line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify it |
6
|
|
|
|
|
|
|
# under the terms of the GNU General Public License as published by the Free |
7
|
|
|
|
|
|
|
# Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# Also possible would be circle involute spiral, unrolling string around |
20
|
|
|
|
|
|
|
# centre of circumference 1, but is only very slightly different radius from |
21
|
|
|
|
|
|
|
# an Archimedean spiral. |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
package Math::PlanePath::ArchimedeanChords; |
25
|
1
|
|
|
1
|
|
7219
|
use 5.004; |
|
1
|
|
|
|
|
7
|
|
26
|
1
|
|
|
1
|
|
5
|
use strict; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
29
|
|
27
|
1
|
|
|
1
|
|
365
|
use Math::Libm 'hypot', 'asinh'; |
|
1
|
|
|
|
|
4203
|
|
|
1
|
|
|
|
|
57
|
|
28
|
1
|
|
|
1
|
|
420
|
use POSIX 'ceil'; |
|
1
|
|
|
|
|
6145
|
|
|
1
|
|
|
|
|
5
|
|
29
|
|
|
|
|
|
|
#use List::Util 'min', 'max'; |
30
|
|
|
|
|
|
|
*min = \&Math::PlanePath::_min; |
31
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
32
|
|
|
|
|
|
|
|
33
|
1
|
|
|
1
|
|
1157
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
54
|
|
34
|
|
|
|
|
|
|
$VERSION = 127; |
35
|
1
|
|
|
1
|
|
536
|
use Math::PlanePath; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
33
|
|
36
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
39
|
1
|
|
|
|
|
34
|
'is_infinite', |
40
|
1
|
|
|
1
|
|
7
|
'round_nearest'; |
|
1
|
|
|
|
|
1
|
|
41
|
1
|
|
|
1
|
|
463
|
use Math::PlanePath::MultipleRings; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
26
|
|
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
44
|
|
|
|
|
|
|
# use Smart::Comments; |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
|
47
|
1
|
|
|
1
|
|
6
|
use constant figure => 'circle'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
43
|
|
48
|
1
|
|
|
1
|
|
5
|
use constant n_start => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
35
|
|
49
|
1
|
|
|
1
|
|
4
|
use constant x_negative_at_n => 3; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
32
|
|
50
|
1
|
|
|
1
|
|
4
|
use constant y_negative_at_n => 5; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
34
|
|
51
|
1
|
|
|
1
|
|
4
|
use constant gcdxy_maximum => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
33
|
|
52
|
1
|
|
|
1
|
|
5
|
use constant dx_minimum => -1; # infimum when straight |
|
1
|
|
|
|
|
8
|
|
|
1
|
|
|
|
|
41
|
|
53
|
1
|
|
|
1
|
|
5
|
use constant dx_maximum => 1; # at N=0 |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
