
|
|
# = 4*N-3*start+1 |
|
537
|
|
|
|
|
|
|
# |
|
538
|
|
|
|
|
|
|
sub tree_depth_to_n { |
|
539
|
620
|
|
|
620
|
1
|
10895
|
my ($self, $depth) = @_; |
|
540
|
|
|
|
|
|
|
### UlamWarburton tree_depth_to_n(): $depth |
|
541
|
|
|
|
|
|
|
|
|
542
|
620
|
100
|
|
|
|
1316
|
if ($depth == 0) { |
|
543
|
16
|
|
|
|
|
75
|
return $self->{'n_start'}; |
|
544
|
|
|
|
|
|
|
} |
|
545
|
604
|
|
|
|
|
2056
|
my $n = $self->Math::PlanePath::UlamWarburtonQuarter::tree_depth_to_n($depth-1); |
|
546
|
604
|
50
|
|
|
|
1254
|
if (! defined $n) { |
|
547
|
0
|
|
|
|
|
0
|
return undef; |
|
548
|
|
|
|
|
|
|
} |
|
549
|
604
|
|
|
|
|
1057
|
my $parts = $self->{'parts'}; |
|
550
|
604
|
100
|
|
|
|
1322
|
if ($parts eq '2') { |
|
551
|
16
|
|
|
|
|
57
|
return 2*$n - $self->{'n_start'} + $depth; |
|
552
|
|
|
|
|
|
|
} |
|
553
|
588
|
100
|
|
|
|
1016
|
if ($parts eq '1') { |
|
554
|
61
|
|
|
|
|
162
|
return $n + $depth; |
|
555
|
|
|
|
|
|
|
} |
|
556
|
527
|
50
|
33
|
|
|
1704
|
if ($parts eq 'octant' || $parts eq 'octant_up') { |
|
557
|
0
|
|
|
|
|
0
|
return ($n + 1); |
|
558
|
|
|
|
|
|
|
} |
|
559
|
|
|
|
|
|
|
### assert: $parts eq '4' |
|
560
|
527
|
|
|
|
|
1552
|
return 4*$n - 3*$self->{'n_start'} + 1; |
|
561
|
|
|
|
|
|
|
} |
|
562
|
|
|
|
|
|
|
# sub _NOTWORKING__tree_depth_to_n_range { |
|
563
|
|
|
|
|
|
|
# my ($self, $depth) = @_; |
|
564
|
|
|
|
|
|
|
# my ($nstart, $nend) = $self->Math::PlanePath::UlamWarburtonQuarter::tree_depth_to_n_range($self, $depth) |
|
565
|
|
|
|
|
|
|
# or return; |
|
566
|
|
|
|
|
|
|
# return (4*$nstart-3 + $self->{'n_start'}-1, |
|
567
|
|
|
|
|
|
|
# 4*$nend-3 + $self->{'n_start'}-1); |
|
568
|
|
|
|
|
|
|
# } |
|
569
|
|
|
|
|
|
|
|
|
570
|
|
|
|
|
|
|
|
|
571
|
|
|
|
|
|
|
sub tree_n_to_depth { |
|
572
|
168
|
|
|
168
|
1
|
20100
|
my ($self, $n) = @_; |
|
573
|
|
|
|
|
|
|
### UlamWarburton tree_n_to_depth(): $n |
|
574
|
|
|
|
|
|
|
|
|
575
|
168
|
|
|
|
|
356
|
$n = $n - $self->{'n_start'}; # N=0 basis |
|
576
|
168
|
50
|
|
|
|
396
|
if ($n < 0) { |
|
577
|
0
|
|
|
|
|
0
|
return undef; |
|
578
|
|
|
|
|
|
|
} |
|
579
|
168
|
|
|
|
|
236
|
$n = int($n); |
|
580
|
168
|
100
|
|
|
|
354
|
if ($n == 0) { |
|
581
