| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
## Math/MatrixDecomposition/Eigen.pm --- eigenvalues and eigenvectors. |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# Copyright (C) 2010 Ralph Schleicher. All rights reserved. |
|
4
|
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
# This program is free software; you can redistribute it and/or |
|
6
|
|
|
|
|
|
|
# modify it under the same terms as Perl itself. |
|
7
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
# Commentary: |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Code derived from EiSPACK procedures and |
|
11
|
|
|
|
|
|
|
# Jama's 'EigenvalueDecomposition' class. |
|
12
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
## Code: |
|
14
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
package Math::MatrixDecomposition::Eigen; |
|
16
|
|
|
|
|
|
|
|
|
17
|
1
|
|
|
1
|
|
68965
|
use strict; |
|
|
1
|
|
|
|
|
12
|
|
|
|
1
|
|
|
|
|
31
|
|
|
18
|
1
|
|
|
1
|
|
5
|
use warnings; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
30
|
|
|
19
|
1
|
|
|
1
|
|
4
|
use Carp; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
58
|
|
|
20
|
1
|
|
|
1
|
|
5
|
use Exporter qw(import); |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
34
|
|
|
21
|
1
|
|
|
1
|
|
5
|
use POSIX qw(:float_h); |
|
|
1
|
|
|
|
|
8
|
|
|
|
1
|
|
|
|
|
10
|
|
|
22
|
1
|
|
|
1
|
|
1830
|
use Math::Complex qw(); |
|
|
1
|
|
|
|
|
12293
|
|
|
|
1
|
|
|
|
|
42
|
|
|
23
|
1
|
|
|
1
|
|
12
|
use Scalar::Util qw(looks_like_number); |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
88
|
|
|
24
|
|
|
|
|
|
|
|
|
25
|
1
|
|
|
1
|
|
633
|
use Math::BLAS; |
|
|
1
|
|
|
|
|
7290
|
|
|
|
1
|
|
|
|
|
143
|
|
|
26
|
1
|
|
|
1
|
|
544
|
use Math::MatrixDecomposition::Util qw(:all); |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
181
|
|
|
27
|
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
BEGIN |
|
29
|
|
|
|
|
|
|
{ |
|
30
|
1
|
|
|
1
|
|
5
|
our $VERSION = '1.06'; |
|
31
|
1
|
|
|
|
|
6183
|
our @EXPORT_OK = qw(eig); |
|
32
|
|
|
|
|
|
|
} |
|
33
|
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
# Calculate eigenvalues and eigenvectors (convenience function). |
|
35
|
|
|
|
|
|
|
sub eig |
|
36
|
|
|
|
|
|
|
{ |
|
37
|
0
|
|
|
0
|
1
|
0
|
__PACKAGE__->new (@_); |
|
38
|
|
|
|
|
|
|
} |
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
# Standard constructor. |
|
41
|
|
|
|
|
|
|
sub new |
|
42
|
|
|
|
|
|
|
{ |
|
43
|
1
|
|
|
1
|
1
|
14
|
my $class = shift; |
|
44
|
1
|
|
|
|
|
5
|
my $self = |
|
45
|
|
|
|
|
|
|
{ |
|
46
|
|
|
|
|
|
|
# Eigenvalues (a vector). |
|
47
|
|
|
|
|
|
|
value => undef, |
|
48
|
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
# Eigenvectors (an array of vectors). |
|
50
|
|
|
|
|
|
|
vector => undef, |
|
51
|
|
|
|
|
|
|
}; |
|
52
|
|
|
|
|
|
|
|
|
53
|
1
|
|
33
|
|
|
8
|
bless ($self, ref ($class) || $class); |
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
# Process arguments. |
|
56
|
1
|
50
|
|
|
|
4
|
$self->decompose (@_) |
|
57
|
|
|
|
|
|
|
if @_ > 0; |
|
58
|
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
# Return object. |
|
60
|
1
|
|
|
|
|
4
|
$self; |
|
61
|
|
|
|
|
|
|
} |
|
62
|
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
# Calculate eigenvalues and eigenvectors. |
|
64
|
|
|
|
|
|
|
sub decompose |
|
65
|
|
|
|
|
|
|
{ |
|
66
|
4
|
|
|
4
|
1
|
820
|
my $self = shift; |
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
# Check arguments. |
|
69
|
4
|
|
|
|
|
7
|
my $a = shift; |
|
70
|
|
|
|
|
|
|
|
|
71
|
4
|
50
|
33