45
|
|
54
|
1
|
|
|
1
|
|
6
|
use constant dy_minimum => -1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
36
|
|
55
|
1
|
|
|
1
|
|
4
|
use constant dy_maximum => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
43
|
|
56
|
1
|
|
|
1
|
|
6
|
use constant dsumxy_minimum => -sqrt(2); # supremum when diagonal |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
45
|
|
57
|
1
|
|
|
1
|
|
5
|
use constant dsumxy_maximum => sqrt(2); |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
45
|
|
58
|
1
|
|
|
1
|
|
6
|
use constant ddiffxy_minimum => -sqrt(2); # supremum when diagonal |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
36
|
|
59
|
1
|
|
|
1
|
|
4
|
use constant ddiffxy_maximum => sqrt(2); |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
42
|
|
60
|
1
|
|
|
1
|
|
5
|
use constant turn_any_right => 0; # left always |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
38
|
|
61
|
1
|
|
|
1
|
|
6
|
use constant turn_any_straight => 0; # left always |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
64
|
|
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
65
|
|
|
|
|
|
|
|
66
|
1
|
|
|
1
|
|
6
|
use constant 1.02 _PI => 2*atan2(1,0); |
|
1
|
|
|
|
|
11
|
|
|
1
|
|
|
|
|
168
|
|
67
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
# Starting at polar angle position t in radians, |
69
|
|
|
|
|
|
|
# |
70
|
|
|
|
|
|
|
# r = t / 2pi |
71
|
|
|
|
|
|
|
# |
72
|
|
|
|
|
|
|
# x = r * cos(t) = t * cos(t) / 2pi |
73
|
|
|
|
|
|
|
# y = r * sin(t) = t * sin(t) / 2pi |
74
|
|
|
|
|
|
|
# |
75
|
|
|
|
|
|
|
# Want a polar angle amount u to move by a chord distance of 1. Hypot |
76
|
|
|
|
|
|
|
# square distance from t to t+u is |
77
|
|
|
|
|
|
|
# |
78
|
|
|
|
|
|
|
# dist(u) = ( (t+u)/2pi*cos(t+u) - t/2pi*cos(t) )^2 # X |
79
|
|
|
|
|
|
|
# + ( (t+u)/2pi*sin(t+u) - t/2pi*sin(t) )^2 # Y |
80
|
|
|
|
|
|
|
# = [ (t+u)^2*cos^2(t+u) - 2*(t+u)*t*cos(t+u)*cos(t) + t^2*cos^2(t) |
81
|
|
|
|
|
|
|
# + (t+u)^2*sin^2(t+u) - 2*(t+u)*t*sin(t+u)*sin(t) + t^2*sin^2(t) |
82
|
|
|
|
|
|
|
# ] / (4*pi^2) |
83
|
|
|
|
|
|
|
# |
84
|
|
|
|
|
|
|
# and from sin^2 + cos^2 = 1 |
85
|
|
|
|
|
|
|
# and addition cosA*cosB + sinA*sinB = cos(A-B) |
86
|
|
|
|
|
|
|
# |
87
|
|
|
|
|
|
|
# = [ (t+u)^2 - 2*(t+u)*t*cos((t+u)-t) + t^2 ] /4pi^2 |
88
|
|
|
|
|
|
|
# = [ (t+u)^2 + t^2 - 2*t*(t+u)*cos(u) ] / (4*pi^2) |
89
|
|
|
|
|
|
|
# |
90
|
|
|
|
|
|
|
# then double angle cos(u) = 1 - 2*sin^2(u/2) to go to the sine since if u |
91
|
|
|
|
|
|
|
# is small then cos(u) near 1.0 might lose accuracy |
92
