line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
# A000328 Number of points of norm <= n^2 in square lattice. |
21
|
|
|
|
|
|
|
# 1, 5, 13, 29, 49, 81, 113, 149, 197, 253, 317, 377, 441, 529, 613, 709, 797 |
22
|
|
|
|
|
|
|
# a(n) = 1 + 4 * sum(j=0, n^2 / 4, n^2 / (4*j+1) - n^2 / (4*j+3) ) |
23
|
|
|
|
|
|
|
# A014200 num points norm <= n^2, excluding 0, divided by 4 |
24
|
|
|
|
|
|
|
# |
25
|
|
|
|
|
|
|
# A046109 num points norm == n^2 |
26
|
|
|
|
|
|
|
# |
27
|
|
|
|
|
|
|
# A057655 num points x^2+y^2 <= n |
28
|
|
|
|
|
|
|
# A014198 = A057655 - 1 |
29
|
|
|
|
|
|
|
# |
30
|
|
|
|
|
|
|
# A004018 num points x^2+y^2 == n |
31
|
|
|
|
|
|
|
# |
32
|
|
|
|
|
|
|
# A057962 hypot count x-1/2,y-1/2 <= n |
33
|
|
|
|
|
|
|
# is last point of each hypot in points=odd |
34
|
|
|
|
|
|
|
# |
35
|
|
|
|
|
|
|
# A057961 hypot count as radius increases |
36
|
|
|
|
|
|
|
# |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
# points="square_horiz" |
39
|
|
|
|
|
|
|
# points="square_vert" |
40
|
|
|
|
|
|
|
# points="square_centre" |
41
|
|
|
|
|
|
|
# A199015 square_centred partial sums |
42
|
|
|
|
|
|
|
# |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
package Math::PlanePath::Hypot; |
46
|
1
|
|
|
1
|
|
931
|
use 5.004; |
|
1
|
|
|
|
|
3
|
|
47
|
1
|
|
|
1
|
|
6
|
use strict; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
22
|
|
48
|
1
|
|
|
1
|
|
4
|
use Carp 'croak'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
49
|
|
49
|
|
|
|
|
|
|
|
50
|
1
|
|
|
1
|
|
5
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
50
|
|
51
|
|
|
|
|
|
|
$VERSION = 127; |
52
|
1
|
|
|
1
|
|
571
|
use Math::PlanePath; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
35
|
|
53
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
54
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
56
|
1
|
|
|
|
|
95
|
'is_infinite', |
57
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
1
|
|
|
|
|
2
|
|
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
60
|
|
|
|
|
|
|
# use Smart::Comments; |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
|
63
|
1
|
|
|
|
|
176
|
use constant parameter_info_array => |
64
|
|
|
|
|
|
|
[ { name => 'points', |
65
|
|
|
|
|
|
|
share_key => 'points_aeo', |
66
|
|
|
|
|
|
|
display => 'Points', |
67
|
|
|
|
|
|
|
type => 'enum', |
68
|
|
|
|
|
|
|
default => 'all', |
69
|
|
|
|
|
|
|
choices => ['all','even','odd'], |
70
|
|
|
|
|
|
|
choices_display => ['All','Even','Odd'], |
71
|
|
|
|
|
|
|
description => 'Which X,Y points visit, either all of them or just X+Y=even or odd.', |
72
|
|
|
|
|
|
|
}, |
73
|
|