|
16
|
|
|
|
|
40
|
return 0; |
|
582
|
|
|
|
|
|
|
} |
|
583
|
152
|
50
|
|
|
|
323
|
my ($depthsum) = _n0_to_depthsum_factor_rem($n, $self->{'parts'}) |
|
584
|
|
|
|
|
|
|
or return $n; # N=nan or +inf |
|
585
|
152
|
|
|
|
|
638
|
return sum(@$depthsum); |
|
586
|
|
|
|
|
|
|
} |
|
587
|
|
|
|
|
|
|
|
|
588
|
|
|
|
|
|
|
|
|
589
|
|
|
|
|
|
|
# 1+3+3+9=16 |
|
590
|
|
|
|
|
|
|
# |
|
591
|
|
|
|
|
|
|
# 0 +1 |
|
592
|
|
|
|
|
|
|
# 1 +4 <- 0 |
|
593
|
|
|
|
|
|
|
# 5 +4 <- 1 |
|
594
|
|
|
|
|
|
|
# 9 +12 |
|
595
|
|
|
|
|
|
|
# 21 +4 <- 5 + 4+12 = 21 = 5 + 4*(1+3) |
|
596
|
|
|
|
|
|
|
# 25 +12 |
|
597
|
|
|
|
|
|
|
# 37 +12 |
|
598
|
|
|
|
|
|
|
# 49 +36 |
|
599
|
|
|
|
|
|
|
# 85 +4 <- 21 + 4+12+12+36 = 21 + 4*(1+3+3+9) |
|
600
|
|
|
|
|
|
|
# 89 +12 <- 8 +64 |
|
601
|
|
|
|
|
|
|
# 101 +12 |
|
602
|
|
|
|
|
|
|
# 113 +36 |
|
603
|
|
|
|
|
|
|
# 149 |
|
604
|
|
|
|
|
|
|
# 161 |
|
605
|
|
|
|
|
|
|
# 197 |
|
606
|
|
|
|
|
|
|
# 233 |
|
607
|
|
|
|
|
|
|
# 341 |
|
608
|
|
|
|
|
|
|
# 345 <- 16 +256 |
|
609
|
|
|
|
|
|
|
# 357 |
|
610
|
|
|
|
|
|
|
# 369 |
|
611
|
|
|
|
|
|
|
|
|
612
|
|
|
|
|
|
|
# 1+3 = 4 power 2 |
|
613
|
|
|
|
|
|
|
# 1+3+3+9 = 16 power 3 |
|
614
|
|
|
|
|
|
|
# 1+3+3+9+3+9+9+27 = 64 power 4 |
|
615
|
|
|
|
|
|
|
# |
|
616
|
|
|
|
|
|
|
# 4*(1+4+...+4^(l-1)) = 4*(4^l-1)/3 |
|
617
|
|
|
|
|
|
|
# l=1 total=4*(4-1)/3 = 4 |
|
618
|
|
|
|
|
|
|
# l=2 total=4*(16-1)/3=4*5 = 20 |
|
619
|
|
|
|
|
|
|
# l=3 total=4*(64-1)/3=4*63/3 = 4*21 = 84 |
|
620
|
|
|
|
|
|
|
# |
|
621
|
|
|
|
|
|
|
# n = 2 + 4*(4^l-1)/3 |
|
622
|
|
|
|
|
|
|
# (n-2) = 4*(4^l-1)/3 |
|
623
|
|
|
|
|
|
|
# 3*(n-2) = 4*(4^l-1) |
|
624
|
|
|
|
|
|
|
# 3n-6 = 4^(l+1)-4 |
|
625
|
|
|
|
|
|
|
# 3n-2 = 4^(l+1) |
|
626
|
|
|
|
|
|
|
# |
|
627
|
|
|
|
|
|
|
# 3^0+3^1+3^1+3^2 = 1+3+3+9=16 |
|
628
|
|
|
|
|
|
|
# x+3x+3x+9x = 16x = 256 |
|
629
|
|
|
|
|
|
|
# 4 quads is 4*16=64 |
|
630
|
|
|
|
|
|
|
# |
|
631
|
|
|
|
|
|
|
# 1+1+3 = 5 |
|
632
|
|
|
|
|
|
|
# 1+1+3 +1+1+3 +3+3+9 = 25 |
|
633
|
|
|
|
|
|
|
|
|
634
|
|
|
|
|
|
|
# 1+4 = 5 |
|
635
|
|
|
|
|
|
|
# 1+4+4+12 = 21 = 1 + 4*(1+1+3) |
|
636
|
|
|
|
|
|
|
# 2 +1 |
|
637
|
|
|
|
|
|
|
# 3 +3 |
|
638
|
|
|
|
|
|
|
# 6 +1 |
|