|
|
|
26
|
my $m = @_ > 0 && looks_like_number ($_[0]) ? shift : sqrt (@$a); |
|
72
|
4
|
50
|
33
|
|
|
23
|
my $n = @_ > 0 && looks_like_number ($_[0]) ? shift : $m ? @$a / $m : 0; |
|
|
|
50
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
|
|
74
|
4
|
50
|
33
|
|
|
79
|
croak ('Invalid argument') |
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
75
|
|
|
|
|
|
|
if (@$a != ($m * $n) |
|
76
|
|
|
|
|
|
|
|| mod ($m, 1) != 0 || $m < 1 |
|
77
|
|
|
|
|
|
|
|| mod ($n, 1) != 0 || $n < 1); |
|
78
|
|
|
|
|
|
|
|
|
79
|
4
|
50
|
|
|
|
12
|
croak ('Matrix has to be square') |
|
80
|
|
|
|
|
|
|
if $m != $n; |
|
81
|
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
# Get properties. |
|
83
|
4
|
|
|
|
|
8
|
my %prop = @_; |
|
84
|
|
|
|
|
|
|
|
|
85
|
4
|
|
50
|
|
|
19
|
$prop{balance} //= 1; |
|
86
|
4
|
|
50
|
|
|
18
|
$prop{normalize} //= 1; |
|
87
|
4
|
|
50
|
|
|
17
|
$prop{positive} //= 1; |
|
88
|
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
# Index of last row/column. |
|
90
|
4
|
|
|
|
|
8
|
my $end = $n - 1; |
|
91
|
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
# Eigenvalues (a vector). |
|
93
|
4
|
|
100
|
|
|
21
|
$$self{value} //= []; |
|
94
|
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
# Vector $d contains the real part of the eigenvalues and vector $e |
|
96
|
|
|
|
|
|
|
# contains the imaginary part of the eigenvalues. |
|
97
|
4
|
|
|
|
|
7
|
my $d = $$self{value}; |
|
98
|
4
|
|
|
|
|
7
|
my $e = []; |
|
99
|
|
|
|
|
|
|
|
|
100
|
4
|
100
|
|
|
|
12
|
splice (@$d, $n) |
|
101
|
|
|
|
|
|
|
if @$d > $n; |
|
102
|
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
# Eigenvectors (an array of column vectors). |
|
104
|
4
|
|
100
|
|
|
13
|
$$self{vector} //= []; |
|
105
|
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
# Matrix $Z contains the eigenvectors, please note |
|
107
|
|
|
|
|
|
|
# that $$Z[$j][$i] denotes matrix element Z(i,j). |
|
108
|
4
|
|
|
|
|
5
|
my $Z = $$self{vector}; |
|
109
|
|
|
|
|
|
|
|
|
110
|
4
|
100
|
|
|
|
11
|
splice (@$Z, $n) |
|
111
|
|
|
|
|
|
|
if @$Z > $n; |
|
112
|
|
|
|
|
|
|
|
|
113
|
4
|
|
|
|
|
10
|
for my $v (@$Z) |
|
114
|
|
|
|
|
|
|
{ |
|
115
|
7
|
100
|
|
|
|
17
|
splice (@$v, $n) |
|
116
|
|
|
|
|
|
|
if @$v > $n; |
|
117
|
|
|
|
|
|
|
} |
|
118
|
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
# True if matrix is symmetric. |
|
120
|
4
|
|
|
|
|
8
|
my $sym = 1; |
|
121
|
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
SYM: |
|
123
|
|
|
|
|
|
|
|
|
124
|
4
|
|
|
|
|
12
|
for my $i (0 .. $end) |
|
125
|
|
|
|
|
|
|
{ |
|
126
|
6
|
|
|
|
|
13
|
for my $j ($i + 1 .. $end) |
|
127
|
|
|
|
|
|
|
{ |
|
128
|
6
|
100
|
|
|
|
18
|
if ($$a[$i * $n + $j] != $$a[$j * $n + $i]) |
|
129
|
|
|
|
|
|
|
{ |
|
130
|
3
|
|
|
|
|
6
|
$sym = 0; |
|
131
|
3
|
|
|
|
|
6
|
last SYM; |
|
132
|
|
|
|
|
|
|
} |
|
133
|
|
|
|
|
|
|
} |
|
134
|
|
|
|
|
|
|
} |
|
135
|
|
|
|
|
|
|
|
|
136
|
4
|
100
|
|
|
|
11
|
if ($sym) |
|
137
|
|
|
|
|
|
|
{ |
|
138
|
|
|
|
|
|
|
# Copy matrix elements. |
|
139
|
1
|
|
|
|
|
2
|
for my $j (0 .. $end) |
|
140
|
|
|
|
|
|
|
{ |
|
141
|
3
|
|
50
|
|
|
12
|
$$Z[$j] //= []; |
|
142
|
|
|
|
|
|
|
|
|
143
|
3
|
|
|
|
|
4
|
for my $i (0 .. $end) |
|
144
|
|
|
|
|
|
|
{ |
|
145
|
9
|
|
|
|
|
14
|
$$Z[$j][$i] = $$a[$i * $n + $j]; |
|
146
|
|
|
|
|
|
|
} |
|
147
|
|
|
|
|
|
|
} |
|
148
|
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
# Reduce a real symmetric matrix to a symmetric tridiagonal matrix |
|
150
|
|
|
|
|
|
|
# using and accumulating orthogonal similarity transformations. |
|
