line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-NumSeq. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-NumSeq is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-NumSeq is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-NumSeq. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
package Math::NumSeq::ReRound; |
19
|
2
|
|
|
2
|
|
14277
|
use 5.004; |
|
2
|
|
|
|
|
10
|
|
|
2
|
|
|
|
|
87
|
|
20
|
2
|
|
|
2
|
|
13
|
use strict; |
|
2
|
|
|
|
|
11
|
|
|
2
|
|
|
|
|
74
|
|
21
|
2
|
|
|
2
|
|
885
|
use POSIX 'ceil'; |
|
2
|
|
|
|
|
8123
|
|
|
2
|
|
|
|
|
19
|
|
22
|
2
|
|
|
2
|
|
1314
|
use List::Util 'max'; |
|
2
|
|
|
|
|
6
|
|
|
2
|
|
|
|
|
192
|
|
23
|
|
|
|
|
|
|
|
24
|
2
|
|
|
2
|
|
9
|
use vars '$VERSION','@ISA'; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
147
|
|
25
|
|
|
|
|
|
|
$VERSION = 71; |
26
|
|
|
|
|
|
|
|
27
|
2
|
|
|
2
|
|
789
|
use Math::NumSeq; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
60
|
|
28
|
2
|
|
|
2
|
|
640
|
use Math::NumSeq::Base::IterateIth; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
135
|
|
29
|
|
|
|
|
|
|
@ISA = ('Math::NumSeq::Base::IterateIth', |
30
|
|
|
|
|
|
|
'Math::NumSeq'); |
31
|
|
|
|
|
|
|
*_is_infinite = \&Math::NumSeq::_is_infinite; |
32
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
34
|
|
|
|
|
|
|
#use Smart::Comments; |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
# use constant name => Math::NumSeq::__('Repeated Rounding'); |
37
|
2
|
|
|
2
|
|
12
|
use constant description => Math::NumSeq::__('Repeated rounding up to multiple of N, N-1, ..., 1.'); |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
10
|
|
38
|
2
|
|
|
2
|
|
11
|
use constant values_min => 1; # at i=1 |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
83
|
|
39
|
2
|
|
|
2
|
|
11
|
use constant i_start => 1; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
97
|
|
40
|
2
|
|
|
2
|
|
10
|
use constant characteristic_increasing => 1; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
83
|
|
41
|
2
|
|
|
2
|
|
10
|
use constant characteristic_integer => 1; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
147
|
|
42
|
|
|
|
|
|
|
|
43
|
2
|
|
|
|
|
9
|
use constant parameter_info_array => |
44
|
|
|
|
|
|
|
[ |
45
|
|
|
|
|
|
|
{ name => 'extra_multiples', |
46
|
|
|
|
|
|
|
display => Math::NumSeq::__('Extra Multiples'), |
47
|
|
|
|
|
|
|
type => 'integer', |
48
|
|
|
|
|
|
|
default => '0', |
49
|
|
|
|
|
|
|
minimum => 0, |
50
|
|
|
|
|
|
|
width => 2, |
51
|
|
|
|
|
|
|
description => Math::NumSeq::__('Extra multiples to round up at each stage.'), |
52
|
|
|
|
|
|
|
}, |
53
|
2
|
|
|
2
|
|
16
|
]; |
|
2
|
|
|
|
|
3
|
|
54
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
56
|
|
|
|
|
|
|
# cf A007952 sieve+1 |
57
|
|
|
|
|
|
|
# A099361 sieve by primes |
58
|
|
|
|
|
|
|
# A099204 sieve by primes |
59
|
|
|
|
|
|
|
# A099207 sieve by primes |
60
|
|
|
|
|
|
|
# A099243 sieve by primes |
61
|
|
|
|
|
|
|
# A002960 square sieve |
62
|
|
|
|
|
|
|
# |
63
|
|
|
|
|
|
|
