line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-NumSeq. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-NumSeq is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-NumSeq is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-NumSeq. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# step_type up,down, up_reduced, down_reduced |
20
|
|
|
|
|
|
|
# diff=down-up frac=up/down |
21
|
|
|
|
|
|
|
# completeness |
22
|
|
|
|
|
|
|
# to_peak, after_peak, to_drop, to_last_drop, |
23
|
|
|
|
|
|
|
# to_pow2 after_pow2 |
24
|
|
|
|
|
|
|
# first_drop first_down |
25
|
|
|
|
|
|
|
# last_drop last_down |
26
|
|
|
|
|
|
|
# peak |
27
|
|
|
|
|
|
|
# |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
# Maybe "before_drop", "after_drop" |
30
|
|
|
|
|
|
|
# Maybe "before_peak", "after_peak" |
31
|
|
|
|
|
|
|
# Maybe +1 count steps from 1. |
32
|
|
|
|
|
|
|
# |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
# on_values=>'even' is 2*i gives +1 for "both" and "down", no change to "up" |
35
|
|
|
|
|
|
|
# on_values=>'odd' is 2*i+1 |
36
|
|
|
|
|
|
|
# starts 3*(2i+1)+1 = 6i+4 -> 3i+2 |
37
|
|
|
|
|
|
|
# |
38
|
|
|
|
|
|
|
# i=0 for odd same as Odd->ith() ? |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
# 2^E(N) = 3^O(N) * N * Res(N) |
41
|
|
|
|
|
|
|
# log(2^E(N)) = log(3^O(N) * N * Res(N)) |
42
|
|
|
|
|
|
|
# log(2^E(N)) = log(3^O(N)) + log(N) + log(Res(N)) |
43
|
|
|
|
|
|
|
# E(N)*log(2) = O(N)*log(3) + log(N) + log(Res(N)) |
44
|
|
|
|
|
|
|
# log(Res(N)) = O(N)*log(3) - E(N)*log(2) + log(N) |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
# "Glide" how many steps to get a value < N. |
47
|
|
|
|
|
|
|
# |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
package Math::NumSeq::CollatzSteps; |
50
|
2
|
|
|
2
|
|
7551
|
use 5.004; |
|
2
|
|
|
|
|
4
|
|
51
|
2
|
|
|
2
|
|
7
|
use strict; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
42
|
|
52
|
|
|
|
|
|
|
|
53
|
2
|
|
|
2
|
|
7
|
use vars '$VERSION', '@ISA'; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
98
|
|
54
|
|
|
|
|
|
|
$VERSION = 72; |
55
|
|
|
|
|
|
|
|
56
|
2
|
|
|
2
|
|
343
|
use Math::NumSeq; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
37
|
|
57
|
2
|
|
|
2
|
|
327
|
use Math::NumSeq::Base::IterateIth; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
299
|
|
58
|
|
|
|
|
|
|
@ISA = ('Math::NumSeq::Base::IterateIth', |
59
|
|
|
|
|
|
|
'Math::NumSeq'); |
60
|
|
|
|
|
|
|
*_is_infinite = \&Math::NumSeq::_is_infinite; |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
63
|
|
|
|
|
|
|
# use Smart::Comments; |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
# use constant name => Math::NumSeq::__('Collatz Steps'); |
66
|
|
|
|
|
|
|
sub description { |
67
|
6
|
|
|
6
|
1
|
13
|
my ($self) = @_; |
68
|
6
|
100
|
|
|
|
10
|
if (ref $self) { |
69
|
3
|
100
|
|
|
|
4
|
if ($self->{'step_type'} eq 'up') { |
70
|
1
|
|
|
|
|
3
|
return Math::NumSeq::__('Number of up steps to reach 1 in the Collatz "3n+1" problem.'); |