151
|
|
|
|
|
|
|
# |
|
152
|
|
|
|
|
|
|
# See EiSPACK procedure 'tred2'. |
|
153
|
1
|
|
|
|
|
2
|
if (1) |
|
154
|
|
|
|
|
|
|
{ |
|
155
|
1
|
|
|
|
|
2
|
my ($i, $j, $k, $l, |
|
156
|
|
|
|
|
|
|
$f, $g, $h, $hh, $scale); |
|
157
|
|
|
|
|
|
|
|
|
158
|
1
|
|
|
|
|
3
|
for $i (0 .. $end) |
|
159
|
|
|
|
|
|
|
{ |
|
160
|
3
|
|
|
|
|
4
|
$$d[$i] = $$Z[$i][$end]; |
|
161
|
|
|
|
|
|
|
} |
|
162
|
|
|
|
|
|
|
|
|
163
|
1
|
|
|
|
|
15
|
for $i (reverse (1 .. $end)) |
|
164
|
|
|
|
|
|
|
{ |
|
165
|
2
|
|
|
|
|
4
|
$l = $i - 1; |
|
166
|
2
|
|
|
|
|
2
|
$h = 0; |
|
167
|
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
# Scale row. |
|
169
|
2
|
|
|
|
|
3
|
$scale = 0; |
|
170
|
|
|
|
|
|
|
|
|
171
|
2
|
|
|
|
|
4
|
for $k (0 .. $l) |
|
172
|
|
|
|
|
|
|
{ |
|
173
|
3
|
|
|
|
|
6
|
$scale += abs ($$d[$k]); |
|
174
|
|
|
|
|
|
|
} |
|
175
|
|
|
|
|
|
|
|
|
176
|
2
|
50
|
|
|
|
5
|
if ($scale == 0) |
|
177
|
|
|
|
|
|
|
{ |
|
178
|
0
|
|
|
|
|
0
|
$$e[$i] = $$d[$l]; |
|
179
|
|
|
|
|
|
|
|
|
180
|
0
|
|
|
|
|
0
|
for $j (0 .. $l) |
|
181
|
|
|
|
|
|
|
{ |
|
182
|
0
|
|
|
|
|
0
|
$$d[$j] = $$Z[$j][$l]; |
|
183
|
|
|
|
|
|
|
|
|
184
|
0
|
|
|
|
|
0
|
$$Z[$j][$i] = 0; |
|
185
|
0
|
|
|
|
|
0
|
$$Z[$i][$j] = 0; |
|
186
|
|
|
|
|
|
|
} |
|
187
|
|
|
|
|
|
|
} |
|
188
|
|
|
|
|
|
|
else |
|
189
|
|
|
|
|
|
|
{ |
|
190
|
2
|
|
|
|
|
5
|
for $k (0 .. $l) |
|
191
|
|
|
|
|
|
|
{ |
|
192
|
3
|
|
|
|
|
5
|
$$d[$k] /= $scale; |
|
193
|
3
|
|
|
|
|
9
|
$h += $$d[$k] ** 2; |
|
194
|
|
|
|
|
|
|
} |
|
195
|
|
|
|
|
|
|
|
|
196
|
2
|
|
|
|
|
3
|
$f = $$d[$l]; |
|
197
|
2
|
|
|
|
|
8
|
$g = - sign (sqrt ($h), $f); |
|
198
|
2
|
|
|
|
|
4
|
$h -= $f * $g; |
|
199
|
|
|
|
|
|
|
|
|
200
|
2
|
|
|
|
|
4
|
$$d[$l] = $f - $g; |
|
201
|
2
|
|
|
|
|
3
|
$$e[$i] = $scale * $g; |
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
# Form a*u. |
|
204
|
2
|
|
|
|
|
3
|
for $j (0 .. $l) |
|
205
|
|
|
|
|
|
|
{ |
|
206
|
3
|
|
|
|
|
5
|
$$e[$j] = 0; |
|
207
|
|
|
|
|
|
|
} |
|
208
|
|
|
|
|
|
|
|
|
209
|
2
|
|
|
|
|
3
|
for $j (0 .. $l) |
|
210
|
|
|
|
|
|
|
{ |
|
211
|
3
|
|
|
|
|
4
|
$f = $$d[$j]; |
|
212
|
3
|
|
|
|
|
4
|
$$Z[$i][$j] = $f; |
|
213
|
3
|
|
|
|
|
5
|
$g = $$e[$j] + $$Z[$j][$j] * $f; |
|
214
|
|
|
|
|
|
|
|
|
215
|
3
|
|
|
|
|
5
|
for $k ($j + 1 .. $l) |
|
216
|
|
|
|
|
|
|
{ |
|
217
|
1
|
|
|
|
|
2
|
$g += $$Z[$j][$k] * $$d[$k]; |
|
218
|
1
|
|
|
|
|
2
|
$$e[$k] += $$Z[$j][$k] * $f; |
|
219
|
|
|
|
|
|
|
} |
|
220
|
|
|
|
|
|
|
|
|
221
|
3
|
|
|
|
|
5
|
$$e[$j] = $g; |
|
222
|
|
|
|
|
|
|
} |
|
223
|
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
# Form p. |
|
225
|
2
|
|
|
|
|
2
|
$f = 0; |
|
226
|
|
|
|
|
|
|
|
|
227
|
2
|
|
|
|
|
5
|
for $j (0 .. $l) |
|
228
|
|
|
|
|
|
|
{ |
|
229
|
3
|
|
|
|
|
4
|
$$e[$j] /= $h; |
|
230
|
3
|
|
|
|
|
4
|
$f += $$e[$j] * $$d[$j]; |
|
231
|
|
|
|
|
|
|
} |
|
232
|
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
# Form q. |
|
234
|
2
|
|
|
|
|
4
|
$hh = $f / ($h + $h); |
|
235
|
|
|
|
|
|
|
|
|
236
|
2
|
|
|
|
|
3
|
for $j (0 .. $l) |
|
237
|
|
|
|
|
|
|
{ |
|
238
|
3
|
|
|
|
|
13
|
$$e[$j] -= $hh * $$d[$j]; |
|
239
|
|
|
|
|
|
|
} |
|
240
|
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
# Form reduced a. |
|
242
|
2
|
|
|
|
|
3
|
for $j (0 .. $l) |
|
243
|
|
|
|
|
|
|
{ |
|
244
|
3
|
|
|
|
|
3
|
$f = $$d[$j]; |
|
245
|
3
|
|
|
|
|
5
|
$g = $$e[$j]; |
|
246
|
|
|
|
|
|
|
|
|
247
|
3
|
|
|
|
|
4
|
for $k ($j .. $l) |
|
248
|
|
|
|
|
|
|
{ |
|
249
|
4
|
|
|
|
|
8
|
$$Z[$j][$k] -= ($f * $$e[$k] + $g * $$d[$k]); |