|
|
|
|
|
Math::PlanePath::Base::Generic::parameter_info_nstart1(), |
74
|
1
|
|
|
1
|
|
6
|
]; |
|
1
|
|
|
|
|
1
|
|
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
{ |
77
|
|
|
|
|
|
|
my %x_negative_at_n = (all => 3, |
78
|
|
|
|
|
|
|
even => 2, |
79
|
|
|
|
|
|
|
odd => 2); |
80
|
|
|
|
|
|
|
sub x_negative_at_n { |
81
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
82
|
0
|
|
|
|
|
0
|
return $self->n_start + $x_negative_at_n{$self->{'points'}}; |
83
|
|
|
|
|
|
|
} |
84
|
|
|
|
|
|
|
} |
85
|
|
|
|
|
|
|
{ |
86
|
|
|
|
|
|
|
my %y_negative_at_n = (all => 4, |
87
|
|
|
|
|
|
|
even => 3, |
88
|
|
|
|
|
|
|
odd => 3); |
89
|
|
|
|
|
|
|
sub y_negative_at_n { |
90
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
91
|
0
|
|
|
|
|
0
|
return $self->n_start + $y_negative_at_n{$self->{'points'}}; |
92
|
|
|
|
|
|
|
} |
93
|
|
|
|
|
|
|
} |
94
|
|
|
|
|
|
|
sub rsquared_minimum { |
95
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
96
|
0
|
0
|
|
|
|
0
|
return ($self->{'points'} eq 'odd' |
97
|
|
|
|
|
|
|
? 1 # odd at X=1,Y=0 |
98
|
|
|
|
|
|
|
: 0); # even,all at X=0,Y=0 |
99
|
|
|
|
|
|
|
} |
100
|
|
|
|
|
|
|
# points=even includes X=Y so abs(X-Y)>=0 |
101
|
|
|
|
|
|
|
# points=odd doesn't include X=Y so abs(X-Y)>=1 |
102
|
|
|
|
|
|
|
*absdiffxy_minimum = \&rsquared_minimum; |
103
|
|
|
|
|
|
|
*sumabsxy_minimum = \&rsquared_minimum; |
104
|
|
|
|
|
|
|
|
105
|
1
|
|
|
1
|
|
7
|
use constant turn_any_right => 0; # always left or straight |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
1173
|
|
106
|
|
|
|
|
|
|
sub turn_any_straight { |
107
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
108
|
0
|
|
|
|
|
0
|
return ($self->{'points'} ne 'all'); # points=all is left always |
109
|
|
|
|
|
|
|
} |
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
sub new { |
115
|
10
|
|
|
10
|
1
|
655
|
my $self = shift->SUPER::new(@_); |
116
|
|
|
|
|
|
|
|
117
|
10
|
100
|
|
|
|
40
|
if (! defined $self->{'n_start'}) { |
118
|
1
|
|
|
|
|
8
|
$self->{'n_start'} = $self->default_n_start; |
119
|
|
|
|
|
|
|
} |
120
|
|
|
|
|
|
|
|
121
|
10
|
|
100
|
|
|
34
|
my $points = ($self->{'points'} ||= 'all'); |
122
|
10
|
100
|
|
|
|
44
|
if ($points eq 'all') { |
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
123
|
4
|
|
|
|
|
7
|
$self->{'n_to_x'} = [0]; |
124
|
4
|
|
|
|
|
11
|
$self->{'n_to_y'} = [0]; |
125
|
4
|
|
|
|
|
7
|
$self->{'hypot_to_n'} = [0]; |
126
|
4
|
|
|
|
|
7
|
$self->{'y_next_x'} = [1, 1]; |
127
|
4
|
|
|
|
|
18
|
$self->{'y_next_hypot'} = [1, 2]; |
128
|
4
|
|
|
|
|
21
|
$self->{'x_inc'} = 1; |
129
|
4
|
|