71
|
|
|
|
|
|
|
} |
72
|
2
|
100
|
|
|
|
6
|
if ($self->{'step_type'} eq 'down') { |
73
|
1
|
|
|
|
|
4
|
return Math::NumSeq::__('Number of down steps to reach 1 in the Collatz "3n+1" problem.'); |
74
|
|
|
|
|
|
|
} |
75
|
|
|
|
|
|
|
} |
76
|
4
|
|
|
|
|
8
|
return Math::NumSeq::__('Number of steps to reach 1 in the Collatz "3n+1" problem.'); |
77
|
|
|
|
|
|
|
} |
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
sub default_i_start { |
80
|
61
|
|
|
61
|
0
|
44
|
my ($self) = @_; |
81
|
61
|
50
|
|
|
|
121
|
return ($self->{'on_values'} eq 'odd' ? 0 : 1); |
82
|
|
|
|
|
|
|
} |
83
|
|
|
|
|
|
|
sub values_min { |
84
|
21
|
|
|
21
|
1
|
20
|
my ($self) = @_; |
85
|
21
|
|
|
|
|
30
|
return ($self->ith($self->i_start)); |
86
|
|
|
|
|
|
|
} |
87
|
2
|
|
|
2
|
|
8
|
use constant characteristic_count => 1; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
108
|
|
88
|
2
|
|
|
2
|
|
7
|
use constant characteristic_smaller => 1; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
71
|
|
89
|
2
|
|
|
2
|
|
6
|
use constant characteristic_increasing => 0; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
200
|
|
90
|
|
|
|
|
|
|
|
91
|
2
|
|
|
|
|
6
|
use constant parameter_info_array => |
92
|
|
|
|
|
|
|
[ |
93
|
|
|
|
|
|
|
# { name => 'end_type', |
94
|
|
|
|
|
|
|
# share_key => 'end_type_1drop', |
95
|
|
|
|
|
|
|
# display => Math::NumSeq::__('End Type'), |
96
|
|
|
|
|
|
|
# type => 'enum', |
97
|
|
|
|
|
|
|
# default => 'one', |
98
|
|
|
|
|
|
|
# choices => ['one','drop','to_peak','from_peak','pow2'], |
99
|
|
|
|
|
|
|
# choices_display => [Math::NumSeq::__('One'), |
100
|
|
|
|
|
|
|
# Math::NumSeq::__('Drop'), |
101
|
|
|
|
|
|
|
# Math::NumSeq::__('To Peak'), |
102
|
|
|
|
|
|
|
# Math::NumSeq::__('From Peak'), |
103
|
|
|
|
|
|
|
# Math::NumSeq::__('Pow2'), |
104
|
|
|
|
|
|
|
# ], |
105
|
|
|
|
|
|
|
# # description => Math::NumSeq::__(''), |
106
|
|
|
|
|
|
|
# }, |
107
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
{ name => 'step_type', |
109
|
|
|
|
|
|
|
share_key => 'step_type_bothupdown', |
110
|
|
|
|
|
|
|
display => Math::NumSeq::__('Step Type'), |
111
|
|
|
|
|
|
|
type => 'enum', |
112
|
|
|
|
|
|
|
default => 'both', |
113
|
|
|
|
|
|
|
choices => ['both','up','down', |
114
|
|
|
|
|
|
|
# 'diff', 'both+1', |
115
|
|
|
|
|
|
|
], |
116
|
|
|
|
|
|
|
choices_display => [Math::NumSeq::__('Both'), |
117
|
|
|
|
|
|
|
Math::NumSeq::__('Up'), |
118
|
|
|
|
|
|
|
Math::NumSeq::__('Down'), |
119
|
|
|
|
|
|
|
], |
120
|
|
|
|
|
|
|
description => Math::NumSeq::__('Which steps to count, the 3*n+1 ups, the n/2 downs, or both.'), |
121
|
|
|
|
|
|
|
}, |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
# secret extra 'odd1' for 2*i-1 starting i=1 to help offset of A075680 |
124
|
|
|
|
|
|
|
{ name => 'on_values', |
125
|
|
|
|
|
|
|
share_key => 'on_values_aoe', |
126
|
|
|
|
|
|
|
display => Math::NumSeq::__('On Values'), |
127
|
|
|
|
|
|
|
