line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-NumSeq. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-NumSeq is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-NumSeq is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-NumSeq. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
package Math::NumSeq::Tribonacci; |
19
|
2
|
|
|
2
|
|
2626238
|
use 5.004; |
|
2
|
|
|
|
|
11
|
|
|
2
|
|
|
|
|
124
|
|
20
|
2
|
|
|
2
|
|
19
|
use strict; |
|
2
|
|
|
|
|
8
|
|
|
2
|
|
|
|
|
121
|
|
21
|
|
|
|
|
|
|
|
22
|
2
|
|
|
2
|
|
14
|
use vars '$VERSION', '@ISA'; |
|
2
|
|
|
|
|
7
|
|
|
2
|
|
|
|
|
262
|
|
23
|
|
|
|
|
|
|
$VERSION = 71; |
24
|
2
|
|
|
2
|
|
618
|
use Math::NumSeq::Base::Sparse; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
174
|
|
25
|
|
|
|
|
|
|
@ISA = ('Math::NumSeq::Base::Sparse'); |
26
|
|
|
|
|
|
|
*_is_infinite = \&Math::NumSeq::_is_infinite; |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
30
|
|
|
|
|
|
|
#use Smart::Comments; |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
# use constant name => Math::NumSeq::__('Tribonacci Numbers'); |
33
|
2
|
|
|
2
|
|
15
|
use constant description => Math::NumSeq::__('Tribonacci numbers 0, 0, 1, 1, 2, 4, 7, 13, 24, being T(i) = T(i-1) + T(i-2) + T(i-3) starting from 0,0,1.'); |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
13
|
|
34
|
2
|
|
|
2
|
|
13
|
use constant characteristic_non_decreasing => 1; |
|
2
|
|
|
|
|
6
|
|
|
2
|
|
|
|
|
116
|
|
35
|
2
|
|
|
2
|
|
188
|
use constant characteristic_increasing_from_i => 3; |
|
2
|
|
|
|
|
21
|
|
|
2
|
|
|
|
|
140
|
|
36
|
2
|
|
|
2
|
|
13
|
use constant characteristic_integer => 1; |
|
2
|
|
|
|
|
7
|
|
|
2
|
|
|
|
|
122
|
|
37
|
2
|
|
|
2
|
|
14
|
use constant values_min => 0; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
119
|
|
38
|
2
|
|
|
2
|
|
16
|
use constant i_start => 0; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
99
|
|
39
|
2
|
|
|
2
|
|
12
|
use constant oeis_anum => 'A000073'; # tribonacci |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
2302
|
|
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
# The biggest f0 for which f0,f1,f2 all fit into a UV, but the sum f0+f1+f2 |
42
|
|
|
|
|
|
|
# would overflow and so require BigInt. Then back from there because the |
43
|
|
|
|
|
|
|
# code checks the f0 after the sum f0+f1+f2 is formed. |
44
|
|
|
|
|
|
|
# |
45
|
|
|
|
|
|
|
my $uv_limit = do { |
46
|
|
|
|
|
|
|
my $max = ~0; |
47
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
# f2+f1+f0 <= max |
49
|
|
|
|
|
|
|
# f0 <= max-f1 |
50
|
|
|
|
|
|
|
# and f0+f1 <= max-f2 |
51
|
|
|
|
|
|
|
# |
52
|
|
|
|
|
|
|
my $f0 = 0; |
53
|
|
|
|
|
|
|
my $f1 = 0; |
54
|
|
|
|
|
|
