line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-NumSeq. |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Math-NumSeq is free software; you can redistribute it and/or modify |
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
8
|
|
|
|
|
|
|
# version. |
9
|
|
|
|
|
|
|
# |
10
|
|
|
|
|
|
|
# Math-NumSeq is distributed in the hope that it will be useful, but |
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
13
|
|
|
|
|
|
|
# for more details. |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
16
|
|
|
|
|
|
|
# with Math-NumSeq. If not, see . |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# Christopher Williamson, "An Overview of the Thue-Morse Sequence", |
20
|
|
|
|
|
|
|
# www.math.washington.edu/~morrow/336_12/papers/christopher.pdf |
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
package Math::NumSeq::DigitSumModulo; |
24
|
1
|
|
|
1
|
|
2792
|
use 5.004; |
|
1
|
|
|
|
|
4
|
|
|
1
|
|
|
|
|
47
|
|
25
|
1
|
|
|
1
|
|
8
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
38
|
|
26
|
1
|
|
|
1
|
|
6
|
use List::Util 'sum'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
128
|
|
27
|
|
|
|
|
|
|
|
28
|
1
|
|
|
1
|
|
7
|
use vars '$VERSION', '@ISA'; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
76
|
|
29
|
|
|
|
|
|
|
$VERSION = 71; |
30
|
|
|
|
|
|
|
|
31
|
1
|
|
|
1
|
|
6
|
use Math::NumSeq; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
30
|
|
32
|
1
|
|
|
1
|
|
6
|
use Math::NumSeq::Base::IterateIth; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
213
|
|
33
|
|
|
|
|
|
|
@ISA = ('Math::NumSeq::Base::IterateIth', |
34
|
|
|
|
|
|
|
'Math::NumSeq'); |
35
|
|
|
|
|
|
|
*_is_infinite = \&Math::NumSeq::_is_infinite; |
36
|
|
|
|
|
|
|
|
37
|
1
|
|
|
1
|
|
8
|
use Math::NumSeq::Repdigits; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
44
|
|
38
|
|
|
|
|
|
|
*_digit_split_lowtohigh = \&Math::NumSeq::Repdigits::_digit_split_lowtohigh; |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
41
|
|
|
|
|
|
|
#use Smart::Comments; |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
|
44
|
1
|
|
|
1
|
|
6
|
use Math::NumSeq::Base::Digits; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
97
|
|
45
|
1
|
|
|
|
|
14
|
use constant parameter_info_array => |
46
|
|
|
|
|
|
|
[ Math::NumSeq::Base::Digits->parameter_info_list, |
47
|
|
|
|
|
|
|
{ name => 'modulus', |
48
|
|
|
|
|
|
|
share_key => 'modulus_0', |
49
|
|
|
|
|
|
|
type => 'integer', |
50
|
|
|
|
|
|
|
display => Math::NumSeq::__('Modulus'), |
51
|
|
|
|
|
|
|
default => 0, |
52
|
|
|
|
|
|
|
minimum => 0, |
53
|
|
|
|
|
|
|
width => 3, |
54
|
|
|
|
|
|
|
description => Math::NumSeq::__('Modulus, or 0 to use the radix.'), |
55
|
|
|
|
|
|
|
}, |
56
|
1
|
|
|
1
|
|
6
|
]; |
|
1
|
|
|
|
|
2
|
|
57
|
|
|
|
|
|
|
|
58
|
1
|
|
|
1
|
|
5
|
use constant i_start => 0; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
52
|
|
59
|
1
|
|
|
1
|
|
5
|
use constant characteristic_smaller => 1; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
40
|
|
60
|
1
|
|
|
1
|
|
6
|
use constant characteristic_integer => 1; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
53
|
|
61
|
1
|
|
|
1
|
|
5
|
use constant values_min => 0; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
524
|
|
62
|
|
|
|
|
|
|
sub values_max { |
63
|
9
|
|
|
9
|
1
|
11
|
my ($self) = @_; |
64
|
9
|
50
|
|
|
|
27
|