|
|
|
9
|
$self->{'x_inc_factor'} = 2; |
130
|
4
|
|
|
|
|
5
|
$self->{'x_inc_squared'} = 1; |
131
|
4
|
|
|
|
|
7
|
$self->{'y_factor'} = 2; |
132
|
4
|
|
|
|
|
7
|
$self->{'opposite_parity'} = -1; |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
} elsif ($points eq 'even') { |
135
|
3
|
|
|
|
|
9
|
$self->{'n_to_x'} = [0]; |
136
|
3
|
|
|
|
|
7
|
$self->{'n_to_y'} = [0]; |
137
|
3
|
|
|
|
|
9
|
$self->{'hypot_to_n'} = [0]; |
138
|
3
|
|
|
|
|
8
|
$self->{'y_next_x'} = [2, 1]; |
139
|
3
|
|
|
|
|
9
|
$self->{'y_next_hypot'} = [4, 2]; |
140
|
3
|
|
|
|
|
13
|
$self->{'x_inc'} = 2; |
141
|
3
|
|
|
|
|
4
|
$self->{'x_inc_factor'} = 4; |
142
|
3
|
|
|
|
|
8
|
$self->{'x_inc_squared'} = 4; |
143
|
3
|
|
|
|
|
6
|
$self->{'y_factor'} = 2; |
144
|
3
|
|
|
|
|
8
|
$self->{'opposite_parity'} = 1; |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
} elsif ($points eq 'odd') { |
147
|
3
|
|
|
|
|
9
|
$self->{'n_to_x'} = []; |
148
|
3
|
|
|
|
|
8
|
$self->{'n_to_y'} = []; |
149
|
3
|
|
|
|
|
7
|
$self->{'hypot_to_n'} = []; |
150
|
3
|
|
|
|
|
8
|
$self->{'y_next_x'} = [1]; |
151
|
3
|
|
|
|
|
7
|
$self->{'y_next_hypot'} = [1]; |
152
|
3
|
|
|
|
|
10
|
$self->{'x_inc'} = 2; |
153
|
3
|
|
|
|
|
6
|
$self->{'x_inc_factor'} = 4; |
154
|
3
|
|
|
|
|
8
|
$self->{'x_inc_squared'} = 4; |
155
|
3
|
|
|
|
|
7
|
$self->{'y_factor'} = 2; |
156
|
3
|
|
|
|
|
6
|
$self->{'opposite_parity'} = 0; |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
} elsif ($points eq 'square_centred') { |
159
|
0
|
|
|
|
|
0
|
$self->{'n_to_x'} = []; |
160
|
0
|
|
|
|
|
0
|
$self->{'n_to_y'} = []; |
161
|
0
|
|
|
|
|
0
|
$self->{'hypot_to_n'} = []; |
162
|
0
|
|
|
|
|
0
|
$self->{'y_next_x'} = [undef,1]; |
163
|
0
|
|
|
|
|
0
|
$self->{'y_next_hypot'} = [undef,2]; |
164
|
0
|
|
|
|
|
0
|
$self->{'x_inc'} = 2; |
165
|
0
|
|
|
|
|
0
|
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4 |
166
|
0
|
|
|
|
|
0
|
$self->{'x_inc_squared'} = 4; |
167
|
0
|
|
|
|
|
0
|
$self->{'y_start'} = 1; |
168
|
0
|
|
|
|
|
0
|
$self->{'y_inc'} = 2; |
169
|
0
|
|
|
|
|
0
|
$self->{'opposite_parity'} = -1; |
170
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
} else { |
172
|
0
|
|
|
|
|
0
|
croak "Unrecognised points option: ", $points; |
173
|
|
|
|
|
|
|
} |
174
|
10
|
|
|
|
|
20
|
return $self; |
175
|
|
|
|
|
|
|
} |
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
sub _extend { |
178
|
1017
|
|
|
1017
|
|
1230
|
my ($self) = @_; |
179
|
|
|
|
|
|
|
### _extend() n: scalar(@{$self->{'n_to_x'}}) |
180
|
|
|
|
|
|
|
### y_next_x: $self->{'y_next_x'} |
181
|
|
|
|
|
|
|
|
182
|
1017
|
|
|
|