type => 'enum', |
128
|
|
|
|
|
|
|
default => 'all', |
129
|
|
|
|
|
|
|
choices => ['all','odd','even'], |
130
|
|
|
|
|
|
|
choices_display => [Math::NumSeq::__('All'), |
131
|
|
|
|
|
|
|
Math::NumSeq::__('Odd'), |
132
|
|
|
|
|
|
|
Math::NumSeq::__('Even')], |
133
|
|
|
|
|
|
|
description => Math::NumSeq::__('The values to act on, either all integers or just odd or even.'), |
134
|
|
|
|
|
|
|
}, |
135
|
2
|
|
|
2
|
|
40
|
]; |
|
2
|
|
|
|
|
2
|
|
136
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
138
|
|
|
|
|
|
|
# cf |
139
|
|
|
|
|
|
|
# A139399 steps to reach cycle 4-2-1, so is steps-2 except at 4,2,1 |
140
|
|
|
|
|
|
|
# A112695 similar |
141
|
|
|
|
|
|
|
# A064433 steps to reach 2, which is -1 except at n=1 |
142
|
|
|
|
|
|
|
# |
143
|
|
|
|
|
|
|
# A066861 steps x/2 and (3x+1)/2 |
144
|
|
|
|
|
|
|
# A058633 steps of n cumulative |
145
|
|
|
|
|
|
|
# A070975 steps for n prime |
146
|
|
|
|
|
|
|
# A075677 one reduction 3x+1/2^r on the odd numbers, r as big as possible |
147
|
|
|
|
|
|
|
# A014682 one step 3x+1 or x/2 on the integers |
148
|
|
|
|
|
|
|
# A006884 new record for highest point reached in iteration |
149
|
|
|
|
|
|
|
# A006885 that record high position |
150
|
|
|
|
|
|
|
# |
151
|
|
|
|
|
|
|
# A102419 "dropping time" steps to go below initial |
152
|
|
|
|
|
|
|
# A217934 new highs of dropping time steps to go below initial |
153
|
|
|
|
|
|
|
# A060412 n where those highs occur |
154
|
|
|
|
|
|
|
# |
155
|
|
|
|
|
|
|
# A074473 "dropping time" + 1, counting initial as step 1 |
156
|
|
|
|
|
|
|
# A075476 "dropping time" of numbers 64n+7 |
157
|
|
|
|
|
|
|
# A075477 "dropping time" of numbers 64n+15 |
158
|
|
|
|
|
|
|
# A075478 "dropping time" of numbers 64n+27 |
159
|
|
|
|
|
|
|
# A075480 "dropping time" of numbers 64n+39 |
160
|
|
|
|
|
|
|
# A075481 "dropping time" of numbers 64n+47 |
161
|
|
|
|
|
|
|
# A075482 "dropping time" of numbers 64n+59 |
162
|
|
|
|
|
|
|
# A075483 "dropping time" of numbers 64n+63 |
163
|
|
|
|
|
|
|
# A060445 "dropping time" of odd numbers 2n+1 |
164
|
|
|
|
|
|
|
# A060412 n start for new record "dropping time" |
165
|
|
|
|
|
|
|
# A217934 new record "dropping time" |
166
|
|
|
|
|
|
|
# |
167
|
|
|
|
|
|
|
# A005184 multiple k*n occurs in Collatz trajectory |
168
|
|
|
|
|
|
|
# A055509 number of odd primes in trajectory |
169
|
|
|
|
|
|
|
# A055510 largest odd prime in trajectory |
170
|
|
|
|
|
|
|
# A060322 how many integers have steps=n |
171
|
|
|
|
|
|
|
# A070917 steps is a divisor of n |
172
|
|
|
|
|
|
|
# |
173
|
|
|
|
|
|
|
# A088975 collatz tree breadth-first |
174
|
|
|
|
|
|
|
# A088976 collatz tree breadth-first |
175
|
|
|
|
|
|
|
# A127824 breadth first sorted within rows |
176
|
|
|
|
|
|
|
# |
177
|
|
|
|
|
|
|
my %oeis_anum = |
178
|
|
|
|
|
|
|
('one,all,both' => 'A006577', |
179
|
|
|
|
|
|
|
'one,all,up' => 'A006667', # triplings |
180
|
|
|
|
|
|
|
'one,even,up' => 'A006667', # triplings unchanged by even 2*i |
