line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-NumSeq. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-NumSeq is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-NumSeq is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-NumSeq. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::NumSeq::DivisorCount; |
20
|
2
|
|
|
2
|
|
7241
|
use 5.004; |
|
2
|
|
|
|
|
4
|
|
21
|
2
|
|
|
2
|
|
7
|
use strict; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
51
|
|
22
|
|
|
|
|
|
|
|
23
|
2
|
|
|
2
|
|
6
|
use vars '$VERSION','@ISA'; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
104
|
|
24
|
|
|
|
|
|
|
$VERSION = 72; |
25
|
|
|
|
|
|
|
|
26
|
2
|
|
|
2
|
|
368
|
use Math::NumSeq; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
40
|
|
27
|
2
|
|
|
2
|
|
314
|
use Math::NumSeq::Base::IterateIth; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
52
|
|
28
|
|
|
|
|
|
|
@ISA = ('Math::NumSeq::Base::IterateIth', |
29
|
|
|
|
|
|
|
'Math::NumSeq'); |
30
|
|
|
|
|
|
|
|
31
|
2
|
|
|
2
|
|
378
|
use Math::NumSeq::PrimeFactorCount; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
72
|
|
32
|
|
|
|
|
|
|
*_prime_factors = \&Math::NumSeq::PrimeFactorCount::_prime_factors; |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
35
|
|
|
|
|
|
|
#use Devel::Comments; |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
# use constant name => Math::NumSeq::__('Divisor Count'); |
39
|
2
|
|
|
2
|
|
7
|
use constant description => Math::NumSeq::__('Count of divisors of i (including 1 and i).'); |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
4
|
|
40
|
2
|
|
|
2
|
|
6
|
use constant i_start => 1; |
|
2
|
|
|
|
|
7
|
|
|
2
|
|
|
|
|
67
|
|
41
|
2
|
|
|
2
|
|
5
|
use constant characteristic_count => 1; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
60
|
|
42
|
2
|
|
|
2
|
|
5
|
use constant characteristic_smaller => 1; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
66
|
|
43
|
2
|
|
|
2
|
|
6
|
use constant characteristic_increasing => 0; |
|
2
|
|
|
|
|
1
|
|
|
2
|
|
|
|
|
489
|
|
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
# "proper" divisors just means 1 less in each value, not sure much use for |
47
|
|
|
|
|
|
|
# that. |
48
|
|
|
|
|
|
|
# |
49
|
|
|
|
|
|
|
# n itself -- proper, or not |
50
|
|
|
|
|
|
|
# 1 -- proper, or not |
51
|
|
|
|
|
|
|
# square, non-square |
52
|
|
|
|
|
|
|
# |
53
|
|
|
|
|
|
|
# use constant parameter_info_array => |
54
|
|
|
|
|
|
|
# [ { name => 'divisor_type', |
55
|
|
|
|
|
|
|
# display => Math::NumSeq::__('Divisor Type'), |
56
|
|
|
|
|
|
|
# type => 'enum', |
57
|
|
|
|
|
|
|
# choices => ['all','proper'], # ,'propn1' |
58
|
|
|
|
|
|
|
# default => 'all', |
59
|
|
|
|
|
|
|
# # description => Math::NumSeq::__(''), |
60
|
|
|
|
|
|
|
# }, |
61
|
|
|
|
|
|
|
# ]; |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
my %values_min = (all => 1, |
65
|
|
|
|
|
|
|
proper => 0, |
66
|
|
|
|
|
|
|
propn1 => 0); |
67
|
|
|
|
|
|
|
sub values_min { |
68
|
1
|
|
|
1
|
1
|
5
|
my ($self) = @_; |
69
|
|
|
|
|
|
|
# or values_min=0 if i_start=0 |
70
|
1
|
|
|
|
|
2
|
return 1; # $values_min{$self->{'divisor_type'}}; |
71
|
|
|
|
|
|
|
} |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
74
|
|
|
|
|
|
|
# cf A032741 - 1 <= d < n starting n=0 |
75
|
|
|
|
|
|
|
# A147588 - 1 < d < n starting n=1 |
76
|
|
|
|
|
|
|
# |
77
|
|
|
|
|
|
|
# A006218 - cumulative count of divisors |
78
|
|
|
|
|
|
|
# A002541 - cumulative proper divisors |
79
|
|
|
|
|
|
|
# |
80
|
|
|
|
|
|
|
# A001227 - count odd divisors |
81
|
|
|
|
|
|
|
