line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# http://mathworld.wolfram.com/ElementaryCellularAutomaton.html |
20
|
|
|
|
|
|
|
# |
21
|
|
|
|
|
|
|
# Loeschian numbers strips on the right ... |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
package Math::PlanePath::CellularRule190; |
25
|
2
|
|
|
2
|
|
9262
|
use 5.004; |
|
2
|
|
|
|
|
13
|
|
26
|
2
|
|
|
2
|
|
11
|
use strict; |
|
2
|
|
|
|
|
6
|
|
|
2
|
|
|
|
|
74
|
|
27
|
|
|
|
|
|
|
|
28
|
2
|
|
|
2
|
|
11
|
use vars '$VERSION', '@ISA'; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
143
|
|
29
|
|
|
|
|
|
|
$VERSION = 127; |
30
|
2
|
|
|
2
|
|
690
|
use Math::PlanePath; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
106
|
|
31
|
|
|
|
|
|
|
*_sqrtint = \&Math::PlanePath::_sqrtint; |
32
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
35
|
2
|
|
|
2
|
|
15
|
'round_nearest'; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
98
|
|
36
|
|
|
|
|
|
|
|
37
|
2
|
|
|
2
|
|
454
|
use Math::PlanePath::CellularRule54; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
88
|
|
38
|
|
|
|
|
|
|
*_rect_for_V = \&Math::PlanePath::CellularRule54::_rect_for_V; |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
41
|
|
|
|
|
|
|
# use Smart::Comments; |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
|
44
|
2
|
|
|
2
|
|
13
|
use constant class_y_negative => 0; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
134
|
|
45
|
2
|
|
|
2
|
|
12
|
use constant n_frac_discontinuity => .5; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
198
|
|
46
|
|
|
|
|
|
|
|
47
|
2
|
|
|
|
|
202
|
use constant parameter_info_array => |
48
|
|
|
|
|
|
|
[ { name => 'mirror', |
49
|
|
|
|
|
|
|
display => 'Mirror', |
50
|
|
|
|
|
|
|
type => 'boolean', |
51
|
|
|
|
|
|
|
default => 0, |
52
|
|
|
|
|
|
|
description => 'Mirror to "rule 246" instead.', |
53
|
|
|
|
|
|
|
}, |
54
|
|
|
|
|
|
|
Math::PlanePath::Base::Generic::parameter_info_nstart1(), |
55
|
2
|
|
|
2
|
|
13
|
]; |
|
2
|
|
|
|
|
3
|
|
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
sub x_negative_at_n { |
58
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
59
|
0
|
|
|
|
|
0
|
return $self->n_start + 1; |
60
|
|
|
|
|
|
|
} |
61
|
2
|
|
|
2
|
|
16
|
use constant sumxy_minimum => 0; # triangular X>=-Y so X+Y>=0 |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
100
|
|
62
|
2
|
|
|
2
|
|
13
|
use constant diffxy_maximum => 0; # triangular X<=Y so X-Y<=0 |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
102
|
|
63
|
2
|
|
|
2
|
|
13
|
use constant dx_maximum => 2; # across gap |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
111
|
|
64
|
2
|
|
|
2
|
|
13
|
use constant dy_minimum => 0; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
97
|
|
65
|
2
|
|
|
2
|
|
13
|
