| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-NumSeq. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-NumSeq is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-NumSeq is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-NumSeq. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# values_type => 'mod2' |
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
package Math::NumSeq::PrimeFactorCount; |
|
23
|
8
|
|
|
8
|
|
9835
|
use 5.004; |
|
|
8
|
|
|
|
|
17
|
|
|
24
|
8
|
|
|
8
|
|
48
|
use strict; |
|
|
8
|
|
|
|
|
10
|
|
|
|
8
|
|
|
|
|
185
|
|
|
25
|
8
|
|
|
8
|
|
26
|
use List::Util 'min', 'max'; |
|
|
8
|
|
|
|
|
9
|
|
|
|
8
|
|
|
|
|
607
|
|
|
26
|
|
|
|
|
|
|
|
|
27
|
8
|
|
|
8
|
|
27
|
use vars '$VERSION','@ISA'; |
|
|
8
|
|
|
|
|
11
|
|
|
|
8
|
|
|
|
|
353
|
|
|
28
|
|
|
|
|
|
|
$VERSION = 72; |
|
29
|
|
|
|
|
|
|
|
|
30
|
8
|
|
|
8
|
|
554
|
use Math::NumSeq; |
|
|
8
|
|
|
|
|
11
|
|
|
|
8
|
|
|
|
|
144
|
|
|
31
|
8
|
|
|
8
|
|
1004
|
use Math::NumSeq::Base::IterateIth; |
|
|
8
|
|
|
|
|
10
|
|
|
|
8
|
|
|
|
|
336
|
|
|
32
|
|
|
|
|
|
|
@ISA = ('Math::NumSeq::Base::IterateIth', |
|
33
|
|
|
|
|
|
|
'Math::NumSeq'); |
|
34
|
|
|
|
|
|
|
*_is_infinite = \&Math::NumSeq::_is_infinite; |
|
35
|
|
|
|
|
|
|
|
|
36
|
8
|
|
|
8
|
|
2013
|
use Math::Prime::XS 'is_prime'; |
|
|
8
|
|
|
|
|
56099
|
|
|
|
8
|
|
|
|
|
376
|
|
|
37
|
8
|
|
|
8
|
|
2311
|
use Math::Factor::XS 'prime_factors'; |
|
|
8
|
|
|
|
|
52441
|
|
|
|
8
|
|
|
|
|
380
|
|
|
38
|
|
|
|
|
|
|
|
|
39
|
8
|
|
|
8
|
|
2260
|
use Math::NumSeq::Fibonacci; |
|
|
8
|
|
|
|
|
32
|
|
|
|
8
|
|
|
|
|
275
|
|
|
40
|
|
|
|
|
|
|
*_blog2_estimate = \&Math::NumSeq::Fibonacci::_blog2_estimate; |
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
43
|
|
|
|
|
|
|
#use Smart::Comments; |
|
44
|
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
# cf. Untouchables, not sum of proper divisors of any other integer |
|
47
|
|
|
|
|
|
|
# p*q sum S=1+p+q |
|
48
|
|
|
|
|
|
|
# so sums up to hi need factorize to (hi^2)/4 |
|
49
|
|
|
|
|
|
|
# |
|
50
|
|
|
|
|
|
|
|
|
51
|
8
|
|
|
8
|
|
31
|
use constant values_min => 0; |
|
|
8
|
|
|
|
|
9
|
|
|
|
8
|
|
|
|
|
360
|
|
|
52
|
8
|
|
|
8
|
|
46
|
use constant i_start => 1; |
|
|
8
|
|
|
|
|
8
|
|
|
|
8
|
|
|
|
|
623
|
|
|
53
|
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
sub values_max { |
|
55
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
56
|
0
|
0
|
|
|
|
0
|
if ($self->{'values_type'} eq 'mod2') { |
|
57
|
0
|
|
|
|
|
0
|
return 1; |
|
58
|
|
|
|
|
|
|
} else { |
|
59
|