# A056533 sieve out even every 2nd,4th,6th,etc |
64
|
|
|
|
|
|
|
# A039672 sieve fibonacci style i+j prev terms |
65
|
|
|
|
|
|
|
# A056530 Flavius Josephus after 2nd round |
66
|
|
|
|
|
|
|
# A056531 Flavius Josephus after 4th round |
67
|
|
|
|
|
|
|
# A119446 cf A100461 |
68
|
|
|
|
|
|
|
# |
69
|
|
|
|
|
|
|
# A113749 k multiples |
70
|
|
|
|
|
|
|
# |
71
|
|
|
|
|
|
|
my @oeis_anum |
72
|
|
|
|
|
|
|
= ( |
73
|
|
|
|
|
|
|
# OEIS-Catalogue array begin |
74
|
|
|
|
|
|
|
'A002491', # # Mancala stones |
75
|
|
|
|
|
|
|
'A000960', # extra_multiples=1 # Flavius Josephus |
76
|
|
|
|
|
|
|
'A112557', # extra_multiples=2 # more Mancala stones ... |
77
|
|
|
|
|
|
|
'A112558', # extra_multiples=3 # more Mancala stones ... |
78
|
|
|
|
|
|
|
'A113742', # extra_multiples=4 # more Mancala stones ... |
79
|
|
|
|
|
|
|
'A113743', # extra_multiples=5 # more Mancala stones ... |
80
|
|
|
|
|
|
|
'A113744', # extra_multiples=6 # more Mancala stones ... |
81
|
|
|
|
|
|
|
'A113745', # extra_multiples=7 # more Mancala stones ... |
82
|
|
|
|
|
|
|
'A113746', # extra_multiples=8 # more Mancala stones ... |
83
|
|
|
|
|
|
|
'A113747', # extra_multiples=9 # more Mancala stones ... |
84
|
|
|
|
|
|
|
'A113748', # extra_multiples=10 # more Mancala stones ... |
85
|
|
|
|
|
|
|
# OEIS-Catalogue array end |
86
|
|
|
|
|
|
|
); |
87
|
|
|
|
|
|
|
sub oeis_anum { |
88
|
1
|
|
|
1
|
1
|
5
|
my ($self) = @_; |
89
|
1
|
|
|
|
|
4
|
return $oeis_anum[$self->{'extra_multiples'}]; |
90
|
|
|
|
|
|
|
} |
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
sub ith { |
96
|
180
|
|
|
180
|
1
|
45053
|
my ($self, $i) = @_; |
97
|
|
|
|
|
|
|
### ReRound ith(): $i |
98
|
|
|
|
|
|
|
|
99
|
180
|
50
|
|
|
|
501
|
if (_is_infinite($i)) { |
100
|
0
|
|
|
|
|
0
|
return $i; # don't loop forever if $i is +infinity |
101
|
|
|
|
|
|
|
} |
102
|
|
|
|
|
|
|
|
103
|
180
|
|
|
|
|
370
|
my $extra_multiples = $self->{'extra_multiples'}; |
104
|
|
|
|
|
|
|
### $extra_multiples |
105
|
|
|
|
|
|
|
|
106
|
180
|
|
|
|
|
470
|
for (my $m = $i-1; $m >= 1; $m--) { |
107
|
|
|
|
|
|
|
### add: (-$i % $m) + $extra_multiples*$m |
108
|
|
|
|
|
|
|
|
109
|
5489
|
|
|
|
|
13974
|
$i += (-$i % $m) + $extra_multiples*$m; |
110
|
|
|
|
|
|
|
} |
111
|
180
|
|
|
|
|
489
|
return $i; |
112
|
|
|
|
|
|
|
} |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
# 1,3,7,13,19 |
115
|
|
|
|
|
|
|
# 2->2+1=3 |
116
|
|
|
|
|
|
|
# 3->4+2=6->6+1=7 |
117
|
|
|
|
|
|
|
# 4->6+m3=9->10+m2=12->12+m1=13 |
118
|
|
|
|
|
|
|
# |
119
|
|
|
|
|
|
|
# next = prev + (-prev mod m) + k*m |
120
|
|
|
|
|
|
|
# next-k*m = prev + (-prev mod m) |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
sub pred { |
123
|
29
|
|
|
29
|
1
|
171
|
my ($self, $value) = @_; |
124
|
|
|
|
|
|
|
### ReRound pred(): $value |
125
|
|
|
|
|
|
|
|
126
|
29
|
|
|
|
|
52
|
my $extra_multiples = $self->{'extra_multiples'}; |
127
|
|
|
|
|
|
|
|
128
|
29
|
50
|
|
|
|
96
|
if (_is_infinite($value)) { |
129
|
0
|
|
|
|
|
0
|
return undef; |
130
|
|
|
|
|
|
|
} |
131
|
29
|