use constant dy_maximum => 1; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
97
|
|
66
|
2
|
|
|
2
|
|
13
|
use constant absdx_minimum => 1; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
110
|
|
67
|
2
|
|
|
2
|
|
12
|
use constant dsumxy_maximum => 2; # straight East dX=+2 |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
95
|
|
68
|
2
|
|
|
2
|
|
11
|
use constant ddiffxy_maximum => 2; # straight East dX=+2 |
|
2
|
|
|
|
|
17
|
|
|
2
|
|
|
|
|
97
|
|
69
|
2
|
|
|
2
|
|
13
|
use constant dir_maximum_dxdy => (-1,0); # supremum, West except dY=+1 |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
1343
|
|
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
sub new { |
75
|
10
|
|
|
10
|
1
|
1832
|
my $self = shift->SUPER::new (@_); |
76
|
10
|
100
|
|
|
|
42
|
if (! defined $self->{'n_start'}) { |
77
|
7
|
|
|
|
|
26
|
$self->{'n_start'} = $self->default_n_start; |
78
|
|
|
|
|
|
|
} |
79
|
10
|
|
|
|
|
31
|
return $self; |
80
|
|
|
|
|
|
|
} |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
# 31 32 33 34 35 36 37 38 39 40 |
83
|
|
|
|
|
|
|
# 22 23 24 25 26 27 28 29 30 |
84
|
|
|
|
|
|
|
# 15 6 17 18 19 20 21 |
85
|
|
|
|
|
|
|
# 9 10 11 12 13 14 |
86
|
|
|
|
|
|
|
# 5 6 7 8 |
87
|
|
|
|
|
|
|
# 2 3 4 |
88
|
|
|
|
|
|
|
# 1 |
89
|
|
|
|
|
|
|
# |
90
|
|
|
|
|
|
|
# even y = [ 0, 2, 4, 6 ] |
91
|
|
|
|
|
|
|
# N = [ 1, 5, 15, 31 ] |
92
|
|
|
|
|
|
|
# Neven = (3/4 y^2 + 1/2 y + 1) |
93
|
|
|
|
|
|
|
# = (3y + 2)*y/4 + 1 |
94
|
|
|
|
|
|
|
# = ((3y + 2)*y + 4) /4 |
95
|
|
|
|
|
|
|
# = (3 (y/2)^2 + (y/2) + 1) |
96
|
|
|
|
|
|
|
# = (3*(y/2) + 1)*(y/2) + 1 |
97
|
|
|
|
|
|
|
# |
98
|
|
|
|
|
|
|
# odd y = [ 1, 3, 5,7 ] |
99
|
|
|
|
|
|
|
# N = [ 2,9,22,41 ] |
100
|
|
|
|
|
|
|
# Nodd = (3/4 y^2 + 1/2 y + 3/4) |
101
|
|
|
|
|
|
|
# = ((3y+2)*y+ 3) / 4 |
102
|
|
|
|
|
|
|
# |
103
|
|
|
|
|
|
|
# pair even d = [0,1,2,3] |
104
|
|
|
|
|
|
|
# N = [ 1, 5, 15, 31 ] |
105
|
|
|
|
|
|
|
# Npair = (3 d^2 + d + 1) |
106
|
|
|
|
|
|
|
# d = -1/6 + sqrt(1/3 * $n + -11/36) |
107
|
|
|
|
|
|
|
# = [ -1 + sqrt(1/3 * $n + -11/36)*6 ] / 6 |
108
|
|
|
|
|
|
|
# = [ -1 + sqrt(1/3 * $n*36 + -11/36*36) ] / 6 |
109
|
|
|
|
|
|
|
# = [ -1 + sqrt(12n-11) ] / 6 |
110
|
|
|
|
|
|
|
# |
111
|
|
|
|
|
|
|
sub n_to_xy { |
112
|
140
|
|
|
140
|
1
|
11343
|
my ($self, $n) = @_; |
113
|
|
|
|
|
|
|
### CellularRule190 n_to_xy(): $n |
114
|
|
|
|
|
|
|
|
115
|
140
|
|
|
|
|
254
|
$n = $n - $self->{'n_start'} + 1; # to N=1 basis, and warn if $n undef |
116
|
140
|
|
|
|
|
198
|
my $frac; |
117
|
|
|
|
|
|
|
{ |
118
|
140
|
|
|
|
|
198
|
my $int = int($n); |
|
140
|
|
|
|
|
205
|
|
119
|
140
|
|
|
|
|
200
|
$frac = $n - $int; |
120
|
140
|
|
|
|
|
193
|
$n = $int; # BigFloat int() gives BigInt, use that |
121
|
140
|
50
|
|
|
|
367
|
if (2*$frac >= 1) { |
122
|
0
|
|
|
|
|
0
|
$frac -= 1; |
123
|
0
|