if (my $modulus = $self->{'modulus'}) { |
65
|
9
|
|
|
|
|
31
|
return $modulus - 1; |
66
|
|
|
|
|
|
|
} |
67
|
0
|
|
|
|
|
0
|
return $self->{'radix'} - 1; |
68
|
|
|
|
|
|
|
} |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
# use constant name => Math::NumSeq::__('Digit Sum Modulo'); |
71
|
|
|
|
|
|
|
sub description { |
72
|
2
|
|
|
2
|
1
|
9
|
my ($self) = @_; |
73
|
2
|
100
|
|
|
|
6
|
if (ref $self) { |
74
|
1
|
|
|
|
|
3
|
my $radix = $self->{'radix'}; |
75
|
1
|
50
|
|
|
|
4
|
my $modulus = ($self->{'modulus'} ? $self->{'modulus'} : $radix); |
76
|
1
|
50
|
33
|
|
|
4
|
return Math::NumSeq::__('Sum digits of i in base ') . $radix |
77
|
|
|
|
|
|
|
. Math::NumSeq::__(', then that sum taken modulo ') . $modulus |
78
|
|
|
|
|
|
|
. ($radix == 2 && $modulus == 2 |
79
|
|
|
|
|
|
|
? Math::NumSeq::__(", which means bitwise parity.") |
80
|
|
|
|
|
|
|
: Math::NumSeq::__('.')); |
81
|
|
|
|
|
|
|
} else { |
82
|
1
|
|
|
|
|
4
|
return Math::NumSeq::__('Sum of the digits in the given radix, modulo that radix or a given modulus. Eg. for binary this is the bitwise parity.'); |
83
|
|
|
|
|
|
|
} |
84
|
|
|
|
|
|
|
} |
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
# cf A001969 "evil" numbers with even 1s |
87
|
|
|
|
|
|
|
# A000069 "odious" numbers with odd 1s |
88
|
|
|
|
|
|
|
# A026147 position of n'th thue-morse parity 1 |
89
|
|
|
|
|
|
|
# A059448 1,0 parity of number of 0 digits when written in binary |
90
|
|
|
|
|
|
|
# A001285 Thue-Morse as 1,2 |
91
|
|
|
|
|
|
|
# A010059 Thue-Morse as 1,0 |
92
|
|
|
|
|
|
|
# A010060 Thue-Morse as 0,1 |
93
|
|
|
|
|
|
|
# A106400 Thue-Morse as 1,-1 1, -1, -1, 1, -1, 1 |
94
|
|
|
|
|
|
|
# A186032 Thue-Morse as -1,1 offset one 1, 1, -1, 1, -1 |
95
|
|
|
|
|
|
|
# A108784 Thue-Morse as -1,1 1, 1, -1, 1, -1 |
96
|
|
|
|
|
|
|
# A076826 Thue-Morse as 0,2 with a(2n+1)=1 in between |
97
|
|
|
|
|
|
|
# A080813 lexico is 1,1,0,1,1,0 then thue-morse 0,1 thue-morse |
98
|
|
|
|
|
|
|
# |
99
|
|
|
|
|
|
|
# A143579 alternately odious and evil, permutation of the integers |
100
|
|
|
|
|
|
|
# A143580 alternately, modulo 2 |
101
|
|
|
|
|
|
|
# seems A143580 == A010059 thue-morse 1,0 |
102
|
|
|
|
|
|
|
# |
103
|
|
|
|
|
|
|
my %oeis_anum = ('2,2' => 'A010060', |
104
|
|
|
|
|
|
|
'3,3' => 'A053838', |
105
|
|
|
|
|
|
|
'4,4' => 'A053839', # radix=4 |
106
|
|
|
|
|
|
|
'5,5' => 'A053840', # radix=5 |
107
|
|
|
|
|
|
|
'6,6' => 'A053841', # radix=6 |
108
|
|
|
|
|
|
|
'7,7' => 'A053842', # radix=7 |
109
|
|
|
|
|
|
|
'8,8' => 'A053843', # radix=8 |
110
|
|
|
|
|
|
|
'9,9' => 'A053844', # radix=9 |
111
|
|
|
|
|
|
|
'10,10' => 'A053837', |
112
|
|
|
|
|
|
|
# OEIS-Catalogue: A053837 |
113
|
|
|
|
|
|
|
# OEIS-Catalogue: A053844 radix=9 |
114
|
|
|
|
|
|
|
# OEIS-Catalogue: A053843 radix=8 |
115
|
|
|
|
|
|
|
# OEIS-Catalogue: A053842 radix=7 |
116
|
|
|
|
|
|
|
# OEIS-Catalogue: A053841 radix=6 |
117
|
|
|
|
|
|
|
# OEIS-Catalogue: A053840 radix=5 |
118
|
|
|
|
|
|
|
# OEIS-Catalogue: A053839 radix=4 |
119
|
|
|
|
|
|
|
# OEIS-Catalogue: A053838 radix=3 |
120
|
|
|
|
|
|
|
# OEIS-Catalogue: A010060 radix=2 # binary, Thue-Morse |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
'10,2' => 'A179081', |
123
|
|
|
|
|
|
|
# OEIS-Catalogue: A179081 modulus=2 |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
'2,3' => 'A071858', |
126
|
|
|
|
|
|
|
'2,4' => 'A179868', |
127