|
250
|
|
|
|
|
|
|
} |
|
251
|
|
|
|
|
|
|
|
|
252
|
3
|
|
|
|
|
4
|
$$d[$j] = $$Z[$j][$l]; |
|
253
|
3
|
|
|
|
|
4
|
$$Z[$j][$i] = 0; |
|
254
|
|
|
|
|
|
|
} |
|
255
|
|
|
|
|
|
|
} |
|
256
|
|
|
|
|
|
|
|
|
257
|
2
|
|
|
|
|
5
|
$$d[$i] = $h; |
|
258
|
|
|
|
|
|
|
} |
|
259
|
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
# Accumulation of transformation matrices. |
|
261
|
1
|
|
|
|
|
3
|
for $i (1 .. $end) |
|
262
|
|
|
|
|
|
|
{ |
|
263
|
2
|
|
|
|
|
3
|
$l = $i - 1; |
|
264
|
|
|
|
|
|
|
|
|
265
|
2
|
|
|
|
|
3
|
$$Z[$l][$end] = $$Z[$l][$l]; |
|
266
|
2
|
|
|
|
|
3
|
$$Z[$l][$l] = 1; |
|
267
|
|
|
|
|
|
|
|
|
268
|
2
|
|
|
|
|
3
|
$h = $$d[$i]; |
|
269
|
2
|
50
|
|
|
|
4
|
if ($h != 0) |
|
270
|
|
|
|
|
|
|
{ |
|
271
|
2
|
|
|
|
|
4
|
for $k (0 .. $l) |
|
272
|
|
|
|
|
|
|
{ |
|
273
|
3
|
|
|
|
|
5
|
$$d[$k] = $$Z[$i][$k] / $h; |
|
274
|
|
|
|
|
|
|
} |
|
275
|
|
|
|
|
|
|
|
|
276
|
2
|
|
|
|
|
4
|
for $j (0 .. $l) |
|
277
|
|
|
|
|
|
|
{ |
|
278
|
3
|
|
|
|
|
3
|
$g = 0; |
|
279
|
|
|
|
|
|
|
|
|
280
|
3
|
|
|
|
|
5
|
for $k (0 .. $l) |
|
281
|
|
|
|
|
|
|
{ |
|
282
|
5
|
|
|
|
|
7
|
$g += $$Z[$i][$k] * $$Z[$j][$k]; |
|
283
|
|
|
|
|
|
|
} |
|
284
|
|
|
|
|
|
|
|
|
285
|
3
|
|
|
|
|
4
|
for $k (0 .. $l) |
|
286
|
|
|
|
|
|
|
{ |
|
287
|
5
|
|
|
|
|
9
|
$$Z[$j][$k] -= $g * $$d[$k]; |
|
288
|
|
|
|
|
|
|
} |
|
289
|
|
|
|
|
|
|
} |
|
290
|
|
|
|
|
|
|
} |
|
291
|
|
|
|
|
|
|
|
|
292
|
2
|
|
|
|
|
3
|
for $k (0 .. $l) |
|
293
|
|
|
|
|
|
|
{ |
|
294
|
3
|
|
|
|
|
6
|
$$Z[$i][$k] = 0; |
|
295
|
|
|
|
|
|
|
} |
|
296
|
|
|
|
|
|
|
} |
|
297
|
|
|
|
|
|
|
|
|
298
|
1
|
|
|
|
|
2
|
for $j (0 .. $end) |
|
299
|
|
|
|
|
|
|
{ |
|
300
|
3
|
|
|
|
|
4
|
$$d[$j] = $$Z[$j][$end]; |
|
301
|
3
|
|
|
|
|
4
|
$$Z[$j][$end] = 0; |
|
302
|
|
|
|
|
|
|
} |
|
303
|
|
|
|
|
|
|
|
|
304
|
1
|
|
|
|
|
1
|
$$Z[$end][$end] = 1; |
|
305
|
1
|
|
|
|
|
2
|
$$e[0] = 0; |
|
306
|
|
|
|
|
|
|
} |
|
307
|
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
# Find the eigenvalues and eigenvectors of a symmetric tridiagonal |
|
309
|
|
|
|
|
|
|
# matrix by the QL method. |
|
310
|
|
|
|
|
|
|
# |
|
311
|
|
|
|
|
|
|
# See EiSPACK procedure 'tql2'. |
|
312
|
1
|
|
|
|
|
2
|
if (1) |
|
313
|
|
|
|
|
|
|
{ |
|
314
|
1
|
|
|
|
|
3
|
my ($i, $j, $k, $l, $m, |
|
315
|
|
|
|
|
|
|
$c, $c2, $c3, $dl1, $el1, $f, $g, $h, $p, $r, $s, $s2, $t, $t2); |
|
316
|
|
|
|
|
|
|
|
|
317
|
1
|
|
|
|
|
3
|
for $i (1 .. $end) |
|
318
|
|
|
|
|
|
|
{ |
|
319
|
2
|
|
|
|
|
4
|
$$e[$i - 1] = $$e[$i]; |
|
320
|
|
|
|
|
|
|
} |
|
321
|
|
|
|
|
|
|
|
|
322
|
1
|
|
|
|
|
2
|
$$e[$end] = 0; |
|
323
|
|
|
|
|
|
|
|
|
324
|
1
|
|
|
|
|
9
|
$f = 0; |
|
325
|
1
|
|
|
|
|
2
|
$t = 0; |
|
326
|
|
|
|
|
|
|
|
|
327
|
1
|
|
|
|
|
3
|
for $l (0 .. $end) |
|
328
|
|
|
|
|
|
|
{ |
|
329
|
3
|
|
|
|
|
7
|
$t2 = abs ($$d[$l]) + abs ($$e[$l]); |
|
330
|
3
|
100
|
|
|
|
43
|
$t = $t2 if $t2 > $t; |
|
331
|
|
|
|
|
|
|
|
|
332
|
3
|
|
|
|
|
10
|
for ($m = $l; $m < $n; ++$m) |
|
333
|
|
|
|
|
|
|
{ |
|
334
|
6
|
100
|
|
|
|
12
|
last if abs ($$e[$m]) <= eps * $t; |
|
335
|
|
|
|
|
|
|
} |
|
336
|
|
|
|
|
|
|
|
|
337
|
3
|
100
|
|
|
|
7
|
if ($m > $l) |
|
338
|
|
|
|
|
|
|
{ |
|
339
|
2
|
|
|
|
|
1
|
while (1) |
|
340
|
|
|
|
|
|
|
{ |
|
341
|
5
|
|
|
|
|
8
|
$g = $$d[$l]; |
|
342
|
5
|
|
|
|
|
17
|
$p = ($$d[$l + 1] - $g) / (2 * $$e[$l]); |
|
343
|
5
|
|
|
|
|
10
|
$r = sign (hypot ($p, 1), $p); |
|
344
|
|
|
|
|
|
|
|
|
345
|
5
|
|
|
|
|
8
|
$$d[$l] = $$e[$l] / ($p + $r); |
|
346
|
5
|
|
|
|
|
7
|
$$d[$l + 1] = $$e[$l] * ($p + $r); |
|
