| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-NumSeq. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-NumSeq is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-NumSeq is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-NumSeq. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::NumSeq::Totient; |
|
20
|
3
|
|
|
3
|
|
10862
|
use 5.004; |
|
|
3
|
|
|
|
|
12
|
|
|
|
3
|
|
|
|
|
135
|
|
|
21
|
3
|
|
|
3
|
|
21
|
use strict; |
|
|
3
|
|
|
|
|
8
|
|
|
|
3
|
|
|
|
|
133
|
|
|
22
|
3
|
|
|
3
|
|
1875
|
use Math::Prime::XS 0.23 'is_prime'; # version 0.23 fix for 1928099 |
|
|
3
|
|
|
|
|
38792
|
|
|
|
3
|
|
|
|
|
225
|
|
|
23
|
3
|
|
|
3
|
|
1806
|
use Math::Factor::XS 'factors'; |
|
|
3
|
|
|
|
|
7335
|
|
|
|
3
|
|
|
|
|
212
|
|
|
24
|
|
|
|
|
|
|
|
|
25
|
3
|
|
|
3
|
|
36
|
use vars '$VERSION', '@ISA'; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
222
|
|
|
26
|
|
|
|
|
|
|
$VERSION = 71; |
|
27
|
|
|
|
|
|
|
|
|
28
|
3
|
|
|
3
|
|
827
|
use Math::NumSeq; |
|
|
3
|
|
|
|
|
7
|
|
|
|
3
|
|
|
|
|
823
|
|
|
29
|
3
|
|
|
3
|
|
1559
|
use Math::NumSeq::Base::IterateIth; |
|
|
3
|
|
|
|
|
8
|
|
|
|
3
|
|
|
|
|
170
|
|
|
30
|
|
|
|
|
|
|
@ISA = ('Math::NumSeq::Base::IterateIth', |
|
31
|
|
|
|
|
|
|
'Math::NumSeq'); |
|
32
|
|
|
|
|
|
|
*_is_infinite = \&Math::NumSeq::_is_infinite; |
|
33
|
|
|
|
|
|
|
|
|
34
|
3
|
|
|
3
|
|
1472
|
use Math::NumSeq::PrimeFactorCount;; |
|
|
3
|
|
|
|
|
8
|
|
|
|
3
|
|
|
|
|
149
|
|
|
35
|
|
|
|
|
|
|
*_prime_factors = \&Math::NumSeq::PrimeFactorCount::_prime_factors; |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
38
|
|
|
|
|
|
|
#use Smart::Comments; |
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
# use constant name => Math::NumSeq::__('Totient'); |
|
42
|
3
|
|
|
3
|
|
16
|
use constant description => Math::NumSeq::__('Euler totient function, the count of how many numbers coprime to N.'); |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
13
|
|
|
43
|
3
|
|
|
3
|
|
14
|
use constant characteristic_count => 1; |
|
|
3
|
|
|
|
|
9
|
|
|
|
3
|
|
|
|
|
125
|
|
|
44
|
3
|
|
|
3
|
|
13
|
use constant characteristic_smaller => 1; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
110
|
|
|
45
|
3
|
|
|
3
|
|
15
|
use constant characteristic_increasing => 0; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
110
|
|
|
46
|
3
|
|
|
3
|
|
14
|
use constant values_min => 1; |
|
|
3
|
|
|
|
|
18
|
|
|
|
3
|
|
|
|
|
109
|
|
|
47
|
3
|
|
|
3
|
|
16
|
use constant default_i_start => 1; |
|
|
3
|
|
|
|
|
7
|
|
|
|
3
|
|
|
|
|
146
|
|
|
48
|
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
50
|
|
|
|
|
|
|
# cf A007617 non-totients, all odds, plus evens per A005277 |
|
51
|
|
|
|
|
|
|
# A005277 even non-totients, n s.t. n==phi(something) no solution |
|
52
|
|
|
|
|
|
|
# A058980 non-totients 0mod4 |
|
53
|
|
|
|
|
|
|
# A056595 - sum non-square divisors |
|
54
|
|
|
|
|
|
|
# A007614 totients ascending, with multiplicity |
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
# Dressler (1970) N(x) = num phi(n)<=x, then N(x)/x -> A |
|
57
|
|
|
|
|
|
|
# A = zeta(2)*zeta(3)/zeta(6) = product primes 1+1/(p*(p-1)) |
|