0
|
|
|
|
|
0
|
return undef; |
|
60
|
|
|
|
|
|
|
} |
|
61
|
|
|
|
|
|
|
} |
|
62
|
8
|
|
|
8
|
|
27
|
use constant characteristic_count => 1; |
|
|
8
|
|
|
|
|
9
|
|
|
|
8
|
|
|
|
|
321
|
|
|
63
|
8
|
|
|
8
|
|
29
|
use constant characteristic_smaller => 1; |
|
|
8
|
|
|
|
|
8
|
|
|
|
8
|
|
|
|
|
313
|
|
|
64
|
8
|
|
|
8
|
|
28
|
use constant characteristic_increasing => 0; |
|
|
8
|
|
|
|
|
8
|
|
|
|
8
|
|
|
|
|
1068
|
|
|
65
|
|
|
|
|
|
|
|
|
66
|
8
|
|
|
|
|
96
|
use constant parameter_info_array => |
|
67
|
|
|
|
|
|
|
[ |
|
68
|
|
|
|
|
|
|
{ name => 'prime_type', |
|
69
|
|
|
|
|
|
|
display => Math::NumSeq::__('Prime Type'), |
|
70
|
|
|
|
|
|
|
type => 'enum', |
|
71
|
|
|
|
|
|
|
default => 'all', |
|
72
|
|
|
|
|
|
|
choices => ['all','odd','4k+1','4k+3', |
|
73
|
|
|
|
|
|
|
'twin','SG','safe'], |
|
74
|
|
|
|
|
|
|
choices_display => [Math::NumSeq::__('All'), |
|
75
|
|
|
|
|
|
|
Math::NumSeq::__('Odd'), |
|
76
|
|
|
|
|
|
|
# TRANSLATORS: "4k+1" meaning numbers 1,5,9,13 etc, probably no need to translate except into another script if Latin letter "k" won't be recognised |
|
77
|
|
|
|
|
|
|
Math::NumSeq::__('4k+1'), |
|
78
|
|
|
|
|
|
|
Math::NumSeq::__('4k+3'), |
|
79
|
|
|
|
|
|
|
Math::NumSeq::__('Twin'), |
|
80
|
|
|
|
|
|
|
Math::NumSeq::__('SG'), |
|
81
|
|
|
|
|
|
|
Math::NumSeq::__('Safe'), |
|
82
|
|
|
|
|
|
|
], |
|
83
|
|
|
|
|
|
|
description => Math::NumSeq::__('The type of primes to count. |
|
84
|
|
|
|
|
|
|
twin=P where P+2 or P-2 also prime. |
|
85
|
|
|
|
|
|
|
SG=Sophie Germain P where 2P+1 also prime. |
|
86
|
|
|
|
|
|
|
safe=P where (P-1)/2 also prime (the "other" of the SGs).'), |
|
87
|
|
|
|
|
|
|
}, |
|
88
|
|
|
|
|
|
|
{ name => 'multiplicity', |
|
89
|
|
|
|
|
|
|
display => Math::NumSeq::__('Multiplicity'), |
|
90
|
|
|
|
|
|
|
type => 'enum', |
|
91
|
|
|
|
|
|
|
default => 'repeated', |
|
92
|
|
|
|
|
|
|
choices => ['repeated','distinct'], |
|
93
|
|
|
|
|
|
|
choices_display => [Math::NumSeq::__('Repeated'), |
|
94
|
|
|
|
|
|
|
Math::NumSeq::__('Distinct'), |
|
95
|
|
|
|
|
|
|
], |
|
96
|
|
|
|
|
|
|
description => Math::NumSeq::__('Whether to include repeated prime factors, or only distinct prime factors.'), |
|
97
|
|
|
|
|
|
|
}, |
|
98
|
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
# not documented yet |
|
100
|
|
|
|
|
|
|
{ name => 'values_type', |
|
101
|
|
|
|
|
|
|
share_key => 'values_type_cm2', |
|
102
|
|
|
|
|
|
|
display => Math::NumSeq::__('Values Type'), |
|
103
|
|
|
|
|
|
|
type => 'enum', |
|
104
|
|
|
|
|
|
|
default => 'count', |