|
|
|
|
|
|
|
# |
93
|
|
|
|
|
|
|
# dist(u) = [(t+u)^2 + t^2 - 2*t*(t+u)*(1 - 2*sin^2(u/2))] / (4*pi^2) |
94
|
|
|
|
|
|
|
# = [(t+u)^2 + t^2 - 2*t*(t+u) + 2*t*(t+u)*2*sin^2(u/2)] / (4*pi^2) |
95
|
|
|
|
|
|
|
# = [((t+u) - t)^2 + 4*t*(t+u)*sin^2(u/2)] / (4*pi^2) |
96
|
|
|
|
|
|
|
# = [ u^2 + 4*t*(t+u)*sin^2(u/2) ] / (4*pi^2) |
97
|
|
|
|
|
|
|
# |
98
|
|
|
|
|
|
|
# Seek d(u) = 1 by letting f(u)=4*pi^2*(d(u)-1) and seeking f(u)=0 |
99
|
|
|
|
|
|
|
# |
100
|
|
|
|
|
|
|
# f(u) = u^2 + 4*t*(t+u)*sin^2(u/2) - 4*pi^2 |
101
|
|
|
|
|
|
|
# |
102
|
|
|
|
|
|
|
# Derivative f'(u) for the slope, starting from the cosine form, |
103
|
|
|
|
|
|
|
# |
104
|
|
|
|
|
|
|
# f(u) = (t+u)^2 + t^2 - 2*t*(t+u)*cos(u) - 4*pi^2 |
105
|
|
|
|
|
|
|
# |
106
|
|
|
|
|
|
|
# f'(u) = 2*(t+u) - 2*t*[ cos(u) - (t+u)*sin(u) ] |
107
|
|
|
|
|
|
|
# = 2*(t+u) - 2*t*[ 1 - 2*sin^2(u/2) - (t+u)*sin(u) ] |
108
|
|
|
|
|
|
|
# = 2*t + 2*u - 2*t + 2*t*2*sin^2(u/2) + 2*t*(t+u)*sin(u) |
109
|
|
|
|
|
|
|
# = 2*[ u + 2*t*sin^2(u/2) + t*(t+u)*sin(u) ] |
110
|
|
|
|
|
|
|
# = 2*[ u + t * [2*sin^2(u/2) + (t+u)*sin(u) ] ] |
111
|
|
|
|
|
|
|
# |
112
|
|
|
|
|
|
|
# Newton's method |
113
|
|
|
|
|
|
|
# */ <- f(x) high |
114
|
|
|
|
|
|
|
# */| |
115
|
|
|
|
|
|
|
# * / | |
116
|
|
|
|
|
|
|
# * / | |
117
|
|
|
|
|
|
|
# ---------*------------------ |
118
|
|
|
|
|
|
|
# +---+ <- subtract |
119
|
|
|
|
|
|
|
# |
120
|
|
|
|
|
|
|
# f(x) / sub = f'(x) |
121
|
|
|
|
|
|
|
# sub = f(x) / f'(x) |
122
|
|
|
|
|
|
|
# |
123
|
|
|
|
|
|
|
# |
124
|
|
|
|
|
|
|
# _chord_angle_inc() takes $t is a polar angle around the Archimedean spiral. |
125
|
|
|
|
|
|
|
# Returns an increment polar angle $u which may be added to $t to move around |
126
|
|
|
|
|
|
|
# the spiral by a chord length 1 unit. |
127
|
|
|
|
|
|
|
# |
128
|
|
|
|
|
|
|
# The loop is Newton's method, $f=f(u), $slope=f'(u) so $u-$f/$slope is a |
129
|
|
|
|
|
|
|
# better $u, ie. f($u) closer to 0. Stop when the subtract becomes small, |
130
|
|
|
|
|
|
|
# usually only about 3 iterations. |
131
|
|
|
|
|
|
|
# |
132
|
|
|
|
|
|
|
sub _chord_angle_inc { |
133
|
599
|
|
|
599
|
|
825
|
my ($t) = @_; |
134
|
|
|
|
|
|
|
# ### _chord_angle_inc(): $t |
135
|
|
|
|
|
|
|
|
136
|
599
|
|
|
|
|
764
|
my $u = 2*_PI/$t; # estimate |
137
|
|
|
|
|
|
|
|
138
|
599
|
|
|
|
|
810
|
foreach (0 .. 10) { |
139
|
2097
|
|
|
|
|
2606
|
my $shu = sin($u/2); $shu *= $shu; # sin^2(u/2) |
|
2097
|
|
|
|
|
2435
|
|
140
|
2097
|
|
|
|
|
2442
|
my $tu = ($t+$u); |
141
|
|