|
|
|
|
0
|
$n += 1; |
124
|
|
|
|
|
|
|
} |
125
|
|
|
|
|
|
|
# now -0.5 <= $frac < 0.5 |
126
|
|
|
|
|
|
|
### assert: 2*$frac >= -1 || $n!=$n || $n+1==$n |
127
|
|
|
|
|
|
|
### assert: 2*$frac < 1 || $n!=$n || $n+1==$n |
128
|
|
|
|
|
|
|
} |
129
|
|
|
|
|
|
|
|
130
|
140
|
100
|
|
|
|
296
|
if ($n < 1) { |
131
|
6
|
|
|
|
|
20
|
return; |
132
|
|
|
|
|
|
|
} |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
# d is the two-row number, ie. d=2*y, where n belongs |
135
|
|
|
|
|
|
|
# start of the two-row group is nbase = 3 d^2 + d + 1 |
136
|
|
|
|
|
|
|
# |
137
|
134
|
|
|
|
|
350
|
my $d = int ((_sqrtint(12*$n-11) - 1) / 6); |
138
|
134
|
|
|
|
|
244
|
$n -= ((3*$d + 1)*$d + 1); # remainder within two-row |
139
|
|
|
|
|
|
|
### $d |
140
|
|
|
|
|
|
|
### remainder: $n |
141
|
134
|
100
|
|
|
|
268
|
if ($n <= 3*$d) { |
142
|
|
|
|
|
|
|
# 3d+1 many points in the Y=0,2,4,6 etc even row |
143
|
83
|
|
|
|
|
126
|
$d *= 2; # y=2*d |
144
|
83
|
100
|
|
|
|
281
|
return ($frac + $n + int(($n + ($self->{'mirror'} ? 2 : 0))/3) - $d, |
145
|
|
|
|
|
|
|
$d); |
146
|
|
|
|
|
|
|
} else { |
147
|
|
|
|
|
|
|
# 3*d many points in the Y=1,3,5,7 etc odd row, using 3 in 4 cells |
148
|
51
|
|
|
|
|
75
|
$n -= 3*$d+1; # remainder 0 upwards into odd row |
149
|
51
|
|
|
|
|
77
|
$d = 2*$d+1; # y=2*d+1 |
150
|
51
|
|
|
|
|
133
|
return ($frac + $n + int($n/3) - $d, |
151
|
|
|
|
|
|
|
$d); |
152
|
|
|
|
|
|
|
} |
153
|
|
|
|
|
|
|
} |
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
sub xy_to_n { |
156
|
1628
|
|
|
1628
|
1
|
17143
|
my ($self, $x, $y) = @_; |
157
|
1628
|
|
|
|
|
3164
|
$x = round_nearest ($x); |
158
|
1628
|
|
|
|
|
3106
|
$y = round_nearest ($y); |
159
|
|
|
|
|
|
|
### CellularRule190 xy_to_n(): "$x,$y" |
160
|
|
|
|
|
|
|
|
161
|
1628
|
100
|
66
|
|
|
4952
|
if ($y < 0 || $x > $y) { |
162
|
240
|
|
|
|
|
459
|
return undef; |
163
|
|
|
|
|
|
|
} |
164
|
|
|
|
|
|
|
|
165
|
1388
|
|
|
|
|
1935
|
$x += $y; # move to have x=0 the start of the row |
166
|
1388
|
100
|
|
|
|
2417
|
if ($x < 0) { |
167
|
240
|
|
|
|
|
447
|
return undef; |
168
|
|
|
|
|
|
|
} |
169
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
### x centred: $x |
171
|
1148
|
100
|
|
|
|
2023
|
if ($y % 2) { |
172
|
|
|
|
|
|
|
### odd row, 3s from the start ... |
173
|
496
|
100
|
|
|
|
872
|
if (($x % 4) == 3) { |
174
|
56
|
|
|
|
|
112
|
return undef; |
175
|
|
|
|
|
|
|
} |
176
|
|
|
|
|
|
|
# 3y^2+2y-1 = (3y-1)*(y+1) |
177
|
|
|
|
|
|
|
return ($x |
178
|
|
|
|
|
|
|
- int($x/4) |
179
|
|
|
|
|
|
|
+ ((3*$y+2)*$y-1)/4 |
180
|
440
|
|
|
|
|
1381
|
+ $self->{'n_start'}); |
181
|
|
|
|
|
|
|
} else { |
182
|
|
|
|
|
|
|
### even row, 3s then 1 sep, or mirror 1 sep start ... |
183
|
652
|
|
|
|
|
953
|
my $mirror = $self->{'mirror'}; |
184
|
652
|
100
|
|
|
|
1347
|
