line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::PlanePath::HilbertSpiral; |
20
|
1
|
|
|
1
|
|
1264
|
use 5.004; |
|
1
|
|
|
|
|
3
|
|
21
|
1
|
|
|
1
|
|
5
|
use strict; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
35
|
|
22
|
|
|
|
|
|
|
|
23
|
1
|
|
|
1
|
|
6
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
54
|
|
24
|
|
|
|
|
|
|
$VERSION = 127; |
25
|
1
|
|
|
1
|
|
607
|
use Math::PlanePath; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
26
|
|
26
|
1
|
|
|
1
|
|
437
|
use Math::PlanePath::Base::NSEW; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
34
|
|
27
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath::Base::NSEW', |
28
|
|
|
|
|
|
|
'Math::PlanePath'); |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
31
|
1
|
|
|
|
|
38
|
'is_infinite', |
32
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
1
|
|
|
|
|
2
|
|
33
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
34
|
1
|
|
|
1
|
|
456
|
'digit_split_lowtohigh'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
48
|
|
35
|
|
|
|
|
|
|
|
36
|
1
|
|
|
1
|
|
480
|
use Math::PlanePath::BetaOmega 52; |
|
1
|
|
|
|
|
15
|
|
|
1
|
|
|
|
|
36
|
|
37
|
|
|
|
|
|
|
*_y_round_down_len_level = \&Math::PlanePath::BetaOmega::_y_round_down_len_level; |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
40
|
|
|
|
|
|
|
#use Smart::Comments; |
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
|
43
|
1
|
|
|
1
|
|
5
|
use constant n_start => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
45
|
|
44
|
1
|
|
|
1
|
|
4
|
use constant xy_is_visited => 1; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
35
|
|
45
|
1
|
|
|
1
|
|
4
|
use constant x_negative_at_n => 4; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
43
|
|
46
|
1
|
|
|
1
|
|
5
|
use constant y_negative_at_n => 8; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
862
|
|
47
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
# generated by tools/hilbert-spiral-table.pl |
52
|
|
|
|
|
|
|
# |
53
|
|
|
|
|
|
|
my @next_state = (8,0,0,12, 12,4,4,8, 0,8,8,4, 4,12,12,0, |
54
|
|
|
|
|
|
|
20,0,0,12, 16,4,4,8); |
55
|
|
|
|
|
|
|
my @digit_to_x = (0,1,1,0, 1,0,0,1, 0,0,1,1, 1,1,0,0, |
56
|
|
|
|
|
|
|
0,1,1,0, 1,0,0,1); |
57
|
|
|
|
|
|
|
my @digit_to_y = (0,0,1,1, 1,1,0,0, 0,1,1,0, 1,0,0,1, |
58
|
|
|
|
|
|
|
0,0,1,1, 1,1,0,0); |
59
|
|
|
|
|
|
|
my @xy_to_digit = (0,3,1,2, 2,1,3,0, 0,1,3,2, 2,3,1,0, |
60
|
|
|
|
|
|
|
0,3,1,2, 2,1,3,0); |
61
|
|
|
|
|
|
|
my @min_digit = (0,0,1,0, 0,1,3,2, 2,undef,undef,undef, |
62
|
|
|
|
|
|
|
2,2,3,1, 0,0,1,0, 0,undef,undef,undef, |
63
|
|
|
|
|
|
|
0,0,3,0, 0,2,1,1, 2,undef,undef,undef, |
64
|
|
|
|
|
|
|
2,1,1,2, 0,0,3,0, 0,undef,undef,undef, |
65
|
|
|
|
|
|
|
0,0,1,0, 0,1,3,2, 2,undef,undef,undef, |
66
|
|
|
|
|
|
|