|
my $f2 = 1; |
55
|
|
|
|
|
|
|
my $prev_prev_f0; |
56
|
|
|
|
|
|
|
my $prev_f0; |
57
|
|
|
|
|
|
|
while ($f0 <= $max - $f1 |
58
|
|
|
|
|
|
|
&& $f0+$f1 <= $max - $f2) { |
59
|
|
|
|
|
|
|
$prev_prev_f0 = $prev_f0; |
60
|
|
|
|
|
|
|
$prev_f0 = $f0; |
61
|
|
|
|
|
|
|
($f0,$f1,$f2) = ($f1, $f2, $f2+$f1+$f0); |
62
|
|
|
|
|
|
|
} |
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
### Tribonacci UV limit ... |
65
|
|
|
|
|
|
|
### $prev_prev_f0 |
66
|
|
|
|
|
|
|
### $prev_f0 |
67
|
|
|
|
|
|
|
### $f0 |
68
|
|
|
|
|
|
|
### $f1 |
69
|
|
|
|
|
|
|
### $f2 |
70
|
|
|
|
|
|
|
### ~0 : ~0 |
71
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
$prev_prev_f0 |
73
|
|
|
|
|
|
|
}; |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
sub rewind { |
76
|
7
|
|
|
7
|
1
|
868
|
my ($self) = @_; |
77
|
7
|
|
|
|
|
53
|
$self->{'i'} = $self->i_start; |
78
|
7
|
|
|
|
|
15
|
$self->{'f0'} = 0; |
79
|
7
|
|
|
|
|
17
|
$self->{'f1'} = 0; |
80
|
7
|
|
|
|
|
26
|
$self->{'f2'} = 1; |
81
|
|
|
|
|
|
|
} |
82
|
|
|
|
|
|
|
sub next { |
83
|
273
|
|
|
273
|
1
|
57119
|
my ($self) = @_; |
84
|
|
|
|
|
|
|
### Tribonacci next(): "i=$self->{'i'} $self->{'f0'} $self->{'f1'} $self->{'f2'}" |
85
|
273
|
|
|
|
|
1149
|
(my $ret, |
86
|
|
|
|
|
|
|
$self->{'f0'}, |
87
|
|
|
|
|
|
|
$self->{'f1'}, |
88
|
|
|
|
|
|
|
$self->{'f2'}) |
89
|
|
|
|
|
|
|
= ($self->{'f0'}, |
90
|
|
|
|
|
|
|
$self->{'f1'}, |
91
|
|
|
|
|
|
|
$self->{'f2'}, |
92
|
|
|
|
|
|
|
$self->{'f0'}+$self->{'f1'}+$self->{'f2'}); |
93
|
|
|
|
|
|
|
|
94
|
273
|
100
|
|
|
|
17206
|
if ($ret == $uv_limit) { |
95
|
|
|
|
|
|
|
### go to bigint f2 ... |
96
|
2
|
|
|
|
|
11
|
$self->{'f2'} = Math::NumSeq::_to_bigint($self->{'f2'}); |
97
|
|
|
|
|
|
|
} |
98
|
|
|
|
|
|
|
|
99
|
273
|
|
|
|
|
11124
|
return ($self->{'i'}++, $ret); |
100
|
|
|
|
|
|
|
} |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
sub value_to_i_estimate { |
103
|
24
|
|
|
24
|
1
|
618
|
my ($self, $value) = @_; |
104
|
|
|
|
|
|
|
|
105
|
24
|
50
|
|
|
|
61
|
if (_is_infinite($value)) { |
106
|
0
|
|
|
|
|
0
|
return $value; |
107
|
|
|
|
|
|
|
} |
108
|
|
|
|
|
|
|
|
109
|
24
|
|
|
|
|
399
|
my $f0 = my $f1 = ($value * 0); # inherit bignum 0 |
110
|
24
|
|
|
|
|
191
|
my $f2 = $f0 + 1; # inherit bignum 1 |
111
|
|
|
|
|
|
|
|
112
|
24
|
|
|
|
|
149
|
my $i = 0; |
113
|
24
|
|
|
|
|
31
|
for (;;) { |
114
|
108
|
100
|
|
|
|
255
|
if ($value <= $f0) { |
115
|
24
|
|
|
|
|
89
|
return $i; |
116
|
|
|
|
|
|
|
} |
117
|
84
|
|
|
|
|
651
|
($f0,$f1,$f2) = ($f1,$f2, $f0+$f1+$f2); |
118
|
84
|
|
|
|
|
3229
|
$i++; |
119
|
|
|
|
|
|
|
} |
120
|
|
|
|
|
|
|
} |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
1; |
123
|
|
|
|
|
|
|
__END__ |