181
|
|
|
|
|
|
|
'one,all,down' => 'A006666', # halvings |
182
|
|
|
|
|
|
|
# OEIS-Catalogue: A006577 |
183
|
|
|
|
|
|
|
# OEIS-Catalogue: A006667 step_type=up |
184
|
|
|
|
|
|
|
# OEIS-Other: A006667 step_type=up on_values=even |
185
|
|
|
|
|
|
|
# OEIS-Catalogue: A006666 step_type=down |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
'one,even,both' => 'A008908', # +1 from "all" |
188
|
|
|
|
|
|
|
'one,all,both+1' => 'A008908', # +1 from "all" |
189
|
|
|
|
|
|
|
# OEIS-Catalogue: A008908 on_values=even |
190
|
|
|
|
|
|
|
# OEIS-Other: A008908 step_type=both+1 |
191
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
'one,odd,both+1' => 'A064685', |
193
|
|
|
|
|
|
|
'one,odd1,down' => 'A166549', |
194
|
|
|
|
|
|
|
# OEIS-Catalogue: A064685 on_values=odd step_type=both+1 |
195
|
|
|
|
|
|
|
# OEIS-Catalogue: A166549 on_values=odd1 step_type=down |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
# A075680 up steps for odd 2n-1 0,2,1,5,6,4,etc starting n=1 2n-1=1 |
198
|
|
|
|
|
|
|
# it being defined as steps of (3x+1)/2^r for maximum r |
199
|
|
|
|
|
|
|
'one,odd1,up' => 'A075680', |
200
|
|
|
|
|
|
|
# OEIS-Catalogue: A075680 on_values=odd1 step_type=up |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
#-------------- |
203
|
|
|
|
|
|
|
# drop |
204
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
'drop,all,both' => 'A102419', # "dropping time" |
206
|
|
|
|
|
|
|
'drop,all,both+1' => 'A074473', # "dropping time" |
207
|
|
|
|
|
|
|
'drop,all,down' => 'A126241', |
208
|
|
|
|
|
|
|
# OEIS-Catalogue: A102419 end_type=drop |
209
|
|
|
|
|
|
|
# OEIS-Catalogue: A074473 end_type=drop step_type=both+1 |
210
|
|
|
|
|
|
|
# OEIS-Catalogue: A126241 end_type=drop step_type=down |
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
'drop,odd,both' => 'A060445', # odd numbers 2n+1 so n=0 for odd=1 |
213
|
|
|
|
|
|
|
'drop,odd,up' => 'A122458', |
214
|
|
|
|
|
|
|
# OEIS-Catalogue: A060445 end_type=drop on_values=odd |
215
|
|
|
|
|
|
|
# OEIS-Catalogue: A122458 end_type=drop on_values=odd step_type=up |
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
# Not quite A087225 is "position" of peak reckoning start as position=1 |
218
|
|
|
|
|
|
|
# as opposed to value=0 many "steps" here. |
219
|
|
|
|
|
|
|
'to_peak,all,both+1' => 'A087225', |
220
|
|
|
|
|
|
|
# OEIS-Catalogue: A087225 end_type=to_peak step_type=both+1 |
221
|
|
|
|
|
|
|
|
222
|
|
|
|
|
|
|
#-------------- |
223
|
|
|
|
|
|
|
# pow2 |
224
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
'pow2,all,both' => 'A208981', |
226
|
|
|
|
|
|
|
# OEIS-Catalogue: A208981 end_type=pow2 |
227
|
|
|
|
|
|
|
); |
228
|
|
|
|
|
|
|
sub oeis_anum { |
229
|
3
|
|
|
3
|
1
|
7
|
my ($self) = @_; |
230
|
3
|
|
|
|
|
7
|
return $oeis_anum{"$self->{'end_type'},$self->{'on_values'},$self->{'step_type'}"}; |
231
|
|
|
|
|
|
|
} |
232
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
234
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