2,2,3,1, 0,0,1,0, 0); |
67
|
|
|
|
|
|
|
my @max_digit = (0,1,1,3, 3,2,3,3, 2,undef,undef,undef, |
68
|
|
|
|
|
|
|
2,3,3,2, 3,3,1,1, 0,undef,undef,undef, |
69
|
|
|
|
|
|
|
0,3,3,1, 3,3,1,2, 2,undef,undef,undef, |
70
|
|
|
|
|
|
|
2,2,1,3, 3,1,3,3, 0,undef,undef,undef, |
71
|
|
|
|
|
|
|
0,1,1,3, 3,2,3,3, 2,undef,undef,undef, |
72
|
|
|
|
|
|
|
2,3,3,2, 3,3,1,1, 0); |
73
|
|
|
|
|
|
|
# neg state 20 |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
sub n_to_xy { |
76
|
2161
|
|
|
2161
|
1
|
18932
|
my ($self, $n) = @_; |
77
|
|
|
|
|
|
|
### HilbertSpiral n_to_xy(): $n |
78
|
|
|
|
|
|
|
### hex: sprintf "%#X", $n |
79
|
|
|
|
|
|
|
|
80
|
2161
|
50
|
|
|
|
3512
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
81
|
2161
|
50
|
|
|
|
3465
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
82
|
|
|
|
|
|
|
|
83
|
2161
|
|
|
|
|
3262
|
my $int = int($n); |
84
|
2161
|
|
|
|
|
2465
|
$n -= $int; |
85
|
|
|
|
|
|
|
|
86
|
2161
|
|
|
|
|
3272
|
my @digits = digit_split_lowtohigh($int,4); |
87
|
2161
|
|
|
|
|
3696
|
my $len = ($n*0 + 2) ** scalar(@digits); # inherit possible bigint 1 |
88
|
|
|
|
|
|
|
|
89
|
2161
|
100
|
|
|
|
3254
|
my $state = ($#digits & 1 ? 4 : 0); |
90
|
2161
|
|
|
|
|
2408
|
my $dir = $state + 2; # default if all $digit==3 |
91
|
|
|
|
|
|
|
### @digits |
92
|
|
|
|
|
|
|
|
93
|
2161
|
|
|
|
|
2475
|
my $x = my $y = 0; |
94
|
|
|
|
|
|
|
|
95
|
2161
|
|
|
|
|
3597
|
while (defined (my $digit = pop @digits)) { # high to low |
96
|
10091
|
|
|
|
|
11302
|
$len /= 2; |
97
|
10091
|
|
|
|
|
10695
|
$state += $digit; |
98
|
10091
|
100
|
|
|
|
13290
|
if ($digit != 3) { |
99
|
7410
|
|
|
|
|
7964
|
$dir = $state; # lowest non-3 digit |
100
|
|
|
|
|
|
|
} |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
### at: "$x,$y len=$len" |
103
|
|
|
|
|
|
|
### $state |
104
|
|
|
|
|
|
|
### $dir |
105
|
|
|
|
|
|
|
### digit_to_x: $digit_to_x[$state] |
106
|
|
|
|
|
|
|
### digit_to_y: $digit_to_y[$state] |
107
|
|
|
|
|
|
|
### next_state: $next_state[$state] |
108
|
|
|
|
|
|
|
|
109
|
10091
|
|
|
|
|
11739
|
my $offset = scalar(@digits) & 1; |
110
|
10091
|
|
|
|
|
12747
|
$x += $len * ($digit_to_x[$state] - $offset); |
111
|
10091
|
|
|
|
|
11254
|
$y += $len * ($digit_to_y[$state] - $offset); |
112
|
10091
|
|
|
|
|
16026
|
$state = $next_state[$state]; |
113
|
|
|
|
|
|
|
} |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
### frac: $n |
117
|
|
|
|
|
|
|
### $dir |
118
|
|
|
|
|
|
|
### dir dx: ($digit_to_x[$dir+1] - $digit_to_x[$dir]) |
119
|
|
|
|
|
|
|
### dir dy: ($digit_to_y[$dir+1] - $digit_to_y[$dir]) |
120
|
|
|
|
|
|
|
### x: $n * ($digit_to_x[$dir+1] - $digit_to_x[$dir]) + $x |
121
|
|
|
|
|
|
|
### y: $n * ($digit_to_y[$dir+1] - $digit_to_y[$dir]) + $y |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
# with $n fractional part |
124
