line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2014 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-NumSeq. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-NumSeq is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-NumSeq is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-NumSeq. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# https://eudml.org/doc/92679 |
20
|
|
|
|
|
|
|
# J. Berstel, An Exercise on Fibonacci Representations, RAIRO/ |
21
|
|
|
|
|
|
|
# Informatique Theorique, Vol. 35, No 6, 2001, pp. 491-498, in |
22
|
|
|
|
|
|
|
# the issue dedicated to Aldo De Luca on the occasion of his |
23
|
|
|
|
|
|
|
# 60-th anniversary. |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
# Paul K. Stockmeyer, "A Smooth Tight Upper Bound for the Fibonacci |
26
|
|
|
|
|
|
|
# Representation Function R(N)", Fibonacci Quarterly, Volume 46/47, Number |
27
|
|
|
|
|
|
|
# 2, May 2009. |
28
|
|
|
|
|
|
|
# Free access only post 2003 |
29
|
|
|
|
|
|
|
# http://www.fq.math.ca/46_47-2.html |
30
|
|
|
|
|
|
|
# http://www.fq.math.ca/Papers/46_47-2/Stockmeyer.pdf |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
# Klarner 1966 |
33
|
|
|
|
|
|
|
# Product (1+x^fib(i)) gives coefficients R(N) |
34
|
|
|
|
|
|
|
# R(F[n]) = floor((n+2)/2) n > 1 |
35
|
|
|
|
|
|
|
# R(F[n]-1) = floor((n+1)/2) n > 0 |
36
|
|
|
|
|
|
|
# R(F[n]-2) = n-2 n > 2 |
37
|
|
|
|
|
|
|
# R(F[n]-3) = n-3 n > 4 |
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
# http://www.math.tugraz.at/~edson/Publications/Representations%20in%20Fibonacci%20Base.pdf |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
package Math::NumSeq::FibonacciRepresentations; |
43
|
2
|
|
|
2
|
|
7484
|
use 5.004; |
|
2
|
|
|
|
|
5
|
|
44
|
2
|
|
|
2
|
|
6
|
use strict; |
|
2
|
|
|
|
|
1
|
|
|
2
|
|
|
|
|
41
|
|
45
|
|
|
|
|
|
|
|
46
|
2
|
|
|
2
|
|
5
|
use vars '$VERSION', '@ISA'; |
|
2
|
|
|
|
|
1
|
|
|
2
|
|
|
|
|
97
|
|
47
|
|
|
|
|
|
|
$VERSION = 72; |
48
|
|
|
|
|
|
|
|
49
|
2
|
|
|
2
|
|
347
|
use Math::NumSeq; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
33
|
|
50
|
2
|
|
|
2
|
|
904
|
use Math::NumSeq::Base::IterateIth; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
89
|
|
51
|
|
|
|
|
|
|
@ISA = ('Math::NumSeq::Base::IterateIth', 'Math::NumSeq'); |
52
|
|
|
|
|
|
|
*_is_infinite = \&Math::NumSeq::_is_infinite; |
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
55
|
|
|
|
|
|
|
# use Smart::Comments; |
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
# use constant name => Math::NumSeq::__('Fibonacci Representations'); |
58
|
2
|
|
|
2
|
|
7
|
use constant description => Math::NumSeq::__('Fibonacci representations sequence, the number of ways i can be formed as a sum of distinct Fibonacci numbers.'); |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
4
|
|
59
|
2
|
|
|
2
|
|
6
|
use constant default_i_start => 0; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