347
|
5
|
|
|
|
|
5
|
$dl1 = $$d[$l + 1]; |
|
348
|
5
|
|
|
|
|
6
|
$h = $g - $$d[$l]; |
|
349
|
|
|
|
|
|
|
|
|
350
|
5
|
|
|
|
|
8
|
for $i ($l + 2 .. $end) |
|
351
|
|
|
|
|
|
|
{ |
|
352
|
4
|
|
|
|
|
6
|
$$d[$i] -= $h; |
|
353
|
|
|
|
|
|
|
} |
|
354
|
|
|
|
|
|
|
|
|
355
|
5
|
|
|
|
|
6
|
$f += $h; |
|
356
|
|
|
|
|
|
|
|
|
357
|
5
|
|
|
|
|
6
|
$p = $$d[$m]; |
|
358
|
5
|
|
|
|
|
5
|
$c = 1; |
|
359
|
5
|
|
|
|
|
5
|
$c2 = $c; |
|
360
|
5
|
|
|
|
|
6
|
$el1 = $$e[$l + 1]; |
|
361
|
5
|
|
|
|
|
5
|
$s = 0; |
|
362
|
|
|
|
|
|
|
|
|
363
|
5
|
|
|
|
|
8
|
for $i (reverse ($l .. $m - 1)) |
|
364
|
|
|
|
|
|
|
{ |
|
365
|
9
|
|
|
|
|
10
|
$c3 = $c2; |
|
366
|
9
|
|
|
|
|
9
|
$c2 = $c; |
|
367
|
9
|
|
|
|
|
9
|
$s2 = $s; |
|
368
|
9
|
|
|
|
|
9
|
$g = $c * $$e[$i]; |
|
369
|
9
|
|
|
|
|
9
|
$h = $c * $p; |
|
370
|
9
|
|
|
|
|
14
|
$r = hypot ($p, $$e[$i]); |
|
371
|
9
|
|
|
|
|
13
|
$$e[$i + 1] = $s * $r; |
|
372
|
9
|
|
|
|
|
10
|
$s = $$e[$i] / $r; |
|
373
|
9
|
|
|
|
|
9
|
$c = $p / $r; |
|
374
|
9
|
|
|
|
|
10
|
$p = $c * $$d[$i] - $s * $g; |
|
375
|
9
|
|
|
|
|
11
|
$$d[$i + 1] = $h + $s * ($c * $g + $s * $$d[$i]); |
|
376
|
|
|
|
|
|
|
|
|
377
|
9
|
|
|
|
|
11
|
for $k (0 .. $end) |
|
378
|
|
|
|
|
|
|
{ |
|
379
|
27
|
|
|
|
|
29
|
$h = $$Z[$i + 1][$k]; |
|
380
|
27
|
|
|
|
|
29
|
$$Z[$i + 1][$k] = $s * $$Z[$i][$k] + $c * $h; |
|
381
|
27
|
|
|
|
|
35
|
$$Z[$i][$k] = $c * $$Z[$i][$k] - $s * $h; |
|
382
|
|
|
|
|
|
|
} |
|
383
|
|
|
|
|
|
|
} |
|
384
|
|
|
|
|
|
|
|
|
385
|
5
|
|
|
|
|
11
|
$p = 0 - $s * $s2 * $c3 * $el1 * $$e[$l] / $dl1; |
|
386
|
|
|
|
|
|
|
|
|
387
|
5
|
|
|
|
|
5
|
$$e[$l] = $s * $p; |
|
388
|
5
|
|
|
|
|
5
|
$$d[$l] = $c * $p; |
|
389
|
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
# Check convergence. |
|
391
|
5
|
100
|
|
|
|
8
|
last if abs ($$e[$l]) <= eps * $t; |
|
392
|
|
|
|
|
|
|
} |
|
393
|
|
|
|
|
|
|
} |
|
394
|
|
|
|
|
|
|
|
|
395
|
3
|
|
|
|
|
5
|
$$d[$l] = $$d[$l] + $f; |
|
396
|
3
|
|
|
|
|
5
|
$$e[$l] = 0; |
|
397
|
|
|
|
|
|
|
} |
|
398
|
|
|
|
|
|
|
} |
|
399
|
|
|
|
|
|
|
} |
|
400
|
|
|
|
|
|
|
else |
|
401
|
|
|
|
|
|
|
{ |
|
402
|
|
|
|
|
|
|
# Hessenberg matrix. |
|
403
|
3
|
|
|
|
|
10
|
my @H = @$a; |
|
404
|
3
|
|
|
|
|
5
|
my $N = $n; |
|
405
|
|
|
|
|
|
|
|
|
406
|
|
|
|
|
|
|
# Row and column indices of the beginning and end |
|
407
|
|
|
|
|
|
|
# of the principal sub-matrix. |
|
408
|
3
|
|
|
|
|
6
|
my $lo = 0; |
|
409
|
3
|
|
|
|
|
5
|
my $hi = $end; |
|
410
|
|
|
|
|
|
|
|
|
411
|
|
|
|
|
|
|
# Permutation vector. |
|
412
|
3
|
|
|
|
|
7
|
my @perm = (); |
|
413
|
|
|
|
|
|
|
|
|
414
|
|
|
|
|
|
|
# Scaling vector. |
|
415
|
3
|
|
|
|
|
5
|
my @scale = (); |
|
416
|
|
|
|
|
|
|
|
|
417
|
|
|
|
|
|
|
# Balance a real matrix and isolate eigenvalues whenever possible. |
|
418
|
3
|
50
|
|
|
|
9
|
if ($prop{balance}) |
|
419
|
|
|
|
|
|
|
{ |
|
420
|
3
|
|
|
|
|
11
|
my ($p, $s) = gebal ($N, \@H, low => \$lo, high => \$hi); |
|
421
|
|
|
|
|
|
|
|
|
422
|
3
|
|
|
|
|
6
|
@perm = @$p; |
|
423
|
3
|
|
|
|
|
8
|
@scale = @$s; |
|
424
|
|
|
|
|
|
|
} |
|
425
|
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
# Reduce matrix to upper Hessenberg form by orthogonal similarity |
|
427
|
|
|
|
|
|
|
# transformations. |
|
428
|
|
|
|
|
|
|
# |
|
429
|
|
|
|
|
|
|
# See EiSPACK procedure 'orthes'. |
|
430
|
3
|
|
|
|
|
6
|
my @ort = (); |
|
431
|
|
|
|
|
|
|
|
|
432
|
3
|
|
|
|
|
22
|
if (1) |
|
433
|
|
|
|
|
|
|
{ |
|
434
|
3
|
|
|
|
|
6
|
my ($i, $j, $k, $m, |
|
435
|
|
|
|
|
|
|
$f, $g, $h, $scale); |
|
436
|
|
|
|
|
|