if (($x % 4) == ($mirror ? 1 : 3)) { |
|
|
100
|
|
|
|
|
|
185
|
56
|
|
|
|
|
118
|
return undef; |
186
|
|
|
|
|
|
|
} |
187
|
|
|
|
|
|
|
return ($x |
188
|
|
|
|
|
|
|
- int(($x+($mirror ? 2 : 1))/4) |
189
|
|
|
|
|
|
|
+ (3*$y+2)*$y/4 |
190
|
596
|
100
|
|
|
|
2093
|
+ $self->{'n_start'}); |
191
|
|
|
|
|
|
|
} |
192
|
|
|
|
|
|
|
} |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
# exact |
195
|
|
|
|
|
|
|
sub rect_to_n_range { |
196
|
222
|
|
|
222
|
1
|
8547
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
197
|
|
|
|
|
|
|
### CellularRule190 rect_to_n_range(): "$x1,$y1, $x2,$y2" |
198
|
|
|
|
|
|
|
|
199
|
222
|
50
|
|
|
|
582
|
($x1,$y1, $x2,$y2) = _rect_for_V ($x1,$y1, $x2,$y2) |
200
|
|
|
|
|
|
|
or return (1,0); # rect outside pyramid |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
# # inherit bignum (before collapsing some y1 to x1 etc) |
203
|
|
|
|
|
|
|
# my $zero = ($x1 * 0 * $y1 * $x2 * $y2); |
204
|
|
|
|
|
|
|
|
205
|
222
|
|
|
|
|
401
|
my $mirror = $self->{'mirror'}; |
206
|
222
|
|
|
|
|
345
|
my $unincremented_x1 = $x1; |
207
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
# \+------+ |
209
|
|
|
|
|
|
|
# | | / |
210
|
|
|
|
|
|
|
# |\ | / |
211
|
|
|
|
|
|
|
# | \ | / |
212
|
|
|
|
|
|
|
# | \ | / |
213
|
|
|
|
|
|
|
# y1 +------+ / |
214
|
|
|
|
|
|
|
# x1 \ / |
215
|
|
|
|
|
|
|
# \/ |
216
|
|
|
|
|
|
|
# |
217
|
222
|
100
|
|
|
|
605
|
if ($x1 < (my $neg_y1 = -$y1)) { |
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
218
|
|
|
|
|
|
|
### bottom-left outside, move across to: "$neg_y1,$y1" |
219
|
11
|
|
|
|
|
15
|
$x1 = $neg_y1; |
220
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
# For the following blank checks a blank doesn't occur at the ends of a |
222
|
|
|
|
|
|
|
# row, so when on a blank it's always possible to increment or decrement |
223
|
|
|
|
|
|
|
# X to go to a non-blank -- as long as that adjacent space is within the |
224
|
|
|
|
|
|
|
# rectangle. |
225
|
|
|
|
|
|
|
# |
226
|
|
|
|
|
|
|
} elsif ((($mirror ? $y1-$x1 : $x1+$y1) % 4) == 3) { |
227
|
|
|
|
|
|
|
### x1,y1 bottom left is on a blank: "x1+y1=".($x1+$y1) |
228
|
0
|
0
|
|
|
|
0
|
if ($x1 < $x2) { |
229
|
|
|
|
|
|
|
### rect width >= 2, so increase x1 ... |
230
|
0
|
|
|
|
|
0
|
$x1 += 1; |
231
|
|
|
|
|
|
|
} else { |
232
|
|
|
|
|
|
|
### rect is a single column width==1, increase y1 ... |
233
|
0
|
0
|
|
|
|
0
|
if (($y1 += 1) > $y2) { |
234
|
|
|
|
|
|
|
### rect was a single blank square, contains no N ... |
235
|
0
|
|
|
|
|
0
|
return (1,0); |
236
|
|
|
|
|
|
|
} |
237
|
|
|
|
|
|
|
} |
238
|
|
|
|
|
|
|
} |
239
|
|
|
|
|
|
|
|
240
|
222
|
100
|
|
|
|
588
|
if ((($mirror ? $y2-$x2 : $x2+$y2) % 4) == 3) { |
|
|
100
|
|
|
|
|
|
241
|
|
|
|
|
|
|
### x2,y2 top right is on a blank, decrement ... |
242
|
12
|
50
|