639
|
|
|
|
|
|
|
# 7 +1 |
|
640
|
|
|
|
|
|
|
# 10 +3 |
|
641
|
|
|
|
|
|
|
# 13 |
|
642
|
|
|
|
|
|
|
|
|
643
|
|
|
|
|
|
|
|
|
644
|
|
|
|
|
|
|
# parts=1 |
|
645
|
|
|
|
|
|
|
# 1+4+...+4^(l-1) + 2^l |
|
646
|
|
|
|
|
|
|
# = (4^l-1)/3 + 2^l |
|
647
|
|
|
|
|
|
|
# = (4^l-1 + 3*2^l)/3 |
|
648
|
|
|
|
|
|
|
# = (2^l*(2^l + 3) - 1)/3 |
|
649
|
|
|
|
|
|
|
# l=1 total= 3 |
|
650
|
|
|
|
|
|
|
# l=2 total= 9 |
|
651
|
|
|
|
|
|
|
# l=3 total= 29 |
|
652
|
|
|
|
|
|
|
# l=4 total= 101 |
|
653
|
|
|
|
|
|
|
# |
|
654
|
|
|
|
|
|
|
# N = (4^l-1)/3 + 2^l |
|
655
|
|
|
|
|
|
|
# 3*(N-2^l)+1 = 4^l |
|
656
|
|
|
|
|
|
|
# 12*(N-2^l)+1 = 4 * 4^l |
|
657
|
|
|
|
|
|
|
# |
|
658
|
|
|
|
|
|
|
# parts=2 |
|
659
|
|
|
|
|
|
|
# N = 2*(4^l-1)/3 + 2^l |
|
660
|
|
|
|
|
|
|
# 3/2*(N-2^l)+1 = 4^l |
|
661
|
|
|
|
|
|
|
# 6*(N-2^l)+1 = 4 * 4^l |
|
662
|
|
|
|
|
|
|
# |
|
663
|
|
|
|
|
|
|
# parts=4 |
|
664
|
|
|
|
|
|
|
# N = (4^l-1)/3 |
|
665
|
|
|
|
|
|
|
# 3*N+1 = 4 * 4^l |
|
666
|
|
|
|
|
|
|
|
|
667
|
|
|
|
|
|
|
# use Smart::Comments; |
|
668
|
|
|
|
|
|
|
|
|
669
|
|
|
|
|
|
|
# Return ($aref, $factor, $remaining_n). |
|
670
|
|
|
|
|
|
|
# sum(@$aref) = depth starting depth=1 |
|
671
|
|
|
|
|
|
|
# |
|
672
|
|
|
|
|
|
|
sub _n0_to_depthsum_factor_rem { |
|
673
|
512
|
|
|
512
|
|
915
|
my ($n, $parts) = @_; |
|
674
|
|
|
|
|
|
|
### _n0_to_depthsum_factor_rem(): "$n parts=$parts" |
|
675
|
|
|
|
|
|
|
|
|
676
|
512
|
50
|
|
|
|
1096
|
my $factor = ($parts eq '4' ? 4 : $parts eq '2' ? 2 : 1); |
|
|
|
100
|
|
|
|
|
|
|
677
|
512
|
50
|
|
|
|
887
|
if ($n == 0) { |
|
678
|
0
|
|
|
|
|
0
|
return ([], $factor, 0); |
|
679
|
|
|
|
|
|
|
} |
|
680
|
|
|
|
|
|
|
|
|
681
|
512
|
|
|
|
|
911
|
my $n3 = 3*$n + 1; |
|
682
|
512
|
|
|
|
|
718
|
my $ndepth = 0; |
|
683
|
512
|
|
|
|
|
671
|
my $power = $n3; |
|
684
|
512
|
|
|
|
|
724
|
my $exp; |
|
685
|
512
|
100
|
|
|
|
960
|
if ($parts eq '4') { |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
686
|
428
|
|
|
|
|
704
|
$power /= 4; |
|
687
|
|
|
|
|
|
|
} elsif ($parts eq '2') { |
|
688
|
0
|
|
|
|
|
0
|
$power /= 2; |
|
689
|
0
|
|
|
|
|
0
|
$ndepth = -1; |
|
690
|
|
|
|
|
|
|
} elsif ($parts =~ /octant/) { |