62
|
|
60
|
2
|
|
|
2
|
|
6
|
use constant characteristic_count => 1; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
61
|
|
61
|
2
|
|
|
2
|
|
6
|
use constant characteristic_smaller => 1; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
64
|
|
62
|
2
|
|
|
2
|
|
6
|
use constant characteristic_integer => 1; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
58
|
|
63
|
2
|
|
|
2
|
|
6
|
use constant characteristic_increasing => 0; |
|
2
|
|
|
|
|
1
|
|
|
2
|
|
|
|
|
69
|
|
64
|
2
|
|
|
2
|
|
6
|
use constant values_min => 1; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
59
|
|
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
67
|
|
|
|
|
|
|
# |
68
|
2
|
|
|
2
|
|
5
|
use constant oeis_anum => 'A000119'; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
521
|
|
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
sub ith { |
73
|
1126
|
|
|
1126
|
1
|
859
|
my ($self, $i) = @_; |
74
|
1126
|
|
|
|
|
1053
|
return ($self->ith_pair($i))[0]; |
75
|
|
|
|
|
|
|
} |
76
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
sub ith_pair { |
78
|
1145
|
|
|
1145
|
1
|
824
|
my ($self, $i) = @_; |
79
|
|
|
|
|
|
|
### ith_pair(): $i |
80
|
|
|
|
|
|
|
|
81
|
1145
|
100
|
|
|
|
1344
|
if ($i < 0) { |
82
|
3
|
|
|
|
|
5
|
return (undef,undef); |
83
|
|
|
|
|
|
|
} |
84
|
1142
|
50
|
|
|
|
1401
|
if (_is_infinite($i)) { |
85
|
0
|
|
|
|
|
0
|
return ($i,$i); # +inf or nan |
86
|
|
|
|
|
|
|
} |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
# seeking f2 >= i+1 |
89
|
|
|
|
|
|
|
# but stop at f1 >= i so not go past UV_MAX if i=UV_MAX |
90
|
|
|
|
|
|
|
# |
91
|
1142
|
|
|
|
|
847
|
my @fibs; # all Fibonacci numbers <= $i |
92
|
|
|
|
|
|
|
{ |
93
|
|
|
|
|
|
|
# find biggest fibonacci f1 <= i |
94
|
|
|
|
|
|
|
# if f1+f0 > i then stop loop |
95
|
|
|
|
|
|
|
# f1+f0 might overflow UV_MAX so do the loop |
96
|
|
|
|
|
|
|
# condition as stop when f1 > i-f0, continue while f1 <= i-f0 |
97
|
|
|
|
|
|
|
# |
98
|
1142
|
|
|
|
|
706
|
my $f0 = ($i*0) + 1; # $f0=1, inherit bignum from $i |
|
1142
|
|
|
|
|
844
|
|
99
|
1142
|
|
|
|
|
689
|
my $f1 = $f0 + 1; # $f1=2, inherit bignum from $i |
100
|
1142
|
|
|
|
|
1351
|
while ($f0 <= $i-$f1) { |
101
|
9520
|
|
|
|
|
5435
|
push @fibs, $f0; |
102
|
9520
|
|
|
|
|
11718
|
($f1,$f0) = ($f1+$f0,$f1); |
103
|
|
|
|
|
|
|
} |
104
|
|
|
|
|
|
|
### @fibs |
105
|
|
|
|
|
|
|
### $f0 |
106
|
|
|
|
|
|
|
### $f1 |
107
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
# here have f1 <= i < f0+f1 |
109
|
|
|
|
|
|
|
# subtract i+1 - f1 |
110
|
1142
|
|
|
|
|
703
|
$i -= $f1; |
111
|
1142
|
|
|
|
|
680
|
$i += 1; |
112
|
|
|
|
|
|
|
### i+1 - f1: $i |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
# If i+1-f1 >= f0 then high fib is not the f1 just subtracted but |
115
|
|
|
|
|
|
|
# instead f2=f1+f0. Subtract also f0 so i+1 - (f1+f0). Now skip f1 |
116
|
|
|
|
|
|
|
# since the Zeck form has no consecutive fibs. Push f0 onto @fibs to be |
117