|
1184
|
my $n_to_x = $self->{'n_to_x'}; |
183
|
1017
|
|
|
|
|
1087
|
my $n_to_y = $self->{'n_to_y'}; |
184
|
1017
|
|
|
|
|
1116
|
my $hypot_to_n = $self->{'hypot_to_n'}; |
185
|
1017
|
|
|
|
|
1173
|
my $y_next_x = $self->{'y_next_x'}; |
186
|
1017
|
|
|
|
|
1084
|
my $y_next_hypot = $self->{'y_next_hypot'}; |
187
|
1017
|
|
50
|
|
|
1984
|
my $y_start = $self->{'y_start'} || 0; |
188
|
1017
|
|
50
|
|
|
1846
|
my $y_inc = $self->{'y_inc'} || 1; |
189
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
# set @y to the Y with the smallest $y_next_hypot[$y], and if there's some |
191
|
|
|
|
|
|
|
# Y's with equal smallest hypot then all those Y's |
192
|
1017
|
|
|
|
|
1358
|
my @y = ($y_start); |
193
|
1017
|
|
50
|
|
|
1556
|
my $hypot = $y_next_hypot->[$y_start] || 99; |
194
|
1017
|
|
|
|
|
1703
|
for (my $y = $y_start+$y_inc; $y < @$y_next_x; $y += $y_inc) { |
195
|
10749
|
100
|
|
|
|
20967
|
if ($hypot == $y_next_hypot->[$y]) { |
|
|
100
|
|
|
|
|
|
196
|
324
|
|
|
|
|
554
|
push @y, $y; |
197
|
|
|
|
|
|
|
} elsif ($hypot > $y_next_hypot->[$y]) { |
198
|
1512
|
|
|
|
|
1833
|
@y = ($y); |
199
|
1512
|
|
|
|
|
2319
|
$hypot = $y_next_hypot->[$y]; |
200
|
|
|
|
|
|
|
} |
201
|
|
|
|
|
|
|
} |
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
### chosen y list: @y |
204
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
# if the endmost of the @$y_next_x, @$y_next_hypot arrays are used then |
206
|
|
|
|
|
|
|
# extend them by one |
207
|
1017
|
100
|
|
|
|
1518
|
if ($y[-1] == $#$y_next_x) { |
208
|
|
|
|
|
|
|
### grow y_next_x ... |
209
|
141
|
|
|
|
|
173
|
my $y = $#$y_next_x + $y_inc; |
210
|
141
|
|
|
|
|
207
|
my $x = $y + ($self->{'points'} eq 'odd'); |
211
|
141
|
|
|
|
|
205
|
$y_next_x->[$y] = $x; |
212
|
141
|
|
|
|
|
224
|
$y_next_hypot->[$y] = $x*$x+$y*$y; |
213
|
|
|
|
|
|
|
### $y_next_x |
214
|
|
|
|
|
|
|
### $y_next_hypot |
215
|
|
|
|
|
|
|
### assert: $y_next_hypot->[$y] == $y**2 + $x*$x |
216
|
|
|
|
|
|
|
} |
217
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
# @x is the $y_next_x[$y] for each of the @y smallests, and step those |
219
|
|
|
|
|
|
|
# selected elements next X and hypot for that new X,Y |
220
|
|
|
|
|
|
|
my @x = map { |
221
|
1017
|
|
|
|
|
1475
|
my $y = $_; |
|
1236
|
|
|
|
|
1322
|
|
222
|
1236
|
|
|
|
|
1320
|
my $x = $y_next_x->[$y]; |
223
|
1236
|
|
|
|
|
1476
|
$y_next_x->[$y] += $self->{'x_inc'}; |
224
|
|
|
|
|
|
|
$y_next_hypot->[$y] |
225
|
1236
|
|
|
|
|
1527
|
+= $self->{'x_inc_factor'} * $x + $self->{'x_inc_squared'}; |
226
|
|
|
|
|
|
|
### assert: $y_next_hypot->[$y] == ($x+$self->{'x_inc'})**2 + $y**2 |
227