100
|
100
|
|
|
113
|
if ($value <= 1 || $value != int($value)) { |
132
|
13
|
|
|
|
|
33
|
return ($value == 1); |
133
|
|
|
|
|
|
|
} |
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
# special case m=1 stepping down to an even number |
136
|
16
|
100
|
|
|
|
38
|
if (($value -= $extra_multiples) % 2) { |
137
|
5
|
|
|
|
|
11
|
return 0; |
138
|
|
|
|
|
|
|
} |
139
|
|
|
|
|
|
|
|
140
|
11
|
|
|
|
|
15
|
my $m = 2; |
141
|
11
|
|
|
|
|
22
|
while ($value > $m) { |
142
|
|
|
|
|
|
|
### at: "value=$value m=$m" |
143
|
|
|
|
|
|
|
|
144
|
21
|
50
|
|
|
|
39
|
if (($value -= $extra_multiples*$m) <= 0) { |
145
|
|
|
|
|
|
|
### no, negative: $value |
146
|
0
|
|
|
|
|
0
|
return 0; |
147
|
|
|
|
|
|
|
} |
148
|
|
|
|
|
|
|
### subtract to: "value=$value" |
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
### rem: "modulus=".($m+1)." rem ".($value%($m+1)) |
151
|
21
|
|
|
|
|
21
|
my $rem; |
152
|
21
|
100
|
|
|
|
41
|
if (($rem = ($value % ($m+1))) == $m) { |
153
|
|
|
|
|
|
|
### no, remainder: "rem=$rem modulus=".($m+1) |
154
|
1
|
|
|
|
|
3
|
return 0; |
155
|
|
|
|
|
|
|
} |
156
|
|
|
|
|
|
|
|
157
|
20
|
|
|
|
|
21
|
$value -= $rem; |
158
|
20
|
|
|
|
|
42
|
$m++; |
159
|
|
|
|
|
|
|
} |
160
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
### final ... |
162
|
|
|
|
|
|
|
### $value |
163
|
|
|
|
|
|
|
### $m |
164
|
|
|
|
|
|
|
|
165
|
10
|
|
|
|
|
25
|
return ($value == $m); |
166
|
|
|
|
|
|
|
} |
167
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
# # v1.02 for leading underscore |
169
|
2
|
|
|
2
|
|
11
|
use constant 1.02 _PI => 4*atan2(1,1); # similar to Math::Complex pi() |
|
2
|
|
|
|
|
43
|
|
|
2
|
|
|
|
|
350
|
|
170
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
# value = m*1+m*2+m*3+...+m*i |
172
|
|
|
|
|
|
|
# value = m*i*(i+1)/2 |
173
|
|
|
|
|
|
|
# i*i + i - 2v/m = 0 |
174
|
|
|
|
|
|
|
# i = (-1 + sqrt(1 + 4*2v/m)) / 2 |
175
|
|
|
|
|
|
|
# = -1/2 + sqrt(1 + 4*2v/m)/2 |
176
|
|
|
|
|
|
|
# = -1/2 + sqrt(4 + 2v/m) |
177
|
|
|
|
|
|
|
# i -> sqrt(2v/m) |
178
|
|
|
|
|
|
|
# |
179
|
|
|
|
|
|
|
# as extra_multiples dominates the estimate changes from |
180
|
|
|
|
|
|
|
# extra_multiples==0 est = sqrt(pi*value) |
181
|
|
|
|
|
|
|
# up to |
182
|
|
|
|
|
|
|
# extra_multiples==m large est = sqrt(2*value/m) |
183
|
|
|
|
|
|
|
# |
184
|
|
|
|
|
|
|
# What formula that progressively morphs pi to 2/m ? |
185
|
|
|
|
|
|
|
# |
186
|
|
|
|
|
|
|
sub value_to_i_estimate { |
187
|
15
|
|
|
15
|
1
|
809
|
my ($self, $value) = @_; |
188
|
15
|
100
|
|
|
|
39
|
if ($value < 0) { return 0; } |
|
6
|
|
|
|
|
208
|
|
189
|
|
|
|
|
|
|
|
190
|
9
|
50
|
|
|
|
156
|
if ($self->{'extra_multiples'} == 0) { |
191
|
|
|
|
|
|
|
# use sqrt(pi)~=296/167 to preserve Math::BigInt |
192
|
9
|
|
|
|
|
33
|
return int( (sqrt(int($value)) * 296) / 167); |
193
|
|
|
|
|
|
|
} else { |
194
|
0
|
|
|
|
|
|
return int(sqrt(int (2 * $value / $self->{'extra_multiples'}))); |
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