|
2161
|
|
|
|
|
5742
|
return ($n * ($digit_to_x[$dir+1] - $digit_to_x[$dir]) + $x, |
125
|
|
|
|
|
|
|
$n * ($digit_to_y[$dir+1] - $digit_to_y[$dir]) + $y); |
126
|
|
|
|
|
|
|
} |
127
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
sub xy_to_n { |
129
|
0
|
|
|
0
|
1
|
|
my ($self, $x, $y) = @_; |
130
|
|
|
|
|
|
|
### HilbertSpiral xy_to_n(): "$x, $y" |
131
|
|
|
|
|
|
|
|
132
|
0
|
|
|
|
|
|
$x = round_nearest ($x); |
133
|
0
|
|
|
|
|
|
$y = round_nearest ($y); |
134
|
|
|
|
|
|
|
|
135
|
0
|
|
|
|
|
|
my $n = ($x * 0 * $y); |
136
|
|
|
|
|
|
|
|
137
|
0
|
|
|
|
|
|
my ($len, $level) = _y_round_down_len_level ($x); |
138
|
|
|
|
|
|
|
{ |
139
|
0
|
|
|
|
|
|
my ($ylen, $ylevel) = _y_round_down_len_level ($y); |
|
0
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
### y len/level: "$ylen $ylevel" |
141
|
0
|
0
|
|
|
|
|
if ($ylevel > $level) { |
142
|
0
|
|
|
|
|
|
$level = $ylevel; |
143
|
0
|
|
|
|
|
|
$len = $ylen; |
144
|
|
|
|
|
|
|
} |
145
|
|
|
|
|
|
|
} |
146
|
0
|
0
|
|
|
|
|
if (is_infinite($len)) { |
147
|
0
|
|
|
|
|
|
return $len; |
148
|
|
|
|
|
|
|
} |
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
### $len |
151
|
|
|
|
|
|
|
### $level |
152
|
|
|
|
|
|
|
|
153
|
0
|
|
|
|
|
|
my $state; |
154
|
|
|
|
|
|
|
{ |
155
|
0
|
|
|
|
|
|
my $offset; |
|
0
|
|
|
|
|
|
|
156
|
0
|
0
|
|
|
|
|
if ($level & 1) { |
157
|
0
|
|
|
|
|
|
$state = 4; |
158
|
0
|
|
|
|
|
|
$offset = 4*$len; |
159
|
|
|
|
|
|
|
} else { |
160
|
0
|
|
|
|
|
|
$state = 0; |
161
|
0
|
|
|
|
|
|
$offset = 2*$len; |
162
|
|
|
|
|
|
|
} |
163
|
0
|
|
|
|
|
|
$offset -= 2; |
164
|
0
|
|
|
|
|
|
$offset /= 3; |
165
|
0
|
|
|
|
|
|
$y += $offset; |
166
|
0
|
|
|
|
|
|
$x += $offset; |
167
|
|
|
|
|
|
|
# $x,$y now relative to Xmin(level),Ymin(level), |
168
|
|
|
|
|
|
|
# so in range 0 <= $x,$y < 2*len |
169
|
|
|
|
|
|
|
} |
170
|
|
|
|
|
|
|
### offset x,y to: "$x, $y" |
171
|
|
|
|
|
|
|
|
172
|
0
|
|
|
|
|
|
for (;;) { |
173
|
|
|
|
|
|
|
### at: "$x,$y len=$len" |
174
|
|
|
|
|
|
|
### assert: $x >= 0 |
175
|
|
|
|
|
|
|
### assert: $y >= 0 |
176
|
|
|
|
|
|
|
### assert: $x < 2*$len |
177
|
|
|
|
|
|
|
### assert: $y < 2*$len |
178
|
|
|
|
|
|
|
|
179
|
0
|
|
|
|
|
|
my $xo; |
180
|
0
|
0
|
|
|
|
|
if ($xo = ($x >= $len)) { |
181
|
0
|
|
|
|
|
|
$x -= $len; |
182
|
|
|
|
|
|
|
} |
183
|
0
|
|
|
|
|
|
my $yo; |
184
|
0
|
0
|
|
|
|
|
if ($yo = ($y >= $len)) { |
185
|
0
|
|
|
|
|
|
$y -= $len; |
186
|
|
|
|
|
|
|
} |
187
|
|
|
|
|
|
|
### xy bits: ($xo+0).", ".($yo+0) |
188
|
|
|
|
|
|
|
|
189
|
0
|
|
|
|
|
|
my $digit = $xy_to_digit[$state + 2*$xo + $yo]; |
190
|
0
|
|
|
|
|
|
$n = 4*$n + $digit; |
191
|
0
|
|
|
|
|
|
$state = $next_state[$state+$digit]; |
192
|
|
|
|
|
|
|
|
193
|
0
|
0
|
|
|
|
|