sub new { |
236
|
5
|
|
|
5
|
1
|
880
|
my $self = shift->SUPER::new(@_); |
237
|
5
|
|
50
|
|
|
21
|
$self->{'end_type'} ||= 'one'; |
238
|
5
|
|
|
|
|
8
|
return $self; |
239
|
|
|
|
|
|
|
} |
240
|
|
|
|
|
|
|
|
241
|
2
|
|
|
|
|
4
|
use constant 1.02 _UV_LIMIT => do { # version 1.02 for leading underscore |
242
|
2
|
|
|
|
|
3
|
my $limit = ~0; |
243
|
2
|
|
|
|
|
3
|
my $bits = 0; |
244
|
2
|
|
|
|
|
6
|
while ($limit) { |
245
|
128
|
|
|
|
|
70
|
$bits++; |
246
|
128
|
|
|
|
|
126
|
$limit >>= 1; |
247
|
|
|
|
|
|
|
} |
248
|
2
|
|
|
|
|
3
|
$bits -= 2; |
249
|
2
|
|
|
|
|
782
|
(1 << $bits) - 1 |
250
|
2
|
|
|
2
|
|
10
|
}; |
|
2
|
|
|
|
|
24
|
|
251
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
sub ith { |
253
|
185
|
|
|
185
|
1
|
288
|
my ($self, $i) = @_; |
254
|
|
|
|
|
|
|
### CollatzSteps ith(): $i |
255
|
|
|
|
|
|
|
### end_type: $self->{'end_type'} |
256
|
|
|
|
|
|
|
|
257
|
185
|
50
|
|
|
|
397
|
if ($self->{'on_values'} eq 'odd') { |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
258
|
0
|
|
|
|
|
0
|
$i = 2*$i+1; # i=0 is odd number 1 |
259
|
|
|
|
|
|
|
} elsif ($self->{'on_values'} eq 'odd1') { |
260
|
0
|
|
|
|
|
0
|
$i = 2*$i-1; # i=1 is odd number 1 |
261
|
|
|
|
|
|
|
} elsif ($self->{'on_values'} eq 'even') { |
262
|
0
|
|
|
|
|
0
|
$i *= 2; |
263
|
|
|
|
|
|
|
} |
264
|
185
|
|
|
|
|
110
|
my $orig_i = $i; |
265
|
|
|
|
|
|
|
|
266
|
185
|
|
|
|
|
122
|
my $ups = 0; |
267
|
185
|
|
|
|
|
102
|
my $downs_sans_trailing = 0; |
268
|
185
|
|
|
|
|
104
|
my $downs = 0; |
269
|
185
|
|
|
|
|
107
|
my $peak_ups = 0; |
270
|
185
|
|
|
|
|
120
|
my $peak_downs = 0; |
271
|
185
|
100
|
|
|
|
229
|
if ($i >= 2) { |
272
|
137
|
50
|
|
|
|
169
|
if (_is_infinite($i)) { |
273
|
0
|
|
|
|
|
0
|
return $i; |
274
|
|
|
|
|
|
|
} |
275
|
|
|
|
|
|
|
|
276
|
137
|
|
|
|
|
98
|
my $peak_i = $i; |
277
|
137
|
50
|
|
|
|
143
|
my $end = ($self->{'end_type'} eq 'drop' ? $i : 1); |
278
|
|
|
|
|
|
|
|
279
|
137
|
|
|
|
|
82
|
OUTER: for (;;) { |
280
|
458
|
|
|
|
|
277
|
$downs_sans_trailing = $downs; |
281
|
458
|
|
|
|
|
506
|
until ($i & 1) { |
282
|
838
|
|
|
|
|
451
|
$i >>= 1; |
283
|
838
|
|
|
|
|
448
|
$downs++; |
284
|
838
|
100
|
|
|
|
1243
|
last OUTER if $i <= $end; |
285
|
|
|
|
|
|
|
} |
286
|
|
|
|
|
|
|
### odd: $i |
287
|
|
|
|
|
|
|
|
288
|
322
|
100
|
|
|
|
338
|
if ($i > _UV_LIMIT) { |
289
|
1
|
|
|
|
|
2
|
$i = Math::NumSeq::_to_bigint($i); |
290
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
### using bigint: "$i" |
292
|
1
|
|
|
|
|
33
|
for (;;) { |
293
|
|
|
|
|
|
|
### odd: "$i" |
294
|
309
|
|
|
|
|
16709
|
$i->bmul(3); |
295
|
309
|
|
|
|
|
19485
|
$i->binc(); |
296
|
309
|
|
|
|
|
5404
|
$ups++; |
297
|
|
|
|
|
|
|
|
298
|
309
|
100
|
|
|
|
485
|
if ($i > $peak_i) { |
299
|
1
|
|
|
|
|
89
|
$peak_ups = $ups; |
300
|
1
|
|
|
|
|
2
|
$peak_downs = $downs; |
301
|
1
|
|
|
|
|
1
|
$peak_i = $i; |
302
|
|
|
|
|
|
|
} |
303
|
|
|
|
|
|
|
|
304
|
309
|
|
|
|
|