|
|
|
437
|
3
|
|
|
|
|
10
|
for $m ($lo + 1 .. $hi - 1) |
|
438
|
|
|
|
|
|
|
{ |
|
439
|
2
|
|
|
|
|
5
|
$scale = 0; |
|
440
|
|
|
|
|
|
|
|
|
441
|
2
|
|
|
|
|
4
|
for $i ($m .. $hi) |
|
442
|
|
|
|
|
|
|
{ |
|
443
|
4
|
|
|
|
|
9
|
$scale += abs ($H[$i * $N + ($m - 1)]); |
|
444
|
|
|
|
|
|
|
} |
|
445
|
|
|
|
|
|
|
|
|
446
|
2
|
50
|
|
|
|
7
|
next if $scale == 0; |
|
447
|
|
|
|
|
|
|
|
|
448
|
2
|
|
|
|
|
2
|
$h = 0; |
|
449
|
|
|
|
|
|
|
|
|
450
|
2
|
|
|
|
|
5
|
for $i (reverse ($m .. $hi)) |
|
451
|
|
|
|
|
|
|
{ |
|
452
|
4
|
|
|
|
|
9
|
$ort[$i] = $H[$i * $N + ($m - 1)] / $scale; |
|
453
|
4
|
|
|
|
|
10
|
$h += $ort[$i] ** 2; |
|
454
|
|
|
|
|
|
|
} |
|
455
|
|
|
|
|
|
|
|
|
456
|
2
|
|
|
|
|
12
|
$g = - sign (sqrt ($h), $ort[$m]); |
|
457
|
2
|
|
|
|
|
6
|
$h -= $ort[$m] * $g; |
|
458
|
2
|
|
|
|
|
4
|
$ort[$m] -= $g; |
|
459
|
|
|
|
|
|
|
|
|
460
|
2
|
|
|
|
|
4
|
for $j ($m .. $end) |
|
461
|
|
|
|
|
|
|
{ |
|
462
|
4
|
|
|
|
|
6
|
$f = 0; |
|
463
|
|
|
|
|
|
|
|
|
464
|
4
|
|
|
|
|
7
|
for $i (reverse ($m .. $hi)) |
|
465
|
|
|
|
|
|
|
{ |
|
466
|
8
|
|
|
|
|
12
|
$f += $ort[$i] * $H[$i * $N + $j]; |
|
467
|
|
|
|
|
|
|
} |
|
468
|
|
|
|
|
|
|
|
|
469
|
4
|
|
|
|
|
4
|
$f /= $h; |
|
470
|
|
|
|
|
|
|
|
|
471
|
4
|
|
|
|
|
7
|
for $i ($m .. $hi) |
|
472
|
|
|
|
|
|
|
{ |
|
473
|
8
|
|
|
|
|
16
|
$H[$i * $N + $j] -= $f * $ort[$i]; |
|
474
|
|
|
|
|
|
|
} |
|
475
|
|
|
|
|
|
|
} |
|
476
|
|
|
|
|
|
|
|
|
477
|
2
|
|
|
|
|
4
|
for $i (0 .. $hi) |
|
478
|
|
|
|
|
|
|
{ |
|
479
|
6
|
|
|
|
|
9
|
$f = 0; |
|
480
|
|
|
|
|
|
|
|
|
481
|
6
|
|
|
|
|
8
|
for $j (reverse ($m .. $hi)) |
|
482
|
|
|
|
|
|
|
{ |
|
483
|
12
|
|
|
|
|
16
|
$f += $ort[$j] * $H[$i * $N + $j]; |
|
484
|
|
|
|
|
|
|
} |
|
485
|
|
|
|
|
|
|
|
|
486
|
6
|
|
|
|
|
7
|
$f /= $h; |
|
487
|
|
|
|
|
|
|
|
|
488
|
6
|
|
|
|
|
9
|
for $j ($m .. $hi) |
|
489
|
|
|
|
|
|
|
{ |
|
490
|
12
|
|
|
|
|
16
|
$H[$i * $N + $j] -= $f * $ort[$j]; |
|
491
|
|
|
|
|
|
|
} |
|
492
|
|
|
|
|
|
|
} |
|
493
|
|
|
|
|
|
|
|
|
494
|
2
|
|
|
|
|
4
|
$ort[$m] *= $scale; |
|
495
|
2
|
|
|
|
|
7
|
$H[$m * $N + ($m - 1)] = $scale * $g; |
|
496
|
|
|
|
|
|
|
} |
|
497
|
|
|
|
|
|
|
} |
|
498
|
|
|
|
|
|
|
|
|
499
|
|
|
|
|
|
|
# Accumulate the orthogonal similarity transformations. |
|
500
|
|
|
|
|
|
|
# |
|
501
|
|
|
|
|
|
|
# See EiSPACK procedure 'ortran'. |
|
502
|
3
|
|
|
|
|
5
|
if (1) |
|
503
|
|
|
|
|
|
|
{ |
|
504
|
3
|
|
|
|
|
8
|
my ($i, $j, $k, $m, |
|
505
|
|
|
|
|
|
|
$g); |
|
506
|
|
|
|
|
|
|
|
|
507
|
3
|
|
|
|
|
7
|
for $j (0 .. $end) |
|
508
|
|
|
|
|
|
|
{ |
|
509
|
8
|
|
100
|
|
|
25
|
$$Z[$j] //= []; |
|
510
|
|
|
|
|
|
|
|
|
511
|
8
|
|
|
|
|
14
|
for $i (0 .. $end) |
|
512
|
|
|
|
|
|
|
{ |
|
513
|
22
|
100
|
|
|
|
37
|
$$Z[$j][$i] = ($i == $j ? 1 : 0); |
|
514
|
|
|
|
|
|
|
} |
|
515
|
|
|
|
|
|
|
} |
|
516
|
|
|
|
|
|
|
|
|
517
|
3
|
|
|
|
|
15
|
for $m (reverse ($lo + 1 .. $hi - 1)) |
|
518
|
|
|
|
|
|
|
{ |
|
519
|
2
|
50
|
|
|
|
16
|
next if $H[$m * $N + ($m - 1)] == 0; |
|
520
|
|
|
|
|
|
|
|
|
521
|
2
|
|
|
|
|
5
|
for $i ($m + 1 .. $hi) |
|
522
|
|
|
|
|
|
|
{ |
|
523
|
2
|
|
|
|
|
8
|
$ort[$i] = $H[$i * $N + ($m - 1)]; |
|
524
|
|
|
|
|
|
|
} |
|
525
|
|
|
|
|
|
|
|
|
526
|
2
|
|
|
|
|
5
|
for $j ($m .. $hi) |
|
527
|
|
|
|
|
|
|
{ |
|
528
|
4
|
|
|
|
|
6
|
$g = 0; |
|
529
|
|
|
|
|
|
|
|
|
530
|
4
|
|
|
|
|
5
|
for $i ($m .. $hi) |
|
531
|
|
|
|
|
|
|
{ |
|
532
|
8
|
|
|
|
|
12
|
$g += $ort[$i] * $$Z[$j][$i]; |
|
533
|
|
|
|
|
|
|
} |
|
534
|
|
|
|
|
|
|
|
|
535
|
4
|
|
|
|
|
10
|