|
|
|
26
|
if ($x2 > $unincremented_x1) { |
243
|
|
|
|
|
|
|
### rect width >= 2, so decrease x2 ... |
244
|
12
|
|
|
|
|
19
|
$x2 -= 1; |
245
|
|
|
|
|
|
|
} else { |
246
|
|
|
|
|
|
|
### rect is a single column width==1, decrease y2 ... |
247
|
0
|
|
|
|
|
0
|
$y2 -= 1; |
248
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
# Can decrement without checking whether the rect is a single square. |
250
|
|
|
|
|
|
|
# If the rect was a single blank square then the x1+y1 bottom left |
251
|
|
|
|
|
|
|
# above detects and returns. And the bottom left blank check |
252
|
|
|
|
|
|
|
# incremented y1 to leave a single square then that's a non-blank |
253
|
|
|
|
|
|
|
# because there's no vertical blank pairs (they go on the diagonal). |
254
|
|
|
|
|
|
|
### assert $y2 >= $y1 |
255
|
|
|
|
|
|
|
} |
256
|
|
|
|
|
|
|
} |
257
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
# At this point $x1,$y1 is a non-blank bottom left corner, and $x2,$y2 |
259
|
|
|
|
|
|
|
# is a non-blank top right corner, being the N lo to hi range. |
260
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
### range: "bottom-right $x1,$y1 top-left $x2,$y2" |
262
|
222
|
|
|
|
|
459
|
return ($self->xy_to_n ($x1,$y1), |
263
|
|
|
|
|
|
|
$self->xy_to_n ($x2,$y2)); |
264
|
|
|
|
|
|
|
} |
265
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
# old rect_to_n_range() of row endpoints |
268
|
|
|
|
|
|
|
# |
269
|
|
|
|
|
|
|
# # even right y = [ 0, 2, 4, 6 ] |
270
|
|
|
|
|
|
|
# # N = [ 1,8,21,40 ] |
271
|
|
|
|
|
|
|
# # Nright = (3/4 y^2 + 2 y + 1) |
272
|
|
|
|
|
|
|
# # = (3 y^2 + 8 y + 4) / 4 |
273
|
|
|
|
|
|
|
# # = ((3y + 8)y + 4) / 4 |
274
|
|
|
|
|
|
|
# # |
275
|
|
|
|
|
|
|
# # odd right y = [ 1, 3, 5, 7 ] |
276
|
|
|
|
|
|
|
# # N = [ 4,14,30, 52 ] |
277
|
|
|
|
|
|
|
# # Nright = (3/4 y^2 + 2 y + 5/4) |
278
|
|
|
|
|
|
|
# # = (3 y^2 + 8 y + 5) / 4 |
279
|
|
|
|
|
|
|
# # = ((3y + 8)y + 5) / 4 |
280
|
|
|
|
|
|
|
# # |
281
|
|
|
|
|
|
|
# # Nleft y even ((3y+2)*y + 4)/4 |
282
|
|
|
|
|
|
|
# # Nleft y odd ((3y+2)*y + 3)/4 |
283
|
|
|
|
|
|
|
# # Nright even ((3(y+1)+2)*(y+1) + 3)/4 - 1 |
284
|
|
|
|
|
|
|
# # = ((3y+3+2)*(y+1) + 3 - 4)/4 |
285
|
|
|
|
|
|
|
# # = ((3y+5)*(y+1) - 1)/4 |
286
|
|
|
|
|
|
|
# # = ((3y^2 + 8y + 5 - 1)/4 |
287
|
|
|
|
|
|
|
# # = ((3y^2 + 8y + 4)/4 |
288
|
|
|
|
|
|
|
# # = ((3y+8)y + 4)/4 |
289
|
|
|
|
|
|
|
# # = ((3y+2)(y+2)/4 |
290
|
|
|
|
|
|
|
# # |
291
|
|
|
|
|
|
|
# ### $y1 |
292
|
|
|
|
|
|
|
# ### $y2 |
293
|
|
|
|
|
|
|
# $y2 += $zero; |
294
|
|
|
|
|
|
|
# $y1 += $zero; |
295
|
|
|
|
|
|
|
# return (((3*$y1 + 2)*$y1 + 4 - ($y1%2)) / 4, # even/odd Nleft |
296
|
|
|
|
|
|
|
# ((3*$y2 + 8)*$y2 + 4 + ($y2%2)) / 4); # even/odd Nright |
297
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
1; |
299
|
|
|
|
|
|
|
__END__ |