line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-NumSeq. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-NumSeq is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-NumSeq is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-NumSeq. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
package Math::NumSeq::PythagoreanHypots; |
19
|
1
|
|
|
1
|
|
3321
|
use 5.004; |
|
1
|
|
|
|
|
4
|
|
|
1
|
|
|
|
|
53
|
|
20
|
1
|
|
|
1
|
|
8
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
65
|
|
21
|
|
|
|
|
|
|
|
22
|
1
|
|
|
1
|
|
5
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
4
|
|
|
1
|
|
|
|
|
92
|
|
23
|
|
|
|
|
|
|
$VERSION = 71; |
24
|
|
|
|
|
|
|
|
25
|
1
|
|
|
1
|
|
5
|
use Math::NumSeq 7; # v.7 for _is_infinite() |
|
1
|
|
|
|
|
15
|
|
|
1
|
|
|
|
|
59
|
|
26
|
|
|
|
|
|
|
@ISA = ('Math::NumSeq'); |
27
|
|
|
|
|
|
|
*_is_infinite = \&Math::NumSeq::_is_infinite; |
28
|
|
|
|
|
|
|
|
29
|
1
|
|
|
1
|
|
7
|
use Math::NumSeq::Primes; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
29
|
|
30
|
1
|
|
|
1
|
|
6
|
use Math::Prime::XS 0.23 'is_prime'; # version 0.23 fix for 1928099 |
|
1
|
|
|
|
|
23
|
|
|
1
|
|
|
|
|
83
|
|
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
33
|
|
|
|
|
|
|
#use Smart::Comments; |
34
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
# use constant name => Math::NumSeq::__('Pyathagorean Hypotenuses'); |
37
|
1
|
|
|
1
|
|
4
|
use constant description => Math::NumSeq::__('The hypotenuses of Pythagorean triples, ie. integers C for which there\'s some A>=1,B>=1 satisfying A^2+B^2=C^2. Primitive hypotenuses are where A,B have no common factor.'); |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
6
|
|
38
|
1
|
|
|
1
|
|
7
|
use constant characteristic_increasing => 1; |
|
1
|
|
|
|
|
11
|
|
|
1
|
|
|
|
|
51
|
|
39
|
1
|
|
|
1
|
|
6
|
use constant characteristic_integer => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
53
|
|
40
|
1
|
|
|
1
|
|
6
|
use constant values_min => 5; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
50
|
|
41
|
1
|
|
|
1
|
|
5
|
use constant i_start => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
137
|
|
42
|
|
|
|
|
|
|
|
43
|
1
|
|
|
|
|
6
|
use constant parameter_info_array => |
44
|
|
|
|
|
|
|
[ { |
45
|
|
|
|
|
|
|
name => 'pythagorean_type', |
46
|
|
|
|
|
|
|
type => 'enum', |
47
|
|
|
|
|
|
|
default => 'all', |
48
|
|
|
|
|
|
|
choices => ['all','primitive'], |
49
|
|
|
|
|
|
|
choices_display => [Math::NumSeq::__('All'), |
50
|
|
|
|
|
|
|
Math::NumSeq::__('Primitive'), |
51
|
|
|
|
|
|
|
], |
52
|
|
|
|
|
|
|
}, |
53
|
1
|
|
|
1
|
|
6
|
]; |
|
1
|
|
|
|
|
3
|
|
54
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
# cf A002144 - primes 4n+1, the primitive elements of hypots x!=y |
58
|
|
|
|
|
|
|
# -1 is a quadratic residue ... |
59