last if --$level < 0; |
194
|
0
|
|
|
|
|
|
$len /= 2; |
195
|
|
|
|
|
|
|
} |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
### assert: $x == 0 |
198
|
|
|
|
|
|
|
### assert: $y == 0 |
199
|
|
|
|
|
|
|
|
200
|
0
|
|
|
|
|
|
return $n; |
201
|
|
|
|
|
|
|
} |
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
# This finds the exact minimum/maximum N in the given rectangle. |
205
|
|
|
|
|
|
|
# |
206
|
|
|
|
|
|
|
# The strategy is similar to xy_to_n(), except that at each bit position |
207
|
|
|
|
|
|
|
# instead of taking a bit of x,y from the input instead those bits are |
208
|
|
|
|
|
|
|
# chosen from among the 4 sub-parts according to which has the maximum N and |
209
|
|
|
|
|
|
|
# is within the given target rectangle. The final result is both an $n_max |
210
|
|
|
|
|
|
|
# and a $x_max,$y_max which is its position, but only the $n_max is |
211
|
|
|
|
|
|
|
# returned. |
212
|
|
|
|
|
|
|
# |
213
|
|
|
|
|
|
|
# At a given sub-part the comparisons ask whether x1 is above or below the |
214
|
|
|
|
|
|
|
# midpoint, and likewise x2,y1,y2. Since x2>=x1 and y2>=y1 there's only 3 |
215
|
|
|
|
|
|
|
# combinations of x1>=cmp,x2>=cmp, not 4. |
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
# exact |
218
|
|
|
|
|
|
|
sub rect_to_n_range { |
219
|
0
|
|
|
0
|
1
|
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
220
|
|
|
|
|
|
|
### HilbertSpiral rect_to_n_range(): "$x1,$y1, $x2,$y2" |
221
|
|
|
|
|
|
|
|
222
|
0
|
|
|
|
|
|
$x1 = round_nearest ($x1); |
223
|
0
|
|
|
|
|
|
$y1 = round_nearest ($y1); |
224
|
0
|
|
|
|
|
|
$x2 = round_nearest ($x2); |
225
|
0
|
|
|
|
|
|
$y2 = round_nearest ($y2); |
226
|
0
|
0
|
|
|
|
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
227
|
0
|
0
|
|
|
|
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
228
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
# If y1/y2 both positive or both negative then only look at the bigger of |
230
|
|
|
|
|
|
|
# the two. If y1 negative and y2 positive then consider both. |
231
|
0
|
|
|
|
|
|
my $len = 1; |
232
|
0
|
|
|
|
|
|
my $level = 0; |
233
|
0
|
0
|
|
|
|
|
foreach my $z (($x2 > 0 ? ($x2) : ()), |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
234
|
|
|
|
|
|
|
($x1 < 0 ? ($x1) : ()), |
235
|
|
|
|
|
|
|
($y2 > 0 ? ($y2) : ()), |
236
|
|
|
|
|
|
|
($y1 < 0 ? ($y1) : ())) { |
237
|
0
|
|
|
|
|
|
my ($zlen, $zlevel) = _y_round_down_len_level ($z); |
238
|
|
|
|
|
|
|
### y len/level: "$zlen $zlevel" |
239
|
0
|
0
|
|
|
|
|
if ($zlevel > $level) { |
240
|
0
|
|
|
|
|
|
$level = $zlevel; |
241
|
0
|
|
|
|
|
|
$len = $zlen; |
242
|
|
|
|
|
|
|
} |
243
|
|
|
|
|
|
|
} |
244
|
0
|
0
|
|
|
|
|
if (is_infinite($len)) { |
245
|
0
|
|
|
|
|
|
return (0, $len); |
246
|
|
|
|
|
|
|
} |
247
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