|
105
|
|
|
|
|
|
|
choices => ['count','mod2'], |
|
106
|
|
|
|
|
|
|
choices_display => [Math::NumSeq::__('Count'), |
|
107
|
|
|
|
|
|
|
Math::NumSeq::__('Mod2'), |
|
108
|
|
|
|
|
|
|
], |
|
109
|
|
|
|
|
|
|
# description => Math::NumSeq::__('...'), |
|
110
|
|
|
|
|
|
|
}, |
|
111
|
8
|
|
|
8
|
|
36
|
]; |
|
|
8
|
|
|
|
|
11
|
|
|
112
|
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
sub description { |
|
114
|
12
|
|
|
12
|
1
|
54
|
my ($self) = @_; |
|
115
|
12
|
100
|
|
|
|
33
|
if (ref $self) { |
|
116
|
|
|
|
|
|
|
return ($self->{'multiplicity'} eq 'repeated' |
|
117
|
|
|
|
|
|
|
? Math::NumSeq::__('Count of prime factors, including repetitions.') |
|
118
|
|
|
|
|
|
|
: Math::NumSeq::__('Count of distinct prime factors.')) |
|
119
|
|
|
|
|
|
|
. ($self->{'prime_type'} eq 'odd' ? "\nOdd primes only." |
|
120
|
|
|
|
|
|
|
: $self->{'prime_type'} eq '4k+1' ? "\nPrimes of form 4k+1 only." |
|
121
|
|
|
|
|
|
|
: $self->{'prime_type'} eq '4k+3' ? "\nPrimes of form 4k+3 only." |
|
122
|
|
|
|
|
|
|
: $self->{'prime_type'} eq 'twin' ? "\nTwin primes only." |
|
123
|
|
|
|
|
|
|
: $self->{'prime_type'} eq 'SG' ? "\nSophie Germain primes only (2P+1 also prime)." |
|
124
|
6
|
100
|
|
|
|
29
|
: $self->{'prime_type'} eq 'SG' ? "\nSafe primes only ((P-1)/2 also prime)." |
|
|
|
50
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
: ""); |
|
126
|
|
|
|
|
|
|
} else { |
|
127
|
|
|
|
|
|
|
# class method |
|
128
|
6
|
|
|
|
|
17
|
return Math::NumSeq::__('Count of prime factors.'); |
|
129
|
|
|
|
|
|
|
} |
|
130
|
|
|
|
|
|
|
} |
|
131
|
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
133
|
|
|
|
|
|
|
# |
|
134
|
|
|
|
|
|
|
# count 1-bits in exponents of primes |
|
135
|
|
|
|
|
|
|
# A000028,A000379 seqs |
|
136
|
|
|
|
|
|
|
# A133008 characteristic |
|
137
|
|
|
|
|
|
|
# A131181,A026416 same, but 1 in "B" class |
|
138
|
|
|
|
|
|
|
# A064547 count 1 bits in prime exponents |
|
139
|
|
|
|
|
|
|
# A066724 so a(i)*a(j) not in seq |
|
140
|
|
|
|
|
|
|
# A026477 so a(i)*a(j)*a(k) not in seq |
|
141
|
|
|
|
|
|
|
# A050376 prime^(2^k) |
|
142
|
|
|
|
|
|
|
# A084400 smallest not dividing product a(1)..a(n-1), is prime^(2^k) |
|
143
|
|
|
|
|
|
|
|
|
144
|
|
|
|
|
|
|
my %oeis_anum = (repeated => { all => 'A001222', |
|
145
|
|
|
|
|
|
|
odd => 'A087436', |
|
146
|
|
|
|
|
|
|
'4k+1' => 'A083025', |
|
147
|
|
|
|
|
|
|
'4k+3' => 'A065339', |
|
148
|
|
|
|
|
|
|
}, |
|
149
|
|
|
|
|
|
|
distinct => { all => 'A001221', |
|
150
|
|
|
|
|
|
|
odd => 'A005087', |
|
151
|
|
|
|
|
|
|