|
|
|
|
|
|
|
# A002365 - the "y" of prime "c" ?? |
60
|
|
|
|
|
|
|
# A002366 - the "x" of prime "c" ?? |
61
|
|
|
|
|
|
|
# A046083 - the "a" smaller number, ordered by "c" |
62
|
|
|
|
|
|
|
# A046084 - the "b" second number, ordered by "c" |
63
|
|
|
|
|
|
|
# |
64
|
|
|
|
|
|
|
# A008846 - primitives, x,y no common factor |
65
|
|
|
|
|
|
|
# A004613 - all prime factors are 4n+1, is 1 then primitive hypots |
66
|
|
|
|
|
|
|
# |
67
|
|
|
|
|
|
|
# A009000 - hypots with repetitions |
68
|
|
|
|
|
|
|
# A009012 - "b" second number, ordered by "b", with repetitions |
69
|
|
|
|
|
|
|
# |
70
|
|
|
|
|
|
|
my %oeis_anum = (all => 'A009003', # distinct a!=b and a,b>0 |
71
|
|
|
|
|
|
|
primitive => 'A008846', |
72
|
|
|
|
|
|
|
); |
73
|
|
|
|
|
|
|
# OEIS-Catalogue: A009003 |
74
|
|
|
|
|
|
|
# OEIS-Catalogue: A008846 pythagorean_type=primitive |
75
|
|
|
|
|
|
|
sub oeis_anum { |
76
|
2
|
|
|
2
|
1
|
9
|
my ($self) = @_; |
77
|
2
|
|
|
|
|
9
|
return $oeis_anum{$self->{'pythagorean_type'}}; |
78
|
|
|
|
|
|
|
} |
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
sub rewind { |
83
|
6
|
|
|
6
|
1
|
2070
|
my ($self) = @_; |
84
|
6
|
|
|
|
|
17
|
$self->{'array'} = []; |
85
|
6
|
|
|
|
|
193
|
$self->{'i'} = $self->i_start; |
86
|
6
|
|
|
|
|
28
|
$self->{'hi'} = 1; |
87
|
|
|
|
|
|
|
} |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
sub next { |
90
|
24
|
|
|
24
|
1
|
1405
|
my ($self) = @_; |
91
|
24
|
|
|
|
|
48
|
my $array = $self->{'array'}; |
92
|
24
|
|
|
|
|
28
|
for (;;) { |
93
|
28
|
100
|
|
|
|
84
|
if (defined (my $value = shift @$array)) { |
94
|
24
|
|
|
|
|
90
|
return ($self->{'i'}++, |
95
|
|
|
|
|
|
|
$value); |
96
|
|
|
|
|
|
|
} |
97
|
4
|
|
|
|
|
9
|
my $lo = $self->{'hi'} + 1; |
98
|
4
|
|
|
|
|
11
|
$self->{'hi'} = my $hi = $lo + 1000; |
99
|
4
|
|
|
|
|
15
|
@$array = _hypots_block ($self, $lo, $hi); |
100
|
|
|
|
|
|
|
} |
101
|
|
|
|
|
|
|
} |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
sub _hypots_block { |
104
|
4
|
|
|
4
|
|
10
|
my ($self, $lo, $hi) = @_; |
105
|
|
|
|
|
|
|
|
106
|
4
|
100
|
|
|
|
17
|
if ($self->{'pythagorean_type'} eq 'primitive') { |
107
|
2
|
|
|
|
|
74
|
return grep {$self->pred($_)} $lo .. $hi; |
|
2002
|
|
|
|
|
3779
|
|
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
} else { |
110
|
2
|
|
|
|
|
3
|
my %hypots; |
111
|
2
|
|
|
|
|
10
|
foreach my $p (grep {($_ & 3)==1} |
|
336
|
|
|
|
|
664
|
|
112
|
|
|
|
|
|
|
Math::NumSeq::Primes::_primes_list(2, $hi)) { |
113
|
160
|
|
|
|
|
376
|
@hypots{map {$_*$p} |
|
1296
|
|
|
|
|
2939
|
|
114
|
|
|
|
|
|
|
(int(($lo+$p-1)/$p) .. int($hi/$p)) |
115
|
|
|
|
|
|
|
} = (); |
116
|
|
|
|
|
|
|
} |
117
|
2
|
|
|
|
|
182
|
return sort {$a<=>$b} keys %hypots; |
|
8991
|
|
|
|
|
8596
|
|
118
|
|
|
|
|
|
|
} |
119
|
|
|
|
|
|
|