# A001826 - count 4k+1 divisors |
82
|
|
|
|
|
|
|
# A038548 - count divisors <= sqrt(n) |
83
|
|
|
|
|
|
|
# A070824 - proper divisors starting n=2 |
84
|
|
|
|
|
|
|
# A002182 - number with new highest number of divisors |
85
|
|
|
|
|
|
|
# A002183 - that count of divisors |
86
|
|
|
|
|
|
|
# A001876 - count 5k+1 divisors |
87
|
|
|
|
|
|
|
# A001877 - count 5k+2 divisors |
88
|
|
|
|
|
|
|
# A001878 - count 5k+3 divisors |
89
|
|
|
|
|
|
|
# A001899 - count 5k+4 divisors |
90
|
|
|
|
|
|
|
# |
91
|
|
|
|
|
|
|
# A028422 - count of ways to factorize |
92
|
|
|
|
|
|
|
# A033834 - n with new high count factorizations |
93
|
|
|
|
|
|
|
# A033833 - highly factorable |
94
|
|
|
|
|
|
|
# |
95
|
|
|
|
|
|
|
# A056595 - count non-square divisors |
96
|
|
|
|
|
|
|
# A046951 - count square divisors |
97
|
|
|
|
|
|
|
# A013936 - cumulative count square divisors |
98
|
|
|
|
|
|
|
# A137518 - same divisor count as n, and > a(n-1) so increasing |
99
|
|
|
|
|
|
|
# |
100
|
|
|
|
|
|
|
sub oeis_anum { |
101
|
1
|
|
|
1
|
1
|
4
|
my ($self) = @_; |
102
|
1
|
|
|
|
|
1
|
return 'A000005'; |
103
|
|
|
|
|
|
|
# OEIS-Catalogue: A000005 |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
# my %oeis_anum = (all => 'A000005', # all divisors starting n=1 |
106
|
|
|
|
|
|
|
# # proper => 'A032741', # starts n=0 ... |
107
|
|
|
|
|
|
|
# # propn1 => 'A147588', |
108
|
|
|
|
|
|
|
# ); |
109
|
|
|
|
|
|
|
# return $oeis_anum{$self->{'divisor_type'}}; |
110
|
|
|
|
|
|
|
} |
111
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
114
|
|
|
|
|
|
|
sub ith { |
115
|
69
|
|
|
69
|
1
|
64
|
my ($self, $i) = @_; |
116
|
|
|
|
|
|
|
|
117
|
69
|
|
|
|
|
48
|
$i = abs($i); |
118
|
69
|
100
|
|
|
|
87
|
if ($i == 0) { |
119
|
1
|
|
|
|
|
3
|
return 0; |
120
|
|
|
|
|
|
|
} |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
# If i = p^a * q^b * ... then divisorcount = (a+1)*(b+1)*... |
123
|
|
|
|
|
|
|
# which is each possible power p^0, p^1, ..., p^a of each prime, |
124
|
|
|
|
|
|
|
# including all zeros p^0*q^0*... = 1 and p^a*q^b*... itself. |
125
|
|
|
|
|
|
|
# |
126
|
|
|
|
|
|
|
# If i is a primorial 2*3*5*7*13*... with k primes then divisorcount=2^k |
127
|
|
|
|
|
|
|
# so the $value product can become a bignum if $i is a bignum. |
128
|
|
|
|
|
|
|
|
129
|
68
|
|
|
|
|
97
|
my ($good, @primes) = _prime_factors($i); |
130
|
68
|
50
|
|
|
|
92
|
return undef unless $good; |
131
|
|
|
|
|
|
|
|
132
|
68
|
|
|
|
|
49
|
my $value = ($i*0) + 1; # inherit possible bignum |
133
|
68
|
|
|
|
|
40
|
my $prev = 0; |
134
|
68
|
|
|
|
|
45
|
my $dcount = 1; |
135
|
68
|
|
|
|
|
92
|
while (my $p = shift @primes) { |
136
|
86
|
100
|
|
|
|
94
|
if ($p == $prev) { |
137
|
13
|
|
|
|
|
20
|
$dcount++; |
138
|
|
|
|
|
|
|
} else { |
139
|
73
|
|
|
|
|
37
|
$value *= $dcount; |
140
|
73
|
|
|
|
|
51
|
$dcount = 2; |
141
|
73
|
|
|
|
|
124
|
$prev = $p; |
142
|
|
|
|
|
|
|
} |
143
|
|
|
|
|
|
|
} |
144
|
68
|
|
|
|
|
117
|
return $value * $dcount; |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
# if ($self->{'divisor_type'} eq 'propn1') { |
147
|
|
|
|
|
|
|
# if ($ret <= 2) { |
148
|
|
|
|
|
|
|
# return 0; |
149
|
|
|
|
|
|
|
# } |
150
|
|
|
|
|
|
|
# $ret -= 2; |
151
|
|
|
|
|
|
|
# } |
152
|
|
|
|
|
|
|
} |
153
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
sub pred { |
155
|
7
|
|
|
7
|
1
|
22
|
my ($self, $value) = @_; |
156
|
7
|
|
33
|
|
|
41
|
return ($value >= 1 && $value == int($value)); |
157
|
|
|
|
|
|
|
} |
158
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
1; |
160
|
|
|
|
|
|
|
__END__ |