line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::PlanePath::DiamondSpiral; |
20
|
2
|
|
|
2
|
|
1112
|
use 5.004; |
|
2
|
|
|
|
|
7
|
|
21
|
2
|
|
|
2
|
|
12
|
use strict; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
51
|
|
22
|
|
|
|
|
|
|
|
23
|
2
|
|
|
2
|
|
11
|
use vars '$VERSION', '@ISA'; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
132
|
|
24
|
|
|
|
|
|
|
$VERSION = 127; |
25
|
2
|
|
|
2
|
|
726
|
use Math::PlanePath; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
119
|
|
26
|
|
|
|
|
|
|
*_sqrtint = \&Math::PlanePath::_sqrtint; |
27
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
30
|
2
|
|
|
2
|
|
14
|
'round_nearest'; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
89
|
|
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
33
|
|
|
|
|
|
|
#use Smart::Comments; |
34
|
|
|
|
|
|
|
|
35
|
2
|
|
|
2
|
|
14
|
use constant xy_is_visited => 1; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
115
|
|
36
|
2
|
|
|
|
|
195
|
use constant parameter_info_array => |
37
|
2
|
|
|
2
|
|
13
|
[ Math::PlanePath::Base::Generic::parameter_info_nstart1() ]; |
|
2
|
|
|
|
|
3
|
|
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
sub x_negative_at_n { |
40
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
41
|
0
|
|
|
|
|
0
|
return $self->n_start + 3; |
42
|
|
|
|
|
|
|
} |
43
|
|
|
|
|
|
|
sub y_negative_at_n { |
44
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
45
|
0
|
|
|
|
|
0
|
return $self->n_start + 4; |
46
|
|
|
|
|
|
|
} |
47
|
2
|
|
|
2
|
|
13
|
use constant dx_minimum => -1; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
96
|
|
48
|
2
|
|
|
2
|
|
15
|
use constant dx_maximum => 1; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
106
|
|
49
|
2
|
|
|
2
|
|
12
|
use constant dy_minimum => -1; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
103
|
|
50
|
2
|
|
|
2
|
|
13
|
use constant dy_maximum => 1; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
120
|
|
51
|
2
|
|
|
|
|
204
|
use constant _UNDOCUMENTED__dxdy_list => (1,0, # E N=1 and other bottom |
52
|
|
|
|
|
|
|
1,1, # NE N=6 |
53
|
|
|
|
|
|
|
-1,1, # NW N=2 |
54
|
|
|
|
|
|
|
-1,-1, # SW N=3 |
55
|
2
|
|
|
2
|
|
12
|
1,-1); # SE N=4 |
|
2
|
|
|
|
|
4
|
|
56
|
|
|
|
|
|
|
sub _UNDOCUMENTED__dxdy_list_at_n { |
57
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
58
|
0
|
|
|
|
|
0
|
return $self->n_start + 5; |
59
|
|
|
|
|
|
|
} |
60
|
2
|
|
|
2
|
|
18
|
use constant absdx_minimum => 1; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
118
|
|
61
|
2
|
|
|
2
|
|
24
|
use constant dsumxy_minimum => -2; # diagonals |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
95
|
|
62
|
2
|
|
|
2
|
|
11
|
use constant dsumxy_maximum => 2; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
101
|
|
63
|
2
|
|
|
2
|
|
21
|
use constant ddiffxy_minimum => -2; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
112
|
|
64
|
2
|
|
|
2
|
|
12
|
use constant ddiffxy_maximum => 2; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
95
|
|
65
|
2
|
|
|
2
|
|
12
|