58
|
|
|
|
|
|
|
# |
|
59
|
|
|
|
|
|
|
# 2p is a non-totient if 2p+1 composite (p not an S-G prime) |
|
60
|
|
|
|
|
|
|
# 4p is a non-totient iff 2p+1 and 4p+1 both composite |
|
61
|
|
|
|
|
|
|
# if n non-totient and 2n+1 composite then 2n also non-totient |
|
62
|
|
|
|
|
|
|
# |
|
63
|
3
|
|
|
3
|
|
32
|
use constant oeis_anum => 'A000010'; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
1644
|
|
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
sub ith { |
|
66
|
0
|
|
|
0
|
1
|
0
|
my ($self, $i) = @_; |
|
67
|
0
|
|
|
|
|
0
|
return _totient($i); |
|
68
|
|
|
|
|
|
|
} |
|
69
|
|
|
|
|
|
|
sub _totient { |
|
70
|
1135
|
|
|
1135
|
|
3977
|
my ($n) = @_; |
|
71
|
|
|
|
|
|
|
### _totient(): $n |
|
72
|
|
|
|
|
|
|
|
|
73
|
1135
|
50
|
|
|
|
2538
|
if (_is_infinite($n)) { |
|
74
|
0
|
|
|
|
|
0
|
return $n; |
|
75
|
|
|
|
|
|
|
} |
|
76
|
1135
|
100
|
|
|
|
2628
|
if ($n == 0) { |
|
77
|
98
|
|
|
|
|
281
|
return 0; |
|
78
|
|
|
|
|
|
|
} |
|
79
|
1037
|
|
|
|
|
2513
|
my ($good, @primes) = _prime_factors($n); |
|
80
|
1037
|
50
|
|
|
|
7964
|
return undef unless $good; |
|
81
|
|
|
|
|
|
|
|
|
82
|
1037
|
|
|
|
|
1480
|
my $prev = 0; |
|
83
|
1037
|
|
|
|
|
1186
|
my $ret = 1; |
|
84
|
1037
|
|
|
|
|
1638
|
foreach my $p (@primes) { |
|
85
|
1467
|
100
|
|
|
|
2448
|
if ($p == $prev) { |
|
86
|
362
|
|
|
|
|
928
|
$ret *= $p; |
|
87
|
|
|
|
|
|
|
} else { |
|
88
|
1105
|
|
|
|
|
1524
|
$ret *= $p - 1; |
|
89
|
1105
|
|
|
|
|
2125
|
$prev = $p; |
|
90
|
|
|
|
|
|
|
} |
|
91
|
|
|
|
|
|
|
} |
|
92
|
1037
|
|
|
|
|
3584
|
return $ret; |
|
93
|
|
|
|
|
|
|
} |
|
94
|
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
# totient(x)=p^a.q^b.r^c=n |
|
96
|
|
|
|
|
|
|
# seek a prime w for x with w-1 dividing in n |
|
97
|
|
|
|
|
|
|
# combinations of the primes of n to make w-1 |
|
98
|
|
|
|
|
|
|
# |
|
99
|
|
|
|
|
|
|
# factor 2*f of n, arising from prime 2*f+1 |
|
100
|
|
|
|
|
|
|
# |
|
101
|
|
|
|
|
|
|
# 8 arises from totient(15=3*5) = (3-1)*(5-1)=2*4 |
|
102
|
|
|
|
|
|
|
# 484=2*2*11*11 2*11=23 prime |
|
103
|
|
|
|
|
|
|
# |
|
104
|
|
|
|
|
|
|
sub pred { |
|
105
|
2
|
|
|
2
|
1
|
48876
|
my ($self, $value) = @_; |
|
106
|
|
|
|
|
|
|
### Totient pred(): $value |
|
107
|
|
|
|
|
|
|
|
|
108
|
2
|
50
|
|
|
|
8
|
if ($value <= 1) { |
|
109
|
0
|
|
|
|
|
0
|
return ($value == 1); # $value==0 no, $value==1 yes |
|
110
|
|
|
|
|
|
|
} |
|
111
|
2
|
50
|
|
|
|
133
|
if ($value % 2) { |
|
112
|
|
|
|
|
|
|
### no because odd ... |
|
113
|
0
|
|
|
|
|
0
|
return 0; |
|
114
|
|
|
|
|
|
|
} |
|
115
|
2
|
50
|
|
|
|
259
|
unless ($value <= 0xFFFF_FFFF) { |
|
116
|
0
|
|
|
|
|
0
|
return undef; |
|
117
|
|
|
|
|
|
|
} |
|
118
|
2
|
|
|
|
|
118
|
$value = "$value"; # numize any Math::BigInt for factors() |
|
119
|
2
|
50
|
|
|
|
37
|
if (_pred_f($value,$value)) { |
|
120
|
2
|
|
|
|
|
12
|
return 1; |
|
121
|
|
|
|
|
|
|
} |
|
122
|
0
|
|
|
|
|
0
|
return 0; |
|
123
|
|
|
|
|
|
|
} |
|
124
|
|
|
|
|
|
|
sub _pred_f { |
|
125
|
16
|
|
|
16
|
|
25
|
my ($n, $prev_factor) = @_; |
|
126
|
|
|
|
|
|
|