'4k+1' => 'A005089', |
|
152
|
|
|
|
|
|
|
'4k+3' => 'A005091', |
|
153
|
|
|
|
|
|
|
SG => 'A156542', |
|
154
|
|
|
|
|
|
|
}, |
|
155
|
|
|
|
|
|
|
); |
|
156
|
|
|
|
|
|
|
# OEIS-Catalogue: A001222 |
|
157
|
|
|
|
|
|
|
# OEIS-Catalogue: A087436 prime_type=odd |
|
158
|
|
|
|
|
|
|
# OEIS-Catalogue: A083025 prime_type=4k+1 |
|
159
|
|
|
|
|
|
|
# OEIS-Catalogue: A065339 prime_type=4k+3 |
|
160
|
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
# OEIS-Catalogue: A001221 multiplicity=distinct |
|
162
|
|
|
|
|
|
|
# OEIS-Catalogue: A005087 multiplicity=distinct prime_type=odd |
|
163
|
|
|
|
|
|
|
# OEIS-Catalogue: A005089 multiplicity=distinct prime_type=4k+1 |
|
164
|
|
|
|
|
|
|
# OEIS-Catalogue: A005091 multiplicity=distinct prime_type=4k+3 |
|
165
|
|
|
|
|
|
|
# OEIS-Catalogue: A156542 multiplicity=distinct prime_type=SG |
|
166
|
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
sub oeis_anum { |
|
168
|
6
|
|
|
6
|
1
|
24
|
my ($self) = @_; |
|
169
|
6
|
|
|
|
|
21
|
return $oeis_anum{$self->{'multiplicity'}}->{$self->{'prime_type'}}; |
|
170
|
|
|
|
|
|
|
} |
|
171
|
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
173
|
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
# prime_factors() is about 5x faster |
|
175
|
|
|
|
|
|
|
# |
|
176
|
|
|
|
|
|
|
sub ith { |
|
177
|
2014
|
|
|
2014
|
1
|
1976
|
my ($self, $i) = @_; |
|
178
|
2014
|
|
|
|
|
1407
|
$i = abs($i); |
|
179
|
|
|
|
|
|
|
|
|
180
|
2014
|
|
|
|
|
2121
|
my ($good, @primes) = _prime_factors($i); |
|
181
|
2014
|
50
|
|
|
|
2836
|
return undef unless $good; |
|
182
|
|
|
|
|
|
|
|
|
183
|
2014
|
|
|
|
|
2160
|
my $multiplicity = ($self->{'multiplicity'} ne 'distinct'); |
|
184
|
2014
|
|
|
|
|
1941
|
my $prime_type = $self->{'prime_type'}; |
|
185
|
2014
|
|
|
|
|
1397
|
my $count = 0; |
|
186
|
|
|
|
|
|
|
|
|
187
|
2014
|
|
|
|
|
2829
|
while (@primes) { |
|
188
|
2858
|
|
|
|
|
2273
|
my $p = shift @primes; |
|
189
|
2858
|
|
|
|
|
1875
|
my $c = 1; |
|
190
|
2858
|
|
100
|
|
|
6415
|
while (@primes && $primes[0] == $p) { |
|
191
|
1003
|
|
|
|
|
730
|
shift @primes; |
|
192
|
1003
|
|
|
|
|
2478
|
$c += $multiplicity; |
|
193
|
|
|
|
|
|
|
} |
|
194
|
|
|
|
|
|
|
|
|
195
|
2858
|
100
|
|
|
|
7209
|
if ($prime_type eq 'odd') { |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
196
|
86
|
100
|
|
|
|
174
|
next unless $p & 1; |
|
197
|
|
|
|
|
|
|
} elsif ($prime_type eq '4k+1') { |
|
198
|
86
|
100
|
|
|
|
197
|
next unless ($p&3)==1; |
|
199
|
|
|
|
|
|
|
} elsif ($prime_type eq '4k+3') { |
|
200
|
86
|
100
|
|