use constant dir_maximum_dxdy => (1,-1); # South-East |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
108
|
|
66
|
|
|
|
|
|
|
|
67
|
2
|
|
|
2
|
|
12
|
use constant turn_any_right => 0; # only left or straight |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
1005
|
|
68
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
71
|
|
|
|
|
|
|
sub new { |
72
|
4
|
|
|
4
|
1
|
682
|
my $self = shift->SUPER::new (@_); |
73
|
4
|
50
|
|
|
|
18
|
if (! defined $self->{'n_start'}) { |
74
|
4
|
|
|
|
|
21
|
$self->{'n_start'} = $self->default_n_start; |
75
|
|
|
|
|
|
|
} |
76
|
4
|
|
|
|
|
9
|
return $self; |
77
|
|
|
|
|
|
|
} |
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
# start cycle at the vertical downwards from x=1,y=0 |
80
|
|
|
|
|
|
|
# s = [ 0, 1, 2, 3 ] |
81
|
|
|
|
|
|
|
# n = [ 2, 6, 14,26 ] |
82
|
|
|
|
|
|
|
# n = 2*$s*$s - 2*$s + 2 |
83
|
|
|
|
|
|
|
# s = .5 + sqrt(.5*$n-.75) |
84
|
|
|
|
|
|
|
# |
85
|
|
|
|
|
|
|
# then top of the diamond at 2*$s - 1 |
86
|
|
|
|
|
|
|
# so n - (2*$s*$s - 2*$s + 2 + 2*$s - 1) |
87
|
|
|
|
|
|
|
# n - (2*$s*$s + 1) |
88
|
|
|
|
|
|
|
# |
89
|
|
|
|
|
|
|
# gives y=$s - n |
90
|
|
|
|
|
|
|
# then x=$s-abs($y) on the right or x=-$s+abs($y) on the left |
91
|
|
|
|
|
|
|
# |
92
|
|
|
|
|
|
|
sub n_to_xy { |
93
|
18
|
|
|
18
|
1
|
1692
|
my ($self, $n) = @_; |
94
|
|
|
|
|
|
|
#### n_to_xy: $n |
95
|
|
|
|
|
|
|
|
96
|
18
|
|
|
|
|
32
|
$n = $n - $self->{'n_start'}; # starting $n==0, and warn if $n==undef |
97
|
18
|
100
|
|
|
|
40
|
if ($n < 1) { |
98
|
1
|
50
|
|
|
|
5
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
99
|
1
|
|
|
|
|
4
|
return ($n, 0); |
100
|
|
|
|
|
|
|
} |
101
|
|
|
|
|
|
|
|
102
|
17
|
|
|
|
|
47
|
my $d = int ( (1 + _sqrtint(2*$n-1)) / 2 ); |
103
|
|
|
|
|
|
|
#### $d |
104
|
|
|
|
|
|
|
#### d frac: ( (1 + _sqrtint(2*$n-1)) / 2 ) |
105
|
|
|
|
|
|
|
#### base: 2*$d*$d - 2*$d + 2 |
106
|
|
|
|
|
|
|
#### extra: 2*$d - 1 |
107
|
|
|
|
|
|
|
#### sub: 2*$d*$d +1 |
108
|
|
|
|
|
|
|
|
109
|
17
|
|
|
|
|
29
|
$n -= 2*$d*$d; |
110
|
|
|
|
|
|
|
### rem from top: $n |
111
|
|
|
|
|
|
|
|
112
|
17
|
|
|
|
|
39
|
my $y = -abs($n) + $d; # y=+$d at the top, down to y=-$d |
113
|
17
|
|
|
|
|
23
|
my $x = abs($y) - $d; # 0 to $d on the right |
114
|
|
|
|
|
|
|
#### uncapped y: $y |
115
|
|
|
|
|
|
|
#### abs x: $x |
116
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
# cap for horiz at 5 to 6, 13 to 14 etc |
118
|
17
|
|
|
|
|
29
|
$d = -$d; |
119
|
17
|
100
|
|
|
|
25
|
if ($y < $d) { $y = $d; } |
|
4
|
|
|
|
|
8
|
|
120
|
|
|
|
|
|
|
|
121
|
17
|
100
|
|
|
|
49
|
return (($n >= 0 ? $x : -$x), # negate if on the right |
122
|
|
|
|
|
|
|
$y); |
123
|
|
|
|
|
|
|
} |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
sub xy_to_n { |
126
|
28
|
|
|
28
|
1
|
1087
|
my ($self, $x, $y) = @_; |
127
|
28
|
|
|
|
|
55
|
$x = round_nearest ($x); |
128
|
28
|
|
|
|
|
51
|
$y = round_nearest ($y); |
129
|
28
|
|
|
|
|
45
|
my $d = abs($x) + abs($y); |
130
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
# vertical along the y>=0 axis |
132
|
|
|
|
|
|
|