### _pred_f(): "n=$n prev=$prev_factor" |
|
127
|
|
|
|
|
|
|
|
|
128
|
16
|
100
|
|
|
|
32
|
if ($n & 1) { |
|
129
|
|
|
|
|
|
|
### no odd ... |
|
130
|
6
|
|
|
|
|
15
|
return 0; |
|
131
|
|
|
|
|
|
|
} |
|
132
|
|
|
|
|
|
|
|
|
133
|
10
|
|
|
|
|
13
|
$n >>= 1; |
|
134
|
|
|
|
|
|
|
### halved: $n |
|
135
|
10
|
50
|
|
|
|
20
|
if ($n == 1) { |
|
136
|
0
|
|
|
|
|
0
|
return 1; # totient(3)=2 occurs |
|
137
|
|
|
|
|
|
|
} |
|
138
|
|
|
|
|
|
|
|
|
139
|
10
|
|
|
|
|
39
|
foreach my $f (1, factors($n)) { |
|
140
|
|
|
|
|
|
|
### at: "n=$n f=$f" |
|
141
|
14
|
100
|
|
|
|
28
|
if ($f >= $prev_factor) { |
|
142
|
|
|
|
|
|
|
### f too big, chop search ... |
|
143
|
6
|
|
|
|
|
17
|
return 0; |
|
144
|
|
|
|
|
|
|
} |
|
145
|
8
|
|
|
|
|
16
|
my $p = 2*$f+1; |
|
146
|
|
|
|
|
|
|
### $p |
|
147
|
|
|
|
|
|
|
|
|
148
|
8
|
|
|
|
|
12
|
my $r = $n / $f; |
|
149
|
|
|
|
|
|
|
### divide out: "f=$f to r=$r" |
|
150
|
|
|
|
|
|
|
|
|
151
|
8
|
50
|
|
|
|
25
|
unless (is_prime($p)) { |
|
152
|
|
|
|
|
|
|
### no, not prime ... |
|
153
|
0
|
|
|
|
|
0
|
next; |
|
154
|
|
|
|
|
|
|
} |
|
155
|
|
|
|
|
|
|
|
|
156
|
8
|
|
|
|
|
10
|
for (;;) { |
|
157
|
14
|
100
|
|
|
|
28
|
if (_pred_f ($r, $f)) { # recurse |
|
158
|
2
|
|
|
|
|
6
|
return 1; |
|
159
|
|
|
|
|
|
|
} |
|
160
|
12
|
100
|
|
|
|
29
|
if ($r % $p) { |
|
161
|
4
|
|
|
|
|
8
|
last; |
|
162
|
|
|
|
|
|
|
} |
|
163
|
8
|
100
|
|
|
|
18
|
if ($r == $p) { |
|
164
|
2
|
|
|
|
|
6
|
return 1; |
|
165
|
|
|
|
|
|
|
} |
|
166
|
6
|
|
|
|
|
7
|
$r /= $p; |
|
167
|
|
|
|
|
|
|
### divide out prime: "p=$p to r=$r" |
|
168
|
|
|
|
|
|
|
} |
|
169
|
|
|
|
|
|
|
} |
|
170
|
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
### whole: "n=$n p=".(2*$n+1) |
|
172
|
0
|
0
|
|
|
|
|
if ($n >= $prev_factor) { |
|
173
|
|
|
|
|
|
|
### f too big, chop search ... |
|
174
|
0
|
|
|
|
|
|
return 0; |
|
175
|
|
|
|
|
|
|
} |
|
176
|
0
|
|
|
|
|
|
return is_prime(2*$n+1); |
|
177
|
|
|
|
|
|
|
} |
|
178
|
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
# sub _totient { |
|
181
|
|
|
|
|
|
|
# my ($x) = @_; |
|
182
|
|
|
|
|
|
|
# my $count = (($x >= 1) # y=1 always |
|
183
|
|
|
|
|
|
|
# + ($x > 2 && ($x&1)) # y=2 if $x odd |
|
184
|
|
|
|
|
|
|
# + ($x > 3 && ($x % 3) != 0) # y=3 |
|
185
|
|
|
|
|
|
|
# + ($x > 4 && ($x&1)) # y=4 if $x odd |
|
186
|
|
|
|
|
|
|
# ); |
|
187
|
|
|
|
|
|
|
# for (my $y = 5; $y < $x; $y++) { |
|
188
|
|
|
|
|
|
|
# $count += _coprime($x,$y); |
|
189
|
|
|
|
|
|
|
# } |
|
190
|
|
|
|
|
|
|
# return $count; |
|
191
|
|
|
|
|
|
|
# } |
|
192
|
|
|
|
|
|
|
# sub _coprime { # for x
|
|
193
|
|
|
|
|
|
|
# my ($x, $y) = @_; |
|
194
|
|
|
|
|
|
|
# #### _coprime(): "$x,$y" |
|
195
|
|
|
|
|
|
|
# if ($y > $x) { |
|
196
|
|
|
|
|
|
|
# return 0; |
|
197
|
|
|
|
|
|
|
# } |
|
198
|
|
|
|
|
|
|
# for (;;) { |
|
199
|
|
|
|
|
|
|
# if ($y <= 1) { |
|
200
|
|
|
|
|
|
|
# return ($y == 1); |
|
201
|
|
|
|
|
|
|
# } |
|
202
|
|
|
|
|
|
|
# ($x,$y) = ($y, $x % $y); |
|
203
|
|
|
|
|
|
|
# } |
|
204
|
|
|
|
|
|
|
# } |
|
205
|
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
1; |
|
208
|
|
|
|
|
|
|
__END__ |