|
1236
|
|
|
|
|
2009
|
$x |
228
|
|
|
|
|
|
|
} @y; |
229
|
|
|
|
|
|
|
### $hypot |
230
|
|
|
|
|
|
|
### base octant: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
231
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
# transpose X,Y to Y,X |
233
|
|
|
|
|
|
|
{ |
234
|
1017
|
|
|
|
|
1295
|
my @base_x = @x; |
235
|
1017
|
|
|
|
|
1203
|
my @base_y = @y; |
236
|
1017
|
100
|
|
|
|
1447
|
unless ($y[0]) { # no transpose of x,0 |
237
|
126
|
|
|
|
|
148
|
shift @base_x; |
238
|
126
|
|
|
|
|
144
|
shift @base_y; |
239
|
|
|
|
|
|
|
} |
240
|
1017
|
100
|
|
|
|
1494
|
if ($x[-1] == $y[-1]) { # no transpose of x,x |
241
|
87
|
|
|
|
|
110
|
pop @base_x; |
242
|
87
|
|
|
|
|
98
|
pop @base_y; |
243
|
|
|
|
|
|
|
} |
244
|
1017
|
|
|
|
|
1265
|
push @x, reverse @base_y; |
245
|
1017
|
|
|
|
|
1330
|
push @y, reverse @base_x; |
246
|
|
|
|
|
|
|
} |
247
|
|
|
|
|
|
|
### with transpose q1: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
248
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
# rotate +90 quadrant 1 into quadrant 2 |
250
|
|
|
|
|
|
|
{ |
251
|
1017
|
|
|
|
|
1208
|
my @base_y = @y; |
|
1017
|
|
|
|
|
1030
|
|
|
1017
|
|
|
|
|
1243
|
|
252
|
1017
|
|
|
|
|
1234
|
push @y, @x; |
253
|
1017
|
|
|
|
|
1236
|
push @x, map {-$_} @base_y; |
|
2259
|
|
|
|
|
3021
|
|
254
|
|
|
|
|
|
|
} |
255
|
|
|
|
|
|
|
### with rotate q2: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
256
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
# rotate +180 quadrants 1+2 into quadrants 2+3 |
258
|
1017
|
|
|
|
|
1196
|
push @x, map {-$_} @x; |
|
4518
|
|
|
|
|
5238
|
|
259
|
1017
|
|
|
|
|
1222
|
push @y, map {-$_} @y; |
|
4518
|
|
|
|
|
5149
|
|
260
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
### store: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
262
|
|
|
|
|
|
|
### at n: scalar(@$n_to_x) |
263
|
|
|
|
|
|
|
### hypot_to_n: "h=$hypot n=".scalar(@$n_to_x) |
264
|
1017
|
|
|
|
|
1610
|
$hypot_to_n->[$hypot] = scalar(@$n_to_x); |
265
|
1017
|
|
|
|
|
1995
|
push @$n_to_x, @x; |
266
|
1017
|
|
|
|
|
3134
|
push @$n_to_y, @y; |
267
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
# ### hypot_to_n now: join(' ',map {defined($hypot_to_n->[$_]) && "h=$_,n=$hypot_to_n->[$_]"} 0 .. $#$hypot_to_n) |
269
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
# my $x = $y_next_x->[0]; |
272
|
|
|
|
|
|
|
# |
273
|
|
|
|
|
|
|
# $x = $y_next_x->[$y]; |
274
|
|
|
|
|
|
|
# $n_to_x->[$next_n] = $x; |
275
|
|
|
|
|
|
|
# $n_to_y->[$next_n] = $y; |
276
|
|
|
|
|
|
|
# $xy_to_n{"$x,$y"} = $next_n++; |
277