# return int(sqrt(int ($value * _PI/($self->{'extra_multiples'}+1)**2)) |
197
|
|
|
|
|
|
|
# + ($self->{'extra_multiples'} > 0 |
198
|
|
|
|
|
|
|
# ? -0.5 + sqrt(4 + 2*$value/$self->{'extra_multiples'}) |
199
|
|
|
|
|
|
|
# : 0)); |
200
|
|
|
|
|
|
|
} |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
# # large extra_multiples |
205
|
|
|
|
|
|
|
# return int(sqrt(int (2 * $value |
206
|
|
|
|
|
|
|
# / ($self->{'extra_multiples'}+1)))); |
207
|
|
|
|
|
|
|
# |
208
|
|
|
|
|
|
|
# return int(sqrt(int (($value * 355) |
209
|
|
|
|
|
|
|
# / (113 * ($self->{'extra_multiples'}+1))))); |
210
|
|
|
|
|
|
|
# |
211
|
|
|
|
|
|
|
# |
212
|
|
|
|
|
|
|
# # extra_multiples==14 |
213
|
|
|
|
|
|
|
# return int(sqrt(int (_PI * $value)) * 429/2048); # 429=13*11*3 |
214
|
|
|
|
|
|
|
# |
215
|
|
|
|
|
|
|
# # extra_multiples==12 |
216
|
|
|
|
|
|
|
# return int(sqrt(int (_PI * $value)) * 462/2048); # 231/1024) # 11*7*3=231 |
217
|
|
|
|
|
|
|
# |
218
|
|
|
|
|
|
|
# # extra_multiples==10 |
219
|
|
|
|
|
|
|
# return int(sqrt(int (_PI * $value))) * 126/512; # 63/256; # 7*3*2=126 |
220
|
|
|
|
|
|
|
# |
221
|
|
|
|
|
|
|
# # extra_multiples==8 |
222
|
|
|
|
|
|
|
# return int(sqrt(int (_PI * $value))) * 35/128; # 7*5=35 |
223
|
|
|
|
|
|
|
# |
224
|
|
|
|
|
|
|
# # extra_multiples==6 |
225
|
|
|
|
|
|
|
# return int(sqrt(int (_PI * $value))) * 10/32; # 5/16 # 5*2=10 |
226
|
|
|
|
|
|
|
# |
227
|
|
|
|
|
|
|
# # extra_multiples==4 |
228
|
|
|
|
|
|
|
# return int(sqrt(int (_PI * $value))) * 3/8; |
229
|
|
|
|
|
|
|
# |
230
|
|
|
|
|
|
|
# # extra_multiples==2 |
231
|
|
|
|
|
|
|
# return int(sqrt(int (_PI * $value))) * 1/2; |
232
|
|
|
|
|
|
|
# |
233
|
|
|
|
|
|
|
# # extra_multiples==0 |
234
|
|
|
|
|
|
|
# return int(sqrt(int (_PI * $value))) * 1/1; |
235
|
|
|
|
|
|
|
# |
236
|
|
|
|
|
|
|
# 2 1 |
237
|
|
|
|
|
|
|
# 4 11 |
238
|
|
|
|
|
|
|
# 6 1010 |
239
|
|
|
|
|
|
|
# 8 100011 |
240
|
|
|
|
|
|
|
# 10 1111110 |
241
|
|
|
|
|
|
|
# 12 111001110 |
242
|
|
|
|
|
|
|
# 14 110101101 |
243
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
# |
245
|
|
|
|
|
|
|
# |
246
|
|
|
|
|
|
|
# # extra_multiples==11 |
247
|
|
|
|
|
|
|
# return int(sqrt(int (1/_PI * $value)) * 1024/1386); # 512/693); |
248
|
|
|
|
|
|
|
# |
249
|
|
|
|
|
|
|
# # extra_multiples==9 |
250
|
|
|
|
|
|
|
# return int(sqrt(int (1/_PI * $value)) * 256/315); |
251
|
|
|
|
|
|
|
# |
252
|
|
|
|
|
|
|
# # extra_multiples==7 |
253
|
|
|
|
|
|
|
# return int(sqrt(int (1/_PI * $value)) * 64/70); # 32/35; |
254
|
|
|
|
|
|
|
# |
255
|
|
|
|
|
|
|
# # extra_multiples==5 |
256
|
|
|
|
|
|
|
# return int(sqrt(int (1/_PI * $value))) * 16/15; |
257
|
|
|
|
|
|
|
# |
258
|
|
|
|
|
|
|
# # extra_multiples==3 |
259
|
|
|
|
|
|
|
# return int(sqrt(int (1/_PI * $value))) * 4/3; |
260
|
|
|
|
|
|
|
# |
261
|
|
|
|
|
|
|
# # extra_multiples==1 |
262
|
|
|
|
|
|
|
# return int(sqrt(int (1/_PI * $value ))) * 2/1; |
263
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
} |
265
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
1; |
267
|
|
|
|
|
|
|
__END__ |