|
|
|
|
|
|
142
|
2097
|
|
|
|
|
2902
|
my $f = $u*$u + 4*$t*$tu*$shu - 4*_PI*_PI; |
143
|
2097
|
|
|
|
|
3032
|
my $slope = 2 * ( $u + $t*(2*$shu + $tu*sin($u))); |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
# unsimplified versions ... |
146
|
|
|
|
|
|
|
# $f = ($t+$u)**2 + $t**2 - 2*$t*($t+$u)*cos($u) - 4*_PI*_PI; |
147
|
|
|
|
|
|
|
# $slope = 2*($t+$u) - 2*$t*( cos($u) - ($t+$u)*sin($u) ); |
148
|
|
|
|
|
|
|
|
149
|
2097
|
|
|
|
|
2608
|
my $sub = $f/$slope; |
150
|
2097
|
|
|
|
|
2438
|
$u -= $sub; |
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
# printf ("f=%.6f slope=%.6f sub=%.20f u=%.6f\n", $f, $slope, $sub, $u); |
153
|
2097
|
100
|
|
|
|
3469
|
last if (abs($sub) < 1e-15); |
154
|
|
|
|
|
|
|
} |
155
|
|
|
|
|
|
|
# printf ("return u=%.6f\n", $u); |
156
|
599
|
|
|
|
|
806
|
return $u; |
157
|
|
|
|
|
|
|
} |
158
|
|
|
|
|
|
|
|
159
|
1
|
|
|
1
|
|
6
|
use constant 1.02; # for leading underscore |
|
1
|
|
|
|
|
11
|
|
|
1
|
|
|
|
|
20
|
|
160
|
1
|
|
|
1
|
|
4
|
use constant _SAVE => 500; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
717
|
|
161
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
my @save_n = (1); |
163
|
|
|
|
|
|
|
my @save_t = (2*_PI); |
164
|
|
|
|
|
|
|
my $next_save = $save_n[0] + _SAVE; |
165
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
sub new { |
167
|
|
|
|
|
|
|
### ArchimedeanChords new() ... |
168
|
3
|
|
|
3
|
1
|
992
|
return shift->SUPER::new (i => $save_n[0], |
169
|
|
|
|
|
|
|
t => $save_t[0], |
170
|
|
|
|
|
|
|
@_); |
171
|
|
|
|
|
|
|
} |
172
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
sub n_to_xy { |
174
|
13
|
|
|
13
|
1
|
33
|
my ($self, $n) = @_; |
175
|
|
|
|
|
|
|
|
176
|
13
|
50
|
|
|
|
23
|
if ($n < 0) { return; } |
|
0
|
|
|
|
|
0
|
|
177
|
13
|
50
|
|
|
|
23
|
if (is_infinite($n)) { return ($n,$n); } |
|
0
|
|
|
|
|
0
|
|
178
|
|
|
|
|
|
|
|
179
|
13
|
100
|
|
|
|
27
|
if ($n <= 1) { |
180
|
12
|
|
|
|
|
25
|
return ($n, 0); # exactly Y=0 |
181
|
|
|
|
|
|
|
} |
182
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
{ |
184
|
|
|
|
|
|
|
# ENHANCE-ME: look at the N+1 position for the frac directly, without |
185
|
|
|
|
|
|
|
# the full call for N+1 |
186
|
1
|
|
|
|
|
2
|
my $int = int($n); |
|
1
|
|
|
|
|
2
|
|
187
|
1
|
50
|
|
|
|
4
|
if ($n != $int) { |
188
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat/BigRat |
189
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
190
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
191
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