} |
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
sub pred { |
122
|
2110
|
|
|
2110
|
1
|
3310
|
my ($self, $value) = @_; |
123
|
|
|
|
|
|
|
### pred: $value |
124
|
|
|
|
|
|
|
|
125
|
2110
|
100
|
66
|
|
|
6724
|
if ($value < 5 |
|
|
|
100
|
|
|
|
|
126
|
|
|
|
|
|
|
|| _is_infinite($value) |
127
|
|
|
|
|
|
|
|| $value != int($value)) { |
128
|
53
|
|
|
|
|
127
|
return 0; |
129
|
|
|
|
|
|
|
} |
130
|
|
|
|
|
|
|
|
131
|
2057
|
|
|
|
|
3845
|
my $pythagorean_type = $self->{'pythagorean_type'}; |
132
|
|
|
|
|
|
|
### $pythagorean_type |
133
|
|
|
|
|
|
|
|
134
|
2057
|
100
|
|
|
|
4136
|
unless ($value % 2) { |
135
|
|
|
|
|
|
|
### even ... |
136
|
1024
|
100
|
|
|
|
1898
|
if ($pythagorean_type ne 'all') { |
137
|
|
|
|
|
|
|
### primitive and prime never even ... |
138
|
1014
|
|
|
|
|
2468
|
return 0; |
139
|
|
|
|
|
|
|
} |
140
|
10
|
|
|
|
|
9
|
do { |
141
|
18
|
|
|
|
|
36
|
$value /= 2; |
142
|
|
|
|
|
|
|
} until ($value % 2); |
143
|
|
|
|
|
|
|
} |
144
|
1043
|
50
|
|
|
|
1855
|
unless ($value <= 0xFFFF_FFFF) { |
145
|
0
|
|
|
|
|
0
|
return undef; |
146
|
|
|
|
|
|
|
} |
147
|
1043
|
|
|
|
|
1193
|
$value = "$value"; # numize Math::BigInt for speed |
148
|
|
|
|
|
|
|
|
149
|
1043
|
|
|
|
|
1857
|
my $limit = int(sqrt($value)); |
150
|
|
|
|
|
|
|
|
151
|
1043
|
|
|
|
|
2150
|
for (my $p = 3; $p <= $limit; $p += 2) { |
152
|
4940
|
100
|
|
|
|
11921
|
if (($value % $p) == 0) { |
153
|
698
|
100
|
|
|
|
1176
|
if (($p & 3) == 1) { |
154
|
|
|
|
|
|
|
### found 4k+1 prime: $p |
155
|
193
|
50
|
|
|
|
358
|
if ($pythagorean_type eq 'all') { |
156
|
0
|
|
|
|
|
0
|
return 1; |
157
|
|
|
|
|
|
|
} |
158
|
|
|
|
|
|
|
} else { |
159
|
|
|
|
|
|
|
### found 4k+3 prime: $p |
160
|
505
|
100
|
|
|
|
974
|
if ($pythagorean_type eq 'primitive') { |
161
|
501
|
|
|
|
|
1206
|
return 0; |
162
|
|
|
|
|
|
|
} |
163
|
|
|
|
|
|
|
} |
164
|
|
|
|
|
|
|
|
165
|
197
|
|
|
|
|
217
|
do { |
166
|
243
|
|
|
|
|
573
|
$value /= $p; |
167
|
|
|
|
|
|
|
} while (($value % $p) == 0); |
168
|
|
|
|
|
|
|
|
169
|
197
|
|
|
|
|
464
|
$limit = int(sqrt($value)); # new smaller limit |
170
|
|
|
|
|
|
|
### divide out prime: "$p new limit $limit" |
171
|
|
|
|
|
|
|
} |
172
|
|
|
|
|
|
|
} |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
# $value now 1 or prime |
175
|
542
|
100
|
|
|
|
961
|
if ($pythagorean_type eq 'primitive') { |
176
|
|
|
|
|
|
|
# all, check this isn't a 4k+3 prime |
177
|
520
|
|
|
|
|
1671
|
return ($value % 4) != 3; |
178
|
|
|
|
|
|
|
} else { |
179
|
|
|
|
|
|
|
# all, last chance to see a 4k+1 prime |
180
|
22
|
|
100
|
|
|
91
|
return ($value > 1 |
181
|
|
|
|
|
|
|
&& ($value % 4) == 1); |
182
|
|
|
|
|
|
|
} |
183
|
|
|
|
|
|
|
} |
184
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
1; |
186
|
|
|
|
|
|
|
__END__ |