|
|
|
|
|
|
|
# |
278
|
|
|
|
|
|
|
# $y_next_x->[$y]++; |
279
|
|
|
|
|
|
|
# $y_next_hypot->[$y] = $y*$y + $y_next_x->[$y]**2; |
280
|
|
|
|
|
|
|
} |
281
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
sub n_to_xy { |
283
|
9009
|
|
|
9009
|
1
|
87784
|
my ($self, $n) = @_; |
284
|
|
|
|
|
|
|
### Hypot n_to_xy(): $n |
285
|
|
|
|
|
|
|
|
286
|
9009
|
|
|
|
|
10342
|
$n = $n - $self->{'n_start'}; # starting $n==0, warn if $n==undef |
287
|
9009
|
50
|
|
|
|
12451
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
288
|
9009
|
50
|
|
|
|
12769
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
289
|
|
|
|
|
|
|
|
290
|
9009
|
|
|
|
|
12010
|
my $int = int($n); |
291
|
9009
|
|
|
|
|
9734
|
$n -= $int; # fraction part |
292
|
|
|
|
|
|
|
|
293
|
9009
|
|
|
|
|
10115
|
my $n_to_x = $self->{'n_to_x'}; |
294
|
9009
|
|
|
|
|
9465
|
my $n_to_y = $self->{'n_to_y'}; |
295
|
|
|
|
|
|
|
|
296
|
9009
|
|
|
|
|
13979
|
while ($int >= $#$n_to_x) { |
297
|
1017
|
|
|
|
|
1419
|
_extend($self); |
298
|
|
|
|
|
|
|
} |
299
|
|
|
|
|
|
|
|
300
|
9009
|
|
|
|
|
10414
|
my $x = $n_to_x->[$int]; |
301
|
9009
|
|
|
|
|
9792
|
my $y = $n_to_y->[$int]; |
302
|
9009
|
|
|
|
|
17448
|
return ($x + $n * ($n_to_x->[$int+1] - $x), |
303
|
|
|
|
|
|
|
$y + $n * ($n_to_y->[$int+1] - $y)); |
304
|
|
|
|
|
|
|
} |
305
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
sub xy_is_visited { |
307
|
0
|
|
|
0
|
1
|
|
my ($self, $x, $y) = @_; |
308
|
|
|
|
|
|
|
|
309
|
0
|
0
|
|
|
|
|
if ($self->{'opposite_parity'} >= 0) { |
310
|
0
|
|
|
|
|
|
$x = round_nearest ($x); |
311
|
0
|
|
|
|
|
|
$y = round_nearest ($y); |
312
|
0
|
0
|
|
|
|
|
if ((($x%2) ^ ($y%2)) == $self->{'opposite_parity'}) { |
313
|
0
|
|
|
|
|
|
return 0; |
314
|
|
|
|
|
|
|
} |
315
|
|
|
|
|
|
|
} |
316
|
0
|
0
|
|
|
|
|
if ($self->{'points'} eq 'square_centred') { |
317
|
0
|
0
|
0
|
|
|
|
unless (($y%2) && ($x%2)) { |
318
|
0
|
|
|
|
|
|
return 0; |
319
|
|
|
|
|
|
|
} |
320
|
|
|
|
|
|
|
} |
321
|
0
|
|
|
|
|
|
return 1; |
322
|
|
|
|
|
|
|
} |
323
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
sub xy_to_n { |
325
|
0
|
|
|
0
|
1
|
|
my ($self, $x, $y) = @_; |
326
|
|
|
|
|
|
|
### Hypot xy_to_n(): "$x, $y" |
327
|
|
|
|
|
|
|
### hypot_to_n last: $#{$self->{'hypot_to_n'}} |
328
|
|
|
|
|
|
|
|
329
|
0
|
|
|
|
|
|
$x = round_nearest ($x); |
330
|
0
|
|
|
|
|
|
$y = round_nearest ($y); |
331
|
|
|
|
|
|
|
|
332
|
0
|
0
|
|
|
|
|
if ((($x%2) ^ ($y%2)) == $self->{'opposite_parity'}) { |
333
|
0
|
|
|
|
|
|
return undef; |
334
|
|
|
|
|
|
|
} |
335
|
0
|
0
|
|
|
|
|
if ($self->{'points'} eq 'square_centred') { |