$g = ($g / $ort[$m]) / $H[$m * $N + ($m - 1)]; |
|
536
|
|
|
|
|
|
|
|
|
537
|
4
|
|
|
|
|
13
|
for $i ($m .. $hi) |
|
538
|
|
|
|
|
|
|
{ |
|
539
|
8
|
|
|
|
|
24
|
$$Z[$j][$i] += $g * $ort[$i]; |
|
540
|
|
|
|
|
|
|
} |
|
541
|
|
|
|
|
|
|
} |
|
542
|
|
|
|
|
|
|
} |
|
543
|
|
|
|
|
|
|
} |
|
544
|
|
|
|
|
|
|
|
|
545
|
|
|
|
|
|
|
# Find the eigenvalues and eigenvectors of a real upper Hessenberg |
|
546
|
|
|
|
|
|
|
# matrix by the QR method. |
|
547
|
|
|
|
|
|
|
# |
|
548
|
|
|
|
|
|
|
# See EiSPACK procedure 'hqr2'. |
|
549
|
3
|
|
|
|
|
5
|
if (1) |
|
550
|
|
|
|
|
|
|
{ |
|
551
|
3
|
|
|
|
|
9
|
my ($i, $j, $k, $l, $m, |
|
552
|
|
|
|
|
|
|
$h, $g, $f, $p, $q, $r, $s, $t, $w, $x, $y, $z, |
|
553
|
|
|
|
|
|
|
$norm, $iter, $not_last, $vr, $vi, $ra, $sa); |
|
554
|
|
|
|
|
|
|
|
|
555
|
3
|
|
|
|
|
6
|
$t = 0; |
|
556
|
|
|
|
|
|
|
|
|
557
|
|
|
|
|
|
|
# Store isolated roots. |
|
558
|
3
|
|
|
|
|
7
|
for $i (0 .. $end) |
|
559
|
|
|
|
|
|
|
{ |
|
560
|
8
|
100
|
100
|
|
|
25
|
if ($i < $lo || $i > $hi) |
|
561
|
|
|
|
|
|
|
{ |
|
562
|
2
|
|
|
|
|
5
|
$$d[$i] = $H[$i * $N + $i]; |
|
563
|
2
|
|
|
|
|
3
|
$$e[$i] = 0; |
|
564
|
|
|
|
|
|
|
} |
|
565
|
|
|
|
|
|
|
} |
|
566
|
|
|
|
|
|
|
|
|
567
|
|
|
|
|
|
|
# Compute matrix norm. |
|
568
|
3
|
|
|
|
|
6
|
$norm = 0; |
|
569
|
|
|
|
|
|
|
|
|
570
|
3
|
|
|
|
|
6
|
for $i (0 .. $end) |
|
571
|
|
|
|
|
|
|
{ |
|
572
|
8
|
|
|
|
|
12
|
for $j ($i .. $end) |
|
573
|
|
|
|
|
|
|
{ |
|
574
|
15
|
|
|
|
|
22
|
$norm += abs ($H[$i * $N + $j]); |
|
575
|
|
|
|
|
|
|
} |
|
576
|
|
|
|
|
|
|
} |
|
577
|
|
|
|
|
|
|
|
|
578
|
|
|
|
|
|
|
# Search for next eigenvalue. |
|
579
|
3
|
|
|
|
|
4
|
$iter = 0; |
|
580
|
|
|
|
|
|
|
|
|
581
|
3
|
|
|
|
|
11
|
for ($n = $end; $n >= $lo; ) |
|
582
|
|
|
|
|
|
|
{ |
|
583
|
|
|
|
|
|
|
# Look for single small sub-diagonal element. |
|
584
|
19
|
|
|
|
|
37
|
for ($l = $n; $l > $lo; --$l) |
|
585
|
|
|
|
|
|
|
{ |
|
586
|
30
|
|
|
|
|
40
|
$s = abs ($H[($l - 1) * $N + ($l - 1)]) + abs ($H[$l * $N + $l]); |
|
587
|
30
|
50
|
|
|
|
42
|
$s = $norm |
|
588
|
|
|
|
|
|
|
if $s == 0; |
|
589
|
|
|
|
|
|
|
|
|
590
|
30
|
100
|
|
|
|
51
|
last if abs ($H[$l * $N + ($l - 1)]) < eps * $s; |
|
591
|
|
|
|
|
|
|
} |
|
592
|
|
|
|
|
|
|
|
|
593
|
19
|
|
|
|
|
31
|
$x = $H[$n * $N + $n]; |
|
594
|
|
|
|
|
|
|
|
|
595
|
19
|
100
|
|
|
|
36
|
if ($l == $n) |
|
|
|
100
|
|
|
|
|
|
|
596
|
|
|
|
|
|
|
{ |
|
597
|
|
|
|
|
|
|
# One root found, |
|
598
|
5
|
|
|
|
|
11
|
$H[$n * $N + $n] = $x + $t; |
|
599
|
|
|
|
|
|
|
|
|
600
|
5
|
|
|
|
|
24
|
$$d[$n] = $H[$n * $N + $n]; |
|
601
|
5
|
|
|
|
|
9
|
$$e[$n] = 0; |
|
602
|
|
|
|
|
|
|
|
|
603
|
5
|
|
|
|
|
5
|
$n -= 1; |
|
604
|
5
|
|
|
|
|
9
|
$iter = 0; |
|
605
|
|
|
|
|
|
|
} |
|
606
|
|
|
|
|
|
|
elsif ($l == $n - 1) |
|
607
|
|
|
|
|
|
|
{ |
|
608
|
|
|
|
|
|
|
# Two roots found. |
|
609
|
1
|
|
|
|
|
5
|
$y = $H[($n - 1) * $N + ($n - 1)]; |
|
610
|
1
|
|
|
|
|
4
|
$w = $H[$n * $N + ($n - 1)] * $H[($n - 1) * $N + $n]; |
|
611
|
|
|
|
|
|
|
|
|
612
|
1
|
|
|
|
|
3
|
$p = ($y - $x) / 2; |
|
613
|
1
|
|
|
|
|
2
|
$q = $p * $p + $w; |
|
614
|
1
|
|
|
|
|
3
|
$z = sqrt (abs ($q)); |
|
615
|
|
|
|
|
|
|
|
|
616
|
1
|
|
|
|
|
3
|
$H[$n * $N + $n] = $x + $t; |
|
617
|
1
|
|
|
|
|
3
|
$H[($n - 1) * $N + ($n - 1)] = $y + $t; |
|
618
|
1
|
|
|
|
|
2
|
$x = $H[$n * $N + $n]; |
|
619
|
|
|
|
|
|
|
|
|
620
|
1
|
50
|
|
|
|
4
|
if ($q >= 0) |
|
621
|
|
|
|
|
|
|
{ |
|
622
|
|
|
|
|
|
|
# Real pair. |
|
623
|
1
|
|
|
|
|
34
|
$z = $p + sign ($z, $p); |
|
624
|
|
|
|
|
|
|
|
|
625
|
1
|
|
|
|
|
4