# At this point an easy over-estimate would be: |
249
|
|
|
|
|
|
|
# return (0, $len*$len*4-1); |
250
|
|
|
|
|
|
|
|
251
|
0
|
|
|
|
|
|
my $n_min = my $n_max = 0; |
252
|
0
|
|
|
|
|
|
my $x_min = my $x_max = my $y_min = my $y_max |
253
|
|
|
|
|
|
|
= - (4**int(($level+1)/2) - 1) * 2 / 3; |
254
|
0
|
0
|
|
|
|
|
my $min_state = my $max_state = ($level & 1 ? 20 : 16); |
255
|
|
|
|
|
|
|
### $x_min |
256
|
|
|
|
|
|
|
### $y_min |
257
|
|
|
|
|
|
|
|
258
|
0
|
|
|
|
|
|
while ($level >= 0) { |
259
|
|
|
|
|
|
|
### $level |
260
|
|
|
|
|
|
|
### $len |
261
|
|
|
|
|
|
|
{ |
262
|
0
|
|
|
|
|
|
my $x_cmp = $x_min + $len; |
263
|
0
|
|
|
|
|
|
my $y_cmp = $y_min + $len; |
264
|
0
|
0
|
|
|
|
|
my $digit = $min_digit[3*$min_state |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
265
|
|
|
|
|
|
|
+ ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0) |
266
|
|
|
|
|
|
|
+ ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)]; |
267
|
|
|
|
|
|
|
|
268
|
0
|
|
|
|
|
|
$n_min = 4*$n_min + $digit; |
269
|
0
|
|
|
|
|
|
$min_state += $digit; |
270
|
0
|
0
|
|
|
|
|
if ($digit_to_x[$min_state]) { $x_min += $len; } |
|
0
|
|
|
|
|
|
|
271
|
0
|
|
|
|
|
|
$y_min += $len * $digit_to_y[$min_state]; |
272
|
0
|
|
|
|
|
|
$min_state = $next_state[$min_state]; |
273
|
|
|
|
|
|
|
} |
274
|
|
|
|
|
|
|
{ |
275
|
0
|
|
|
|
|
|
my $x_cmp = $x_max + $len; |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
276
|
0
|
|
|
|
|
|
my $y_cmp = $y_max + $len; |
277
|
0
|
0
|
|
|
|
|
my $digit = $max_digit[3*$max_state |
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
278
|
|
|
|
|
|
|
+ ($x1 >= $x_cmp ? 2 : $x2 >= $x_cmp ? 1 : 0) |
279
|
|
|
|
|
|
|
+ ($y1 >= $y_cmp ? 6 : $y2 >= $y_cmp ? 3 : 0)]; |
280
|
|
|
|
|
|
|
|
281
|
0
|
|
|
|
|
|
$n_max = 4*$n_max + $digit; |
282
|
0
|
|
|
|
|
|
$max_state += $digit; |
283
|
0
|
0
|
|
|
|
|
if ($digit_to_x[$max_state]) { $x_max += $len; } |
|
0
|
|
|
|
|
|
|
284
|
0
|
|
|
|
|
|
$y_max += $len * $digit_to_y[$max_state]; |
285
|
0
|
|
|
|
|
|
$max_state = $next_state[$max_state]; |
286
|
|
|
|
|
|
|
} |
287
|
|
|
|
|
|
|
|
288
|
0
|
|
|
|
|
|
$len = int($len/2); |
289
|
0
|
|
|
|
|
|
$level--; |
290
|
|
|
|
|
|
|
} |
291
|
|
|
|
|
|
|
|
292
|
0
|
|
|
|
|
|
return ($n_min, $n_max); |
293
|
|
|
|
|
|
|
} |
294
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
296
|
|
|
|
|
|
|
# levels |
297
|
|
|
|
|
|
|
|
298
|
1
|
|
|
1
|
|
6
|
use Math::PlanePath::HilbertCurve; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
55
|
|
299
|
|
|
|
|
|
|
*level_to_n_range = \&Math::PlanePath::HilbertCurve::level_to_n_range; |
300
|
|
|
|
|
|
|
*n_to_level = \&Math::PlanePath::HilbertCurve::n_to_level; |
301
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
303
|
|
|
|
|
|
|
1; |
304
|
|
|
|
|
|
|
__END__ |