5727
|
$downs_sans_trailing = $downs; |
305
|
309
|
|
|
|
|
436
|
until ($i->is_odd) { |
306
|
554
|
|
|
|
|
15187
|
$i->brsft(1); |
307
|
554
|
|
|
|
|
44056
|
$downs++; |
308
|
554
|
100
|
|
|
|
923
|
last OUTER if $i <= $end; |
309
|
|
|
|
|
|
|
} |
310
|
|
|
|
|
|
|
} |
311
|
|
|
|
|
|
|
} |
312
|
|
|
|
|
|
|
|
313
|
321
|
|
|
|
|
223
|
$i = 3*$i + 1; |
314
|
321
|
|
|
|
|
165
|
$ups++; |
315
|
|
|
|
|
|
|
|
316
|
321
|
100
|
|
|
|
345
|
if ($i > $peak_i) { |
317
|
170
|
|
|
|
|
107
|
$peak_ups = $ups; |
318
|
170
|
|
|
|
|
91
|
$peak_downs = $downs; |
319
|
170
|
|
|
|
|
107
|
$peak_i = $i; |
320
|
|
|
|
|
|
|
} |
321
|
|
|
|
|
|
|
} |
322
|
|
|
|
|
|
|
} |
323
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
### $ups |
325
|
|
|
|
|
|
|
### $downs |
326
|
|
|
|
|
|
|
### $downs_sans_trailing |
327
|
|
|
|
|
|
|
|
328
|
185
|
50
|
|
|
|
411
|
if ($self->{'end_type'} eq 'to_peak') { |
|
|
50
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
329
|
0
|
|
|
|
|
0
|
$ups = $peak_ups; |
330
|
0
|
|
|
|
|
0
|
$downs = $peak_downs; |
331
|
|
|
|
|
|
|
} elsif ($self->{'end_type'} eq 'from_peak') { |
332
|
0
|
|
|
|
|
0
|
$ups -= $peak_ups; |
333
|
0
|
|
|
|
|
0
|
$downs -= $peak_downs; |
334
|
|
|
|
|
|
|
} elsif ($self->{'end_type'} eq 'pow2') { |
335
|
0
|
|
|
|
|
0
|
$downs = $downs_sans_trailing; |
336
|
|
|
|
|
|
|
} |
337
|
|
|
|
|
|
|
|
338
|
185
|
|
|
|
|
135
|
my $step_type = $self->{'step_type'}; |
339
|
185
|
100
|
|
|
|
221
|
if ($step_type eq 'up') { |
340
|
61
|
|
|
|
|
103
|
return $ups; |
341
|
|
|
|
|
|
|
} |
342
|
124
|
100
|
|
|
|
149
|
if ($step_type eq 'down') { |
343
|
61
|
|
|
|
|
106
|
return $downs; |
344
|
|
|
|
|
|
|
} |
345
|
63
|
50
|
|
|
|
69
|
if ($step_type eq 'diff') { |
346
|
0
|
|
|
|
|
0
|
return $downs - $ups; |
347
|
|
|
|
|
|
|
} |
348
|
63
|
50
|
|
|
|
89
|
if ($step_type eq 'completeness') { |
349
|
|
|
|
|
|
|
# maximum C(N) < ln(2)/ln(3) = 0.63 |
350
|
0
|
|
|
|
|
0
|
return $ups / $downs; |
351
|
|
|
|
|
|
|
} |
352
|
63
|
50
|
|
|
|
70
|
if ($step_type eq 'gamma') { |
353
|
0
|
|
0
|
|
|
0
|
return $downs / (log($orig_i) || 1); |
354
|
|
|
|
|
|
|
} |
355
|
63
|
50
|
|
|
|
67
|
if ($step_type eq 'residue') { |
356
|
|
|
|
|
|
|
# log(Res(N)) = Odd(N)*log(3) - Even(N)*log(2) + log(N) |
357
|
0
|
|
|
|
|
0
|
return $ups*log(3) - $downs*log(2) + log($orig_i); |
358
|
|
|
|
|
|
|
} |
359
|
63
|
50
|
|
|
|
69
|
if ($step_type eq 'both+1') { |
360
|
0
|
|
|
|
|
0
|
return $ups + $downs + 1; |
361
|
|
|
|
|
|
|
} |
362
|
|
|
|
|
|
|
# $step_type eq 'both' |
363
|
63
|
|
|
|
|
117
|
return $ups + $downs; |
364
|
|
|
|
|
|
|
} |
365
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
sub pred { |
367
|
18
|
|
|
18
|
1
|
58
|
my ($self, $value) = @_; |
368
|
18
|
|
33
|
|
|
33
|
return ($value == int($value) |
369
|
|
|
|
|
|
|
&& $value >= $self->values_min); |
370
|
|
|
|
|
|
|
} |
371
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
1; |
373
|
|
|
|
|
|
|
__END__ |