|
|
|
|
|
|
|
# the next fib tested in the loop. |
118
|
|
|
|
|
|
|
# |
119
|
|
|
|
|
|
|
# Actually i+1-(f1+f0) = 0 here, since f1 <= i and f0+f1 <= i+1 means |
120
|
|
|
|
|
|
|
# i+1==f0+f1 exactly. Could return r += $#fibs/2 which is the effect of |
121
|
|
|
|
|
|
|
# every second 0-bit step, but i+1=fibonacci will be fairly rare. |
122
|
|
|
|
|
|
|
# |
123
|
|
|
|
|
|
|
# If i+1-f1 < f0 then high fib is f1 just subtracted. Now skip f0 since |
124
|
|
|
|
|
|
|
# the Zeck form has no consecutive fibs. |
125
|
|
|
|
|
|
|
# |
126
|
1142
|
100
|
|
|
|
1336
|
if ($i >= $f0) { |
127
|
57
|
|
|
|
|
190
|
return (1, int(scalar(@fibs)/2) + 2); |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
# $i -= $f0; |
130
|
|
|
|
|
|
|
# ### subtract f0, so i+1 sub f2=f1+f0: $i |
131
|
|
|
|
|
|
|
# push @fibs, $f0; |
132
|
|
|
|
|
|
|
} |
133
|
|
|
|
|
|
|
} |
134
|
|
|
|
|
|
|
|
135
|
1085
|
|
|
|
|
680
|
my $r = 1; # R(0) = 1 |
136
|
1085
|
|
|
|
|
603
|
my $rplus1 = 1; # R(1) = 1 |
137
|
1085
|
|
|
|
|
631
|
my $odd_zeros = 1; # high zeck "10..." initial zero |
138
|
|
|
|
|
|
|
|
139
|
1085
|
|
|
|
|
1307
|
while (my $f = pop @fibs) { |
140
|
|
|
|
|
|
|
### at: "f=$f i=$i r=$r rplus1=$rplus1 odd_zeros=$odd_zeros" |
141
|
|
|
|
|
|
|
|
142
|
7045
|
100
|
|
|
|
6325
|
if ($i < $f) { |
143
|
|
|
|
|
|
|
### 0-bit ... |
144
|
|
|
|
|
|
|
|
145
|
4286
|
100
|
|
|
|
4291
|
if ($odd_zeros) { |
146
|
|
|
|
|
|
|
### odd zeros on i+1, add to rplus1 ... |
147
|
2776
|
|
|
|
|
1743
|
$rplus1 += $r; |
148
|
|
|
|
|
|
|
} |
149
|
4286
|
|
|
|
|
5299
|
$odd_zeros ^= 1; |
150
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
} else { |
152
|
2759
|
|
|
|
|
1605
|
$i -= $f; |
153
|
|
|
|
|
|
|
### 1-bit sub: "$f to i=$i" |
154
|
|
|
|
|
|
|
|
155
|
2759
|
100
|
|
|
|
2281
|
if ($odd_zeros) { |
156
|
|
|
|
|
|
|
### odd zeros on i+1, add to r ... |
157
|
1723
|
|
|
|
|
1069
|
$r += $rplus1; |
158
|
|
|
|
|
|
|
} else { |
159
|
|
|
|
|
|
|
### even zeros on i+1, r same as rplus1 ... |
160
|
1036
|
|
|
|
|
646
|
$r = $rplus1; |
161
|
|
|
|
|
|
|
} |
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
### never consecutive fibs, so pop without comparing to i ... |
164
|
2759
|
100
|
|
|
|
3005
|
pop @fibs || last; |
165
|
2325
|
|
|
|
|
3053
|
$odd_zeros = 1; # one trailing 0-bit is odd |
166
|
|
|
|
|
|
|
} |
167
|
|
|
|
|
|
|
} |
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
### final: "r=$r rplus1=$rplus1" |
170
|
1085
|
|
|
|
|
2003
|
return ($r, $rplus1); |
171
|
|
|
|
|
|
|
} |
172
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
sub pred { |
174
|
20
|
|
|
20
|
1
|
49
|
my ($self, $value) = @_; |
175
|
|
|
|
|
|
|
### FibonacciRepresentations pred(): $value |
176
|
20
|
|
33
|
|
|
53
|
return ($value >= 1 && $value == int($value)); |
177
|
|
|
|
|
|
|
} |
178
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
1; |
180
|
|
|
|
|
|
|
__END__ |