|
|
|
|
|
|
|
# OEIS-Catalogue: A071858 radix=2 modulus=3 |
128
|
|
|
|
|
|
|
# OEIS-Catalogue: A179868 radix=2 modulus=4 |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
'3,4' => 'A051329', # ternary modulo 4 |
131
|
|
|
|
|
|
|
# OEIS-Catalogue: A051329 radix=3 modulus=4 |
132
|
|
|
|
|
|
|
); |
133
|
|
|
|
|
|
|
sub oeis_anum { |
134
|
1
|
|
|
1
|
1
|
5
|
my ($self) = @_; |
135
|
1
|
|
|
|
|
3
|
my $radix = $self->{'radix'}; |
136
|
1
|
|
33
|
|
|
5
|
my $modulus = ($self->{'modulus'} || $radix); |
137
|
|
|
|
|
|
|
|
138
|
1
|
50
|
|
|
|
4
|
if ($modulus == 1) { |
139
|
0
|
|
|
|
|
0
|
return 'A000004'; # all zeros |
140
|
|
|
|
|
|
|
# OEIS-Other: A000004 modulus=1 |
141
|
|
|
|
|
|
|
} |
142
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
# radix==M+1, 2M+1 etc any radix==1modM is same as whole modulo M. |
144
|
|
|
|
|
|
|
# Including radix=odd modulus=2 is 0,1 repeating. |
145
|
1
|
50
|
|
|
|
5
|
if (($radix % $modulus) == 1) { |
146
|
|
|
|
|
|
|
### ENHANCE-ME: Modulo a-num without creating object, maybe |
147
|
0
|
|
|
|
|
0
|
require Math::NumSeq::Modulo; |
148
|
0
|
|
|
|
|
0
|
return Math::NumSeq::Modulo->new(modulus=>$modulus)->oeis_anum; |
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
# OEIS-Other: A000035 radix=3 modulus=2 # n mod 2, parity |
151
|
|
|
|
|
|
|
# OEIS-Other: A000035 radix=5 modulus=2 |
152
|
|
|
|
|
|
|
# OEIS-Other: A000035 radix=37 modulus=2 |
153
|
|
|
|
|
|
|
# OEIS-Other: A010872 radix=4 modulus=3 # n mod 3 |
154
|
|
|
|
|
|
|
} |
155
|
|
|
|
|
|
|
|
156
|
1
|
|
|
|
|
4
|
return $oeis_anum{"$radix,$modulus"}; |
157
|
|
|
|
|
|
|
} |
158
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
# ENHANCE-ME: |
160
|
|
|
|
|
|
|
# next() is +1 mod m, except when xx09 wraps to xx10 which is +2, |
161
|
|
|
|
|
|
|
# or when x099 to x100 then +3, etc extra is how many low 9s |
162
|
|
|
|
|
|
|
# |
163
|
|
|
|
|
|
|
# sub next { |
164
|
|
|
|
|
|
|
# my ($self) = @_; |
165
|
|
|
|
|
|
|
# my $radix = $self->{'radix'}; |
166
|
|
|
|
|
|
|
# my $sum = $self->{'sum'} + 1; |
167
|
|
|
|
|
|
|
# if (++$self->{'digits'}->[0] >= $radix) { |
168
|
|
|
|
|
|
|
# $self->{'digits'}->[0] = 0; |
169
|
|
|
|
|
|
|
# my $i = 1; |
170
|
|
|
|
|
|
|
# for (;;) { |
171
|
|
|
|
|
|
|
# $sum++; |
172
|
|
|
|
|
|
|
# if (++$self->{'digits'}->[$i] < $radix) { |
173
|
|
|
|
|
|
|
# last; |
174
|
|
|
|
|
|
|
# } |
175
|
|
|
|
|
|
|
# } |
176
|
|
|
|
|
|
|
# } |
177
|
|
|
|
|
|
|
# return ($self->{'i'}++, ($self->{'sum'} = ($sum % $radix))); |
178
|
|
|
|
|
|
|
# } |
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
sub ith { |
181
|
93
|
|
|
93
|
1
|
181
|
my ($self, $i) = @_; |
182
|
|
|
|
|
|
|
|
183
|
93
|
50
|
|
|
|
371
|
if (_is_infinite ($i)) { |
184
|
0
|
|
|
|
|
0
|
return $i; |
185
|
|
|
|
|
|
|
} |
186
|
93
|
|
|
|
|
581
|
my $radix = $self->{'radix'}; |
187
|
93
|
|
33
|
|
|
239
|
return sum(0,_digit_split_lowtohigh($i,$radix)) |
188
|
|
|
|
|
|
|
% ($self->{'modulus'} || $radix); |
189
|
|
|
|
|
|
|
} |
190
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
sub pred { |
192
|
9
|
|
|
9
|
1
|
41
|
my ($self, $value) = @_; |
193
|
9
|
|
33
|
|
|
42
|
return ($value == int($value) |
194
|
|
|
|
|
|
|
&& $value >= 0 |
195
|
|
|
|
|
|
|
&& $value <= $self->values_max); |
196
|
|
|
|
|
|
|
} |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
1; |
199
|
|
|
|
|
|
|
__END__ |