# s=0 n=1 |
133
|
|
|
|
|
|
|
# s=1 n=3 |
134
|
|
|
|
|
|
|
# s=2 n=9 |
135
|
|
|
|
|
|
|
# s=3 n=19 |
136
|
|
|
|
|
|
|
# s=4 n=33 |
137
|
|
|
|
|
|
|
# n = 2*$d*$d + 1 |
138
|
|
|
|
|
|
|
# |
139
|
28
|
|
|
|
|
44
|
my $n = 2*$d*$d; |
140
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
# then +/- $d to go to left or right x axis, and -/+ $y from there |
142
|
28
|
100
|
|
|
|
47
|
if ($x > 0) { |
143
|
|
|
|
|
|
|
### right quad 1 and 4 |
144
|
9
|
|
|
|
|
23
|
return $n - $d + $y + $self->{'n_start'}; |
145
|
|
|
|
|
|
|
} else { |
146
|
|
|
|
|
|
|
# left quads 2 and 3 |
147
|
19
|
|
|
|
|
50
|
return $n + $d - $y + $self->{'n_start'}; |
148
|
|
|
|
|
|
|
} |
149
|
|
|
|
|
|
|
} |
150
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
# | | x2>=-x1 | |
152
|
|
|
|
|
|
|
# M---+ | M-------M | +---M |
153
|
|
|
|
|
|
|
# | | | | | | | | | |
154
|
|
|
|
|
|
|
# +---m | +----m--+ | m---+ |
155
|
|
|
|
|
|
|
# | | | |
156
|
|
|
|
|
|
|
# -----+------ -------+------- -----+-------- |
157
|
|
|
|
|
|
|
# | | | |
158
|
|
|
|
|
|
|
# |
159
|
|
|
|
|
|
|
# | | | |
160
|
|
|
|
|
|
|
# M---+ | M-------M y2>=-y1 | +---M |
161
|
|
|
|
|
|
|
# | | | | | | | | | |
162
|
|
|
|
|
|
|
# | m | | | | | m | |
163
|
|
|
|
|
|
|
# -------+------ -------m------- -----+-------- |
164
|
|
|
|
|
|
|
# | | | | | | | | | |
165
|
|
|
|
|
|
|
# M---+ | M-------M | +---M |
166
|
|
|
|
|
|
|
# | | | |
167
|
|
|
|
|
|
|
# |
168
|
|
|
|
|
|
|
# | | | |
169
|
|
|
|
|
|
|
# -----+------ -------+------- -----+-------- |
170
|
|
|
|
|
|
|
# | | | |
171
|
|
|
|
|
|
|
# +---m | +--m----+ | m---+ |
172
|
|
|
|
|
|
|
# | | | | | | | | | |
173
|
|
|
|
|
|
|
# M---+ | M-------M | +---M |
174
|
|
|
|
|
|
|
# | | | |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
# exact |
177
|
|
|
|
|
|
|
sub rect_to_n_range { |
178
|
5
|
|
|
5
|
1
|
425
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
179
|
|
|
|
|
|
|
### DiamondSpiral rect_to_n_range(): "$x1,$y1, $x2,$y2" |
180
|
|
|
|
|
|
|
|
181
|
5
|
|
|
|
|
12
|
$x1 = round_nearest ($x1); |
182
|
5
|
|
|
|
|
11
|
$y1 = round_nearest ($y1); |
183
|
5
|
|
|
|
|
11
|
$x2 = round_nearest ($x2); |
184
|
5
|
|
|
|
|
10
|
$y2 = round_nearest ($y2); |
185
|
|
|
|
|
|
|
|
186
|
5
|
100
|
|
|
|
13
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
187
|
5
|
50
|
|
|
|
9
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
188
|
|
|
|
|
|
|
|
189
|
5
|
100
|
|
|
|
13
|
my $min_x = ($x2 < 0 ? $x2 |
|
|
100
|
|
|
|
|
|
190
|
|
|
|
|
|
|
: $x1 > 0 ? $x1 |
191
|
|
|
|
|
|
|
: 0); |
192
|
5
|
100
|
|
|
|
12
|
my $min_y = ($y2 < 0 ? $y2 |
|
|
100
|
|
|
|
|
|
193
|
|
|
|
|
|
|
: $y1 > 0 ? $y1 |
194
|
|
|
|
|
|
|
: 0); |
195
|
|
|
|
|
|
|
|
196
|
5
|
100
|
|
|
|
10
|
my $max_x = ($x2 > -$x1 ? $x2 : $x1); |
197
|
5
|
100
|
|
|
|
10
|
my $max_y = ($y2 >= -$y1+($max_x<=0) ? $y2 : $y1); |
198
|
|
|
|
|
|
|
|
199
|
5
|
|
|
|
|
12
|
return ($self->xy_to_n($min_x,$min_y), |
200
|
|
|
|
|
|
|
$self->xy_to_n($max_x,$max_y)); |
201
|
|
|
|
|
|
|
} |
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
1; |
204
|
|
|
|
|
|
|
__END__ |