192
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
193
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
194
|
|
|
|
|
|
|
} |
195
|
|
|
|
|
|
|
} |
196
|
|
|
|
|
|
|
|
197
|
1
|
|
|
|
|
4
|
my $i = $self->{'i'}; |
198
|
1
|
|
|
|
|
2
|
my $t = $self->{'t'}; |
199
|
|
|
|
|
|
|
|
200
|
1
|
50
|
|
|
|
4
|
if ($i > $n) { |
201
|
0
|
|
|
|
|
0
|
my $pos = min ($#save_n, int (($n - $save_n[0]) / _SAVE)); |
202
|
0
|
|
|
|
|
0
|
$i = $save_n[$pos]; |
203
|
0
|
|
|
|
|
0
|
$t = $save_t[$pos]; |
204
|
|
|
|
|
|
|
### resume: "$i t=$t" |
205
|
|
|
|
|
|
|
} |
206
|
|
|
|
|
|
|
|
207
|
1
|
|
|
|
|
3
|
while ($i < $n) { |
208
|
599
|
|
|
|
|
825
|
$t += _chord_angle_inc($t); |
209
|
599
|
100
|
|
|
|
1125
|
if (++$i == $next_save) { |
210
|
1
|
|
|
|
|
4
|
push @save_n, $i; |
211
|
1
|
|
|
|
|
2
|
push @save_t, $t; |
212
|
1
|
|
|
|
|
2
|
$next_save += _SAVE; |
213
|
|
|
|
|
|
|
} |
214
|
|
|
|
|
|
|
} |
215
|
|
|
|
|
|
|
|
216
|
1
|
|
|
|
|
3
|
$self->{'i'} = $i; |
217
|
1
|
|
|
|
|
2
|
$self->{'t'} = $t; |
218
|
|
|
|
|
|
|
|
219
|
1
|
|
|
|
|
2
|
my $r = $t * (1 / (2*_PI)); |
220
|
1
|
|
|
|
|
7
|
return ($r*cos($t), |
221
|
|
|
|
|
|
|
$r*sin($t)); |
222
|
|
|
|
|
|
|
} |
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
sub _xy_to_nearest_r { |
225
|
56
|
|
|
56
|
|
2062
|
my ($x, $y) = @_; |
226
|
56
|
|
|
|
|
117
|
my $frac = Math::PlanePath::MultipleRings::_xy_to_angle_frac($x,$y); |
227
|
|
|
|
|
|
|
### assert: 0 <= $frac && $frac < 1 |
228
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
# if $frac > 0.5 then 0.5-$frac is negative and int() rounds towards zero |
230
|
|
|
|
|
|
|
# giving $r==$frac |
231
|
56
|
|
|
|
|
179
|
return int(hypot($x,$y) + 0.5 - $frac) + $frac; |
232
|
|
|
|
|
|
|
} |
233
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
sub xy_to_n { |
235
|
12
|
|
|
12
|
1
|
216
|
my ($self, $x, $y) = @_; |
236
|
|
|
|
|
|
|
### ArchimedeanChords xy_to_n(): "$x, $y" |
237
|
|
|
|
|
|
|
|
238
|
12
|
|
|
|
|
24
|
my $r = _xy_to_nearest_r($x,$y); |
239
|
12
|
|
|
|
|
21
|
my $r_limit = 1.001 * $r; |
240
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
### hypot: hypot($x,$y) |
242
|
|
|
|
|
|
|
### $r |
243
|
|
|
|
|
|
|
### $r_limit |
244
|
|
|
|
|
|
|
### save_t: "end index=$#save_t save_t[0]=".($save_t[0]//'undef') |
245
|
|
|
|
|
|
|
|
246
|
12
|
50
|
|
|
|
32
|
if (is_infinite($r_limit)) { |
247
|
|
|
|
|
|
|
### infinite range, r inf or too big ... |
248
|
0
|
|
|
|
|
0
|
return undef; |
249
|
|
|
|
|
|
|
} |
250
|
|
|
|