|
|
147
|
next unless ($p&3)==3; |
|
201
|
|
|
|
|
|
|
} elsif ($prime_type eq 'twin') { |
|
202
|
1212
|
100
|
|
|
|
1474
|
next unless _is_twin_prime($p); |
|
203
|
|
|
|
|
|
|
} elsif ($prime_type eq 'SG') { |
|
204
|
567
|
100
|
|
|
|
631
|
next unless _is_SG_prime($p); |
|
205
|
|
|
|
|
|
|
} elsif ($prime_type eq 'safe') { |
|
206
|
567
|
100
|
|
|
|
549
|
next unless _is_safe_prime($p); |
|
207
|
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
# } elsif ($prime_type eq 'twin_first') { |
|
209
|
|
|
|
|
|
|
# next unless is_prime($p+2); |
|
210
|
|
|
|
|
|
|
# } elsif ($prime_type eq 'twin_second') { |
|
211
|
|
|
|
|
|
|
# next unless is_prime($p-2); |
|
212
|
|
|
|
|
|
|
} |
|
213
|
1767
|
|
|
|
|
3065
|
$count += $c; |
|
214
|
|
|
|
|
|
|
} |
|
215
|
|
|
|
|
|
|
|
|
216
|
2014
|
50
|
|
|
|
3181
|
if ($self->{'values_type'} eq 'mod2') { |
|
217
|
0
|
|
|
|
|
0
|
$count %= 2; |
|
218
|
|
|
|
|
|
|
} |
|
219
|
2014
|
|
|
|
|
4687
|
return $count; |
|
220
|
|
|
|
|
|
|
} |
|
221
|
|
|
|
|
|
|
|
|
222
|
|
|
|
|
|
|
# Return ($good, $prime,$prime,$prime,...). |
|
223
|
|
|
|
|
|
|
# $good is true if a full factorization is found. |
|
224
|
|
|
|
|
|
|
# $good is false if cannot factorize because $n is too big or infinite. |
|
225
|
|
|
|
|
|
|
# |
|
226
|
|
|
|
|
|
|
# If $n==0 or $n==1 then there are no prime factors and the return is |
|
227
|
|
|
|
|
|
|
# $good=1 and an empty list of primes. |
|
228
|
|
|
|
|
|
|
# |
|
229
|
|
|
|
|
|
|
sub _prime_factors { |
|
230
|
6191
|
|
|
6191
|
|
4378
|
my ($n) = @_; |
|
231
|
|
|
|
|
|
|
### _prime_factors(): $n |
|
232
|
|
|
|
|
|
|
|
|
233
|
6191
|
100
|
|
|
|
7669
|
unless ($n >= 0) { |
|
234
|
9
|
|
|
|
|
15
|
return 0; |
|
235
|
|
|
|
|
|
|
} |
|
236
|
6182
|
50
|
|
|
|
8377
|
if (_is_infinite($n)) { |
|
237
|
0
|
|
|
|
|
0
|
return 0; |
|
238
|
|
|
|
|
|
|
} |
|
239
|
|
|
|
|
|
|
|
|
240
|
6182
|
50
|
|
|
|
8573
|
if ($n <= 0xFFFF_FFFF) { |
|
241
|
6182
|
|
|
|
|
14064
|
return (1, prime_factors($n)); |
|
242
|
|
|
|
|
|
|
} |
|
243
|
|
|
|
|
|
|
|
|
244
|
0
|
|
|
|
|
0
|
my @ret; |
|
245
|
0
|
|
|
|
|
0
|
until ($n % 2) { |
|
246
|
|
|
|
|
|
|
### div2: $n |
|
247
|
0
|
|
|
|
|
0
|
$n /= 2; |
|
248
|
0
|
|
|
|
|
0
|
push @ret, 2; |
|
249
|
|
|
|
|
|
|
} |
|
250
|
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
# Stop at when prime $p reaches $limit and when no prime factor has been |
|
252
|
|
|
|
|
|
|
# found for the last 20 attempted $p. Stopping only after a run of no |
|
253
|
|
|
|
|
|
|
# factors found allows big primorials 2*3*5*7*13*... to be divided out. |
|