|
691
|
0
|
|
|
|
|
0
|
$power *= 2; |
|
692
|
0
|
|
|
|
|
0
|
$ndepth = 2; |
|
693
|
|
|
|
|
|
|
} |
|
694
|
512
|
|
|
|
|
1175
|
($power, $exp) = round_down_pow ($power, 4); |
|
695
|
|
|
|
|
|
|
### $n3 |
|
696
|
|
|
|
|
|
|
### $power |
|
697
|
|
|
|
|
|
|
### $exp |
|
698
|
512
|
50
|
|
|
|
1221
|
if (is_infinite($exp)) { |
|
699
|
0
|
|
|
|
|
0
|
return; |
|
700
|
|
|
|
|
|
|
} |
|
701
|
|
|
|
|
|
|
|
|
702
|
|
|
|
|
|
|
# ### pow base: ($power - 1)/3 * $factor + 1 + ($parts ne '4' && $exp) |
|
703
|
|
|
|
|
|
|
# $n -= ($power - 1)/3 * $factor + 1; |
|
704
|
|
|
|
|
|
|
# if ($parts ne '4') { $n -= $exp; } |
|
705
|
|
|
|
|
|
|
# ### n less pow base: $n |
|
706
|
|
|
|
|
|
|
|
|
707
|
512
|
|
|
|
|
976
|
my $twopow = 2**$exp; |
|
708
|
512
|
|
|
|
|
769
|
my @depthsum; |
|
709
|
|
|
|
|
|
|
|
|
710
|
512
|
|
|
|
|
1003
|
for (; |
|
711
|
|
|
|
|
|
|
$exp-- >= 0; |
|
712
|
|
|
|
|
|
|
$power /= 4, $twopow /= 2) { |
|
713
|
|
|
|
|
|
|
### at: "power=$power twopow=$twopow factor=$factor n3=$n3 ndepth=$ndepth depthsum=".join(',',@depthsum) |
|
714
|
|
|
|
|
|
|
|
|
715
|
1821
|
|
|
|
|
2619
|
my $nmore = $power * $factor; |
|
716
|
1821
|
100
|
|
|
|
2967
|
if ($parts ne '4') { $nmore += 3*$twopow; } |
|
|
268
|
|
|
|
|
395
|
|
|
717
|
1821
|
50
|
|
|
|
2996
|
if ($parts =~ /octant/) { |
|
718
|
|
|
|
|
|
|
### assert: $nmore % 2 == 0 |
|
719
|
0
|
|
|
|
|
0
|
$nmore = $nmore/2; |
|
720
|
|
|
|
|
|
|
} |
|
721
|
|
|
|
|
|
|
|
|
722
|
1821
|
|
|
|
|
2496
|
my $ncmp = $ndepth + $nmore; |
|
723
|
|
|
|
|
|
|
### $nmore |
|
724
|
|
|
|
|
|
|
### $ncmp |
|
725
|
|
|
|
|
|
|
|
|
726
|
1821
|
100
|
|
|
|
3388
|
if ($n3 >= $ncmp) { |
|
727
|
|
|
|
|
|
|
### go to ncmp, remainder: $n3-$ncmp |
|
728
|
1371
|
|
|
|
|
1789
|
$factor *= 3; |
|
729
|
1371
|
|
|
|
|
1759
|
$ndepth = $ncmp; |
|
730
|
1371
|
|
|
|
|
3342
|
push @depthsum, $twopow; |
|
731
|
|
|
|
|
|
|
} |
|
732
|
|
|
|
|
|
|
} |
|
733
|
|
|
|
|
|
|
|
|
734
|
512
|
50
|
|
|
|
1318
|
if ($parts eq '2') { |
|
735
|
0
|
|
|
|
|
0
|
$n3 += 1; |
|
736
|
|
|
|
|
|
|
} |
|
737
|
|
|
|
|
|
|
|
|
738
|
|
|
|
|
|
|
# ### assert: ($n3 - $ndepth)%3 == 0 |
|
739
|
512
|
|
|
|
|
745
|
$n = ($n3 - $ndepth) / 3; |