336
|
0
|
0
|
0
|
|
|
|
unless (($y%2) && ($x%2)) { |
337
|
0
|
|
|
|
|
|
return undef; |
338
|
|
|
|
|
|
|
} |
339
|
|
|
|
|
|
|
} |
340
|
|
|
|
|
|
|
|
341
|
0
|
|
|
|
|
|
my $hypot = $x*$x + $y*$y; |
342
|
0
|
0
|
|
|
|
|
if (is_infinite($hypot)) { |
343
|
|
|
|
|
|
|
### infinity |
344
|
0
|
|
|
|
|
|
return undef; |
345
|
|
|
|
|
|
|
} |
346
|
|
|
|
|
|
|
|
347
|
0
|
|
|
|
|
|
my $n_to_x = $self->{'n_to_x'}; |
348
|
0
|
|
|
|
|
|
my $n_to_y = $self->{'n_to_y'}; |
349
|
|
|
|
|
|
|
|
350
|
0
|
|
|
|
|
|
my $hypot_to_n = $self->{'hypot_to_n'}; |
351
|
0
|
|
|
|
|
|
while ($hypot > $#$hypot_to_n) { |
352
|
0
|
|
|
|
|
|
_extend($self); |
353
|
|
|
|
|
|
|
} |
354
|
|
|
|
|
|
|
|
355
|
0
|
|
|
|
|
|
my $n = $hypot_to_n->[$hypot]; |
356
|
0
|
|
|
|
|
|
for (;;) { |
357
|
0
|
0
|
0
|
|
|
|
if ($x == $n_to_x->[$n] && $y == $n_to_y->[$n]) { |
358
|
0
|
|
|
|
|
|
return $n + $self->{'n_start'}; |
359
|
|
|
|
|
|
|
} |
360
|
0
|
|
|
|
|
|
$n += 1; |
361
|
|
|
|
|
|
|
|
362
|
0
|
0
|
|
|
|
|
if ($n_to_x->[$n]**2 + $n_to_y->[$n]**2 != $hypot) { |
363
|
|
|
|
|
|
|
### oops, hypot_to_n no good ... |
364
|
0
|
|
|
|
|
|
return undef; |
365
|
|
|
|
|
|
|
} |
366
|
|
|
|
|
|
|
} |
367
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
# if ($x < 0 || $y < 0) { |
369
|
|
|
|
|
|
|
# return undef; |
370
|
|
|
|
|
|
|
# } |
371
|
|
|
|
|
|
|
# my $h = $x*$x + $y*$y; |
372
|
|
|
|
|
|
|
# |
373
|
|
|
|
|
|
|
# while ($y_next_x[$y] <= $x) { |
374
|
|
|
|
|
|
|
# _extend($self); |
375
|
|
|
|
|
|
|
# } |
376
|
|
|
|
|
|
|
# return $xy_to_n{"$x,$y"}; |
377
|
|
|
|
|
|
|
} |
378
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
# not exact |
380
|
|
|
|
|
|
|
sub rect_to_n_range { |
381
|
0
|
|
|
0
|
1
|
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
382
|
|
|
|
|
|
|
|
383
|
0
|
|
|
|
|
|
$x1 = abs (round_nearest ($x1)); |
384
|
0
|
|
|
|
|
|
$y1 = abs (round_nearest ($y1)); |
385
|
0
|
|
|
|
|
|
$x2 = abs (round_nearest ($x2)); |
386
|
0
|
|
|
|
|
|
$y2 = abs (round_nearest ($y2)); |
387
|
|
|
|
|
|
|
|
388
|
0
|
0
|
|
|
|
|
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); } |
|
0
|
|
|
|
|
|
|
389
|
0
|
0
|
|
|
|
|
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } |
|
0
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
|
391
|
|
|
|
|
|
|
# circle area pi*r^2, with r^2 = $x2**2 + $y2**2 |
392
|
|
|
|
|
|
|
return ($self->{'n_start'}, |
393
|
0
|
|
|
|
|
|
$self->{'n_start'} + int (3.2 * (($x2+1)**2 + ($y2+1)**2))); |
394
|
|
|
|
|
|
|
} |
395
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
1; |
397
|
|
|
|
|
|
|
__END__ |