254
|
|
|
|
|
|
|
# If the divisions are making progress reducing $i then continue. |
|
255
|
|
|
|
|
|
|
# |
|
256
|
|
|
|
|
|
|
# Would like $p and $gap to count primes, not just odd numbers. Perhaps |
|
257
|
|
|
|
|
|
|
# a table of small primes. The first gap of 36 odds between primes |
|
258
|
|
|
|
|
|
|
# occurs at prime=31469. cf A000230 smallest prime p for gap 2n. |
|
259
|
|
|
|
|
|
|
|
|
260
|
0
|
|
0
|
|
|
0
|
my $limit = 10_000 / (_blog2_estimate($n) || 1); |
|
261
|
0
|
|
|
|
|
0
|
my $gap = 0; |
|
262
|
0
|
|
0
|
|
|
0
|
for (my $p = 3; $gap < 36 || $p <= $limit ; $p += 2) { |
|
263
|
0
|
0
|
|
|
|
0
|
if ($n % $p) { |
|
264
|
0
|
|
|
|
|
0
|
$gap++; |
|
265
|
|
|
|
|
|
|
} else { |
|
266
|
0
|
|
|
|
|
0
|
do { |
|
267
|
|
|
|
|
|
|
### prime: $p |
|
268
|
0
|
|
|
|
|
0
|
$n /= $p; |
|
269
|
0
|
|
|
|
|
0
|
push @ret, $p; |
|
270
|
|
|
|
|
|
|
} until ($n % $p); |
|
271
|
|
|
|
|
|
|
|
|
272
|
0
|
0
|
|
|
|
0
|
if ($n <= 1) { |
|
273
|
|
|
|
|
|
|
### all factors found ... |
|
274
|
0
|
|
|
|
|
0
|
return (1, @ret); |
|
275
|
|
|
|
|
|
|
} |
|
276
|
0
|
0
|
|
|
|
0
|
if ($n < 0xFFFF_FFFF) { |
|
277
|
|
|
|
|
|
|
### remaining factors by XS ... |
|
278
|
0
|
|
|
|
|
0
|
return (1, @ret, prime_factors($n)); |
|
279
|
|
|
|
|
|
|
} |
|
280
|
0
|
|
|
|
|
0
|
$gap = 0; |
|
281
|
|
|
|
|
|
|
} |
|
282
|
|
|
|
|
|
|
} |
|
283
|
0
|
|
|
|
|
0
|
return 0; # factors too big |
|
284
|
|
|
|
|
|
|
} |
|
285
|
|
|
|
|
|
|
|
|
286
|
|
|
|
|
|
|
sub _is_twin_prime { |
|
287
|
1212
|
|
|
1212
|
|
975
|
my ($n) = @_; |
|
288
|
|
|
|
|
|
|
### assert: $n >= 2 |
|
289
|
|
|
|
|
|
|
### assert: is_prime($n) |
|
290
|
1212
|
|
100
|
|
|
5983
|
return (is_prime($n+2) || is_prime($n-2)); |
|
291
|
|
|
|
|
|
|
} |
|
292
|
|
|
|
|
|
|
sub _is_SG_prime { |
|
293
|
567
|
|
|
567
|
|
418
|
my ($n) = @_; |
|
294
|
|
|
|
|
|
|
### assert: is_prime($n) |
|
295
|
567
|
|
|
|
|
1510
|
return is_prime(2*$n+1); |
|
296
|
|
|
|
|
|
|
} |
|
297
|
|
|
|
|
|
|
sub _is_safe_prime { |
|
298
|
567
|
|
|
567
|
|
385
|
my ($n) = @_; |
|
299
|
|
|
|
|
|
|
### assert: is_prime($n) |
|
300
|
567
|
|
100
|
|
|
2051
|
return (($n&1) && is_prime(($n-1)/2)); |
|
301
|
|
|
|
|
|
|
} |
|
302
|
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
sub pred { |
|
304
|
110
|
|
|
110
|
1
|
324
|
my ($self, $value) = @_; |
|
305
|
110
|
|
33
|
|
|
311
|
return ($value >= 0 && $value == int($value)); |
|
306
|
|
|
|
|
|
|
} |
|
307
|
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
1; |
|
309
|
|
|
|
|
|
|
__END__ |