|
740
|
512
|
|
|
|
|
740
|
$factor /= 3; |
|
741
|
|
|
|
|
|
|
|
|
742
|
|
|
|
|
|
|
### $ndepth |
|
743
|
|
|
|
|
|
|
### @depthsum |
|
744
|
|
|
|
|
|
|
### remaining n: $n |
|
745
|
|
|
|
|
|
|
### assert: $n >= 0 |
|
746
|
|
|
|
|
|
|
### assert: $n < $factor + ($parts ne '4') |
|
747
|
|
|
|
|
|
|
|
|
748
|
512
|
|
|
|
|
1583
|
return \@depthsum, $factor, $n; |
|
749
|
|
|
|
|
|
|
} |
|
750
|
|
|
|
|
|
|
|
|
751
|
|
|
|
|
|
|
sub tree_n_to_subheight { |
|
752
|
0
|
|
|
0
|
1
|
0
|
my ($self, $n) = @_; |
|
753
|
|
|
|
|
|
|
### tree_n_to_subheight(): $n |
|
754
|
|
|
|
|
|
|
|
|
755
|
0
|
|
|
|
|
0
|
$n = int($n - $self->{'n_start'}); # N=0 basis |
|
756
|
0
|
0
|
|
|
|
0
|
if ($n < 0) { |
|
757
|
0
|
|
|
|
|
0
|
return undef; |
|
758
|
|
|
|
|
|
|
} |
|
759
|
0
|
0
|
|
|
|
0
|
my ($depthsum, $factor, $nrem) = _n0_to_depthsum_factor_rem($n, $self->{'parts'}) |
|
760
|
|
|
|
|
|
|
or return $n; # N=nan or +inf |
|
761
|
|
|
|
|
|
|
### $depthsum |
|
762
|
|
|
|
|
|
|
### $factor |
|
763
|
|
|
|
|
|
|
### $nrem |
|
764
|
|
|
|
|
|
|
|
|
765
|
0
|
|
|
|
|
0
|
my $parts = $self->{'parts'}; |
|
766
|
0
|
0
|
|
|
|
0
|
if ($parts eq '4') { |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
767
|
0
|
|
|
|
|
0
|
$factor /= 4; |
|
768
|
|
|
|
|
|
|
} elsif ($parts eq '2') { |
|
769
|
0
|
|
|
|
|
0
|
$factor /= 2; |
|
770
|
0
|
|
|
|
|
0
|
$nrem += ($factor-1)/2; |
|
771
|
|
|
|
|
|
|
} elsif ($parts eq 'octant_up') { |
|
772
|
|
|
|
|
|
|
} else { |
|
773
|
0
|
|
|
|
|
0
|
$nrem += ($factor-1)/2; |
|
774
|
|
|
|
|
|
|
} |
|
775
|
0
|
|
|
|
|
0
|
(my $quad, $nrem) = _divrem ($nrem, $factor); |
|
776
|
|
|
|
|
|
|
|
|
777
|
0
|
|
|
|
|
0
|
my $sub = pop @$depthsum; |
|
778
|
0
|
|
|
|
|
0
|
while (_divrem_mutate($nrem,3) == 1) { # low "1" ternary digits of Nrem |
|
779
|
0
|
|
|
|
|
0
|
$sub += pop @$depthsum; |
|
780
|
|
|
|
|
|
|
} |
|
781
|
0
|
0
|
|
|
|
0
|
if (@$depthsum) { |
|
782
|
0
|
|
|
|
|
0
|
return $depthsum->[-1] - 1 - $sub; |
|
783
|
|
|
|
|
|
|
} else { |
|
784
|
0
|
|
|
|
|
0
|
return undef; # N all 1-digits, on central infinite spine |
|
785
|
|
|
|
|
|
|
} |
|
786
|
|
|
|
|
|
|
} |
|
787
|
|
|
|
|
|
|
|
|
788