|
|
|
|
251
|
12
|
|
|
|
|
20
|
my $theta = 0.999 * 2*_PI*$r; |
252
|
12
|
|
|
|
|
16
|
my $n_lo = 0; |
253
|
12
|
|
|
|
|
24
|
foreach my $i (1 .. $#save_t) { |
254
|
12
|
50
|
|
|
|
26
|
if ($save_t[$i] > $theta) { |
255
|
12
|
|
|
|
|
18
|
$n_lo = $save_n[$i-1]; |
256
|
12
|
50
|
|
|
|
19
|
if ($n_lo == 1) { $n_lo = 0; } # for finding X=0,Y=0 |
|
12
|
|
|
|
|
69
|
|
257
|
12
|
|
|
|
|
20
|
last; |
258
|
|
|
|
|
|
|
} |
259
|
|
|
|
|
|
|
} |
260
|
|
|
|
|
|
|
### $n_lo |
261
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
# loop with for(;;) since $n_lo..$n_hi limited to IV range |
263
|
12
|
|
|
|
|
41
|
for (my $n = $n_lo; ; $n += 1) { |
264
|
12
|
|
|
|
|
23
|
my ($nx,$ny) = $self->n_to_xy($n); |
265
|
|
|
|
|
|
|
# #### $n |
266
|
|
|
|
|
|
|
# #### $nx |
267
|
|
|
|
|
|
|
# #### $ny |
268
|
|
|
|
|
|
|
# #### hypot: hypot ($x-$nx,$y-$ny) |
269
|
12
|
50
|
|
|
|
40
|
if (hypot($x-$nx,$y-$ny) <= 0.5) { |
270
|
|
|
|
|
|
|
### hypot in range ... |
271
|
12
|
|
|
|
|
56
|
return $n; |
272
|
|
|
|
|
|
|
} |
273
|
0
|
0
|
|
|
|
|
if (hypot($nx,$ny) >= $r_limit) { |
274
|
0
|
|
|
|
|
|
last; |
275
|
|
|
|
|
|
|
} |
276
|
|
|
|
|
|
|
} |
277
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
### n not found ... |
279
|
0
|
|
|
|
|
|
return undef; |
280
|
|
|
|
|
|
|
} |
281
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
# int (max (0, int(_PI*$r2) - 4*$r)); |
283
|
|
|
|
|
|
|
# |
284
|
|
|
|
|
|
|
# my $r2 = $r * $r; |
285
|
|
|
|
|
|
|
# my $n_lo = int (max (0, int(_PI*$r2) - 4*$r)); |
286
|
|
|
|
|
|
|
# my $n_hi = $n_lo + 7*$r + 2; |
287
|
|
|
|
|
|
|
# ### $r2 |
288
|
|
|
|
|
|
|
# $n_lo == $n_lo-1 || |
289
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
|
292
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
# x,y has radius hypot(x,y), then want the next higher spiral arc which is r |
294
|
|
|
|
|
|
|
# >= hypot(x,y)+0.5, with the 0.5 being the width of the circle figure on |
295
|
|
|
|
|
|
|
# the spiral. |
296
|
|
|
|
|
|
|
# |
297
|
|
|
|
|
|
|
# The polar angle of x,y is a=atan2(y,x) and frac=a/2pi is the extra away |
298
|
|
|
|
|
|
|
# from an integer radius for the spiral. So seek integer k with k+a/2pi >= |
299
|
|
|
|
|
|
|
# h with h=hypot(x,y)+0.5. |
300
|
|
|
|
|
|
|
# |
301
|
|
|
|
|
|
|
# k + a/2pi >= h |
302
|
|
|
|
|
|
|
# k >= h-a/2pi |
303
|
|
|
|
|
|
|
# k = ceil(h-a/2pi) |
304
|
|
|
|
|
|
|
# = ceil(hypot(x,y) + 0.5 - atan2(y,x)/2pi) |
305
|
|
|
|
|
|
|
# |
306
|
|
|
|
|
|
|
# |
307
|
|
|
|
|
|
|
# circle radius i has circumference 2*pi*i and at most that many N on it |
308
|
|
|
|
|
|
|
# rectangle corner at radius Rcorner = hypot(x,y) |
309
|
|
|
|
|
|
|
# |
310
|
|
|
|
|
|
|
# sum i=1 to i=Rlimit of 2*pi*i = 2*pi/2 * Rlimit*(Rlimit+1) |
311
|
|
|
|
|
|
|
# = pi * Rlimit*(Rlimit+1) |
312
|
|
|
|
|
|
|
# is an upper bound, though a fairly slack one |
313
|
|
|
|
|
|
|
# |
314
|
|
|
|
|
|
|
# |
315
|
|
|
|
|
|
|
# cf. arc length along the spiral r=a*theta with a=1/2pi |
316
|
|
|
|
|
|
|
# arclength = (1/2) * a * (theta*sqrt(1+theta^2) + asinh(theta)) |
317
|
|
|
|
|
|
|
# = (1/4*pi) * (theta*sqrt(1+theta^2) + asinh(theta)) |
318
|
|
|
|
|
|
|
# and theta = 2*pi*r |
319
|
|
|
|
|
|
|
# = (1/4*pi) * (4*pi^2*r^2 * sqrt(1+1/theta^2) + asinh(theta)) |
320
|
|
|
|
|
|
|
# = pi * (r^2 * sqrt(1+1/r^2) + asinh(theta)/(4*pi^2)) |
321
|
|
|
|
|
|
|
# |
322
|
|
|
|
|
|
|
# and to compare to the circles formula |
323
|
|
|
|
|
|
|
# |
324
|
|
|
|
|
|
|
# = pi * (r*(r+1) * r/(r+1) * sqrt(1+1/r^2) |
325
|
|
|
|
|
|
|
# + asinh(theta)/(4*pi^2)) |
326
|
|
|
|
|
|
|
# |
327
|
|
|
|
|
|
|
# so it's smaller hence better upper bound. Only a little smaller than the |
328
|
|
|
|
|
|
|
# squaring once get to 100 loops or so. |
329
|
|
|
|
|
|
|
# |
330
|
|
|
|
|
|
|
# |
331
|
|
|
|
|
|
|
# not exact |
332
|
|
|
|
|
|
|
sub rect_to_n_range { |
333
|
0
|
|
|
0
|
1
|
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
334
|
|
|
|
|
|
|
### rect_to_n_range() ... |
335
|
|
|
|
|
|
|
|
336
|
0
|
|
|
|
|
|
my $rhi = 0; |
337
|
0
|
|
|
|
|
|
foreach my $x ($x1, $x2) { |
338
|
0
|
|
|
|
|
|
foreach my $y ($y1, $y2) { |
339
|
0
|
|
|
|
|
|
my $frac = atan2($y,$x) / (2*_PI); # -0.5 <= $frac <= 0.5 |
340
|
0
|
|
|
|
|
|
$frac += ($frac < 0); # 0 <= $frac < 1 |
341
|
0
|
|
|
|
|
|
$rhi = max ($rhi, ceil(hypot($x,$y)+0.5 - $frac) + $frac); |
342
|
|
|
|
|
|
|
} |
343
|
|
|
|
|
|
|
} |
344
|
|
|
|
|
|
|
### $rhi |
345
|
|
|
|
|
|
|
|
346
|
|
|
|
|
|
|
# arc length pi * (r^2 * sqrt(1+1/r^2) + asinh(theta)/(4*pi^2)) |
347
|
|
|
|
|
|
|
# = pi*r^2*sqrt(1+1/r^2) + asinh(theta)/4pi |
348
|
0
|
|
|
|
|
|
my $rhi2 = $rhi*$rhi; |
349
|
0
|
|
|
|
|
|
return (0, |
350
|
|
|
|
|
|
|
ceil (_PI * $rhi2 * sqrt(1+1/$rhi2) |
351
|
|
|
|
|
|
|
+ asinh(2*_PI*$rhi) / (4*_PI))); |
352
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
# # each loop begins at N = pi*k^2 - 2 or thereabouts |
355
|
|
|
|
|
|
|
# return (0, |
356
|
|
|
|
|
|
|
# int(_PI*$rhi*($rhi+1) + 1)); |
357
|
|
|
|
|
|
|
} |
358
|
|
|
|
|
|
|
|
359
|
|
|
|
|
|
|
1; |
360
|
|
|
|
|
|
|
__END__ |