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
789
|
|
|
|
|
|
|
# levels |
|
790
|
|
|
|
|
|
|
|
|
791
|
|
|
|
|
|
|
sub level_to_n_range { |
|
792
|
29
|
|
|
29
|
1
|
3925
|
my ($self, $level) = @_; |
|
793
|
29
|
|
|
|
|
128
|
return ($self->{'n_start'}, |
|
794
|
|
|
|
|
|
|
$self->tree_depth_to_n_end(2**($level+1)-1)); |
|
795
|
|
|
|
|
|
|
} |
|
796
|
|
|
|
|
|
|
sub n_to_level { |
|
797
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
|
798
|
0
|
|
|
|
|
|
my $depth = $self->tree_n_to_depth($n); |
|
799
|
0
|
0
|
|
|
|
|
if (! defined $depth) { return undef; } |
|
|
0
|
|
|
|
|
|
|
|
800
|
0
|
|
|
|
|
|
my ($pow, $exp) = round_down_pow ($depth, 2); |
|
801
|
0
|
|
|
|
|
|
return $exp; |
|
802
|
|
|
|
|
|
|
} |
|
803
|
|
|
|
|
|
|
|
|
804
|
|
|
|
|
|
|
# parts=4 |
|
805
|
|
|
|
|
|
|
# Ndepth(2^a) = 2 + 4*(4^a-1)/3 |
|
806
|
|
|
|
|
|
|
# Nend(2^a-1) = 1 + 4*(4^a-1)/3 = (4^(a+1)-1)/3 |
|
807
|
|
|
|
|
|
|
# parts=2 |
|
808
|
|
|
|
|
|
|
# |
|
809
|
|
|
|
|
|
|
# { |
|
810
|
|
|
|
|
|
|
# my %factor = (4 => 16, |
|
811
|
|
|
|
|
|
|
# 2 => 8, |
|
812
|
|
|
|
|
|
|
# 1 => 4, |
|
813
|
|
|
|
|
|
|
# octant => 2, |
|
814
|
|
|
|
|
|
|
# octant_up => 2, |
|
815
|
|
|
|
|
|
|
# ); |
|
816
|
|
|
|
|
|
|
# my %constant = (4 => -4, |
|
817
|
|
|
|
|
|
|
# 2 => -5, |
|
818
|
|
|
|
|
|
|
# 1 => -4, |
|
819
|
|
|
|
|
|
|
# octant => 0, |
|
820
|
|
|
|
|
|
|
# octant_up => 0, |
|
821
|
|
|
|
|
|
|
# ); |
|
822
|
|
|
|
|
|
|
# my %spine = (4 => 0, |
|
823
|
|
|
|
|
|
|
# 2 => 2, |
|
824
|
|
|
|
|
|
|
# 1 => 2, |
|
825
|
|
|
|
|
|
|
# octant => 1, |
|
826
|
|
|
|
|
|
|
# octant_up => 1, |
|
827
|
|
|
|
|
|
|
# ); |
|
828
|
|
|
|
|
|
|
# sub level_to_n_range { |
|
829
|
|
|
|
|
|
|
# my ($self, $level) = @_; |
|
830
|
|
|
|
|
|
|
# my $parts = $self->{'parts'}; |
|
831
|
|
|
|
|
|
|
# return ($self->{'n_start'}, |
|
832
|
|
|
|
|
|
|
# $self->{'n_start'} |
|
833
|
|
|
|
|
|
|
# + (4**$level * $factor{$parts} + $constant{$parts}) / 3 |
|
834
|
|
|
|
|
|
|
# + 2**$level * $spine{$parts}); |
|
835
|
|
|
|
|
|
|
# } |
|
836
|
|
|
|
|
|
|
# } |
|
837
|
|
|
|
|
|
|
|
|
838
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
839
|
|
|
|
|
|
|
1; |
|
840
|
|
|
|
|
|
|
__END__ |