|
$$d[$n - 1] = $x + $z; |
|
626
|
1
|
|
|
|
|
3
|
$$d[$n] = $$d[$n - 1]; |
|
627
|
1
|
50
|
|
|
|
5
|
$$d[$n] = $x - $w / $z |
|
628
|
|
|
|
|
|
|
if $z != 0; |
|
629
|
|
|
|
|
|
|
|
|
630
|
1
|
|
|
|
|
3
|
$$e[$n - 1] = 0; |
|
631
|
1
|
|
|
|
|
1
|
$$e[$n] = 0; |
|
632
|
|
|
|
|
|
|
|
|
633
|
1
|
|
|
|
|
3
|
$x = $H[$n * $N + ($n - 1)]; |
|
634
|
1
|
|
|
|
|
2
|
$s = abs ($x) + abs ($z); |
|
635
|
1
|
|
|
|
|
2
|
$p = $x / $s; |
|
636
|
1
|
|
|
|
|
3
|
$q = $z / $s; |
|
637
|
1
|
|
|
|
|
3
|
$r = sqrt ($p * $p + $q * $q); |
|
638
|
1
|
|
|
|
|
2
|
$p = $p / $r; |
|
639
|
1
|
|
|
|
|
1
|
$q = $q / $r; |
|
640
|
|
|
|
|
|
|
|
|
641
|
|
|
|
|
|
|
# Row modification. |
|
642
|
1
|
|
|
|
|
4
|
for $j ($n - 1 .. $end) |
|
643
|
|
|
|
|
|
|
{ |
|
644
|
2
|
|
|
|
|
4
|
$z = $H[($n - 1) * $N + $j]; |
|
645
|
2
|
|
|
|
|
4
|
$H[($n - 1) * $N + $j] = $q * $z + $p * $H[$n * $N + $j]; |
|
646
|
2
|
|
|
|
|
4
|
$H[$n * $N + $j] = $q * $H[$n * $N + $j] - $p * $z; |
|
647
|
|
|
|
|
|
|
} |
|
648
|
|
|
|
|
|
|
|
|
649
|
|
|
|
|
|
|
# Column modification. |
|
650
|
1
|
|
|
|
|
3
|
for $i (0 .. $n) |
|
651
|
|
|
|
|
|
|
{ |
|
652
|
3
|
|
|
|
|
5
|
$z = $H[$i * $N + ($n - 1)]; |
|
653
|
3
|
|
|
|
|
6
|
$H[$i * $N + ($n - 1)] = $q * $z + $p * $H[$i * $N + $n]; |
|
654
|
3
|
|
|
|
|
6
|
$H[$i * $N + $n] = $q * $H[$i * $N + $n] - $p * $z; |
|
655
|
|
|
|
|
|
|
} |
|
656
|
|
|
|
|
|
|
|
|
657
|
|
|
|
|
|
|
# Accumulate transformations. |
|
658
|
1
|
|
|
|
|
10
|
for $i ($lo .. $hi) |
|
659
|
|
|
|
|
|
|
{ |
|
660
|
3
|
|
|
|
|
5
|
$z = $$Z[$n - 1][$i]; |
|
661
|
3
|
|
|
|
|
7
|
$$Z[$n - 1][$i] = $q * $z + $p * $$Z[$n][$i]; |
|
662
|
3
|
|
|
|
|
6
|
$$Z[$n][$i] = $q * $$Z[$n][$i] - $p * $z; |
|
663
|
|
|
|
|
|
|
} |
|
664
|
|
|
|
|
|
|
} |
|
665
|
|
|
|
|
|
|
else |
|
666
|
|
|
|
|
|
|
{ |
|
667
|
|
|
|
|
|
|
# Complex pair. |
|
668
|
0
|
|
|
|
|
0
|
$$d[$n - 1] = $x + $p; |
|
669
|
0
|
|
|
|
|
0
|
$$d[$n] = $x + $p; |
|
670
|
0
|
|
|
|
|
0
|
$$e[$n - 1] = $z; |
|
671
|
0
|
|
|
|
|
0
|
$$e[$n] = 0 - $z; |
|
672
|
|
|
|
|
|
|
} |
|
673
|
|
|
|
|
|
|
|
|
674
|
1
|
|
|
|
|
2
|
$n -= 2; |
|
675
|
1
|
|
|
|
|
3
|
$iter = 0; |
|
676
|
|
|
|
|
|
|
} |
|
677
|
|
|
|
|
|
|
else |
|
678
|
|
|
|
|
|
|
{ |
|
679
|
|
|
|
|
|
|
# Form shift. |
|
680
|
13
|
|
|
|
|
18
|
$y = $H[($n - 1) * $N + ($n - 1)]; |
|
681
|
13
|
|
|
|
|
19
|
$w = $H[$n * $N + ($n - 1)] * $H[($n - 1) * $N + $n]; |
|
682
|
|
|
|
|
|
|
|
|
683
|
|
|
|
|
|
|
# Wilkinson's original ad hoc shift. |
|
684
|
13
|
50
|
33
|
|
|
36
|
if ($iter == 10 || $iter == 20) |
|
685
|
|
|
|
|
|
|
{ |
|
686
|
0
|
|
|
|
|
0
|
$t += $x; |
|
687
|
|
|
|
|
|
|
|
|
688
|
0
|
|
|
|
|
0
|
for $i ($lo .. $n) |
|
689
|
|
|
|
|
|
|
{ |
|
690
|
0
|
|
|
|
|
0
|
$H[$i * $N + $i] -= $x; |
|
691
|
|
|
|
|
|
|
} |
|
692
|
|
|
|
|
|
|
|
|
693
|
0
|
|
|
|
|
0
|
$s = abs ($H[$n * $N + ($n - 1)]) + abs ($H[($n - 1) * $N + ($n - 2)]); |
|
694
|
0
|
|
|
|
|
0
|
$x = 0.75 * $s; |
|
695
|
0
|
|
|
|
|
0
|
$y = $x; |
|
696
|
0
|
|
|
|
|
0
|
$w = -0.4375 * $s * $s; |
|
697
|
|
|
|
|
|
|
} |
|
698
|
|
|
|
|
|
|
|
|
699
|
|
|
|
|
|
|
# Matlab's new ad hoc shift. |
|
700
|
13
|
50
|
|
|
|
20
|
if ($iter == 30) |
|
701
|
|
|
|
|
|
|
{ |
|
702
|
0
|
|
|
|
|
0
|
$s = ($y - $x) / 2; |
|
703
|
0
|
|
|
|
|
0
|
$s = $s * $s + $w; |
|
704
|
0
|
0
|
|
|
|
0
|
if ($s > 0) |
|
705
|
|
|
|
|
|
|
{ |
|
706
|
0
|
|
|
|
|
0
|
$s = sqrt ($s); |
|
707
|
0
|
0
|
|
|
|
0
|
$s = - $s if $y < $x; |
|
708
|
0
|
|
|
|
|
0
|
$s = $x - $w / (($y - $x) / 2 + $s); |
|
709
|
|
|
|
|
|
|
|
|
710
|
0
|
|
|
|
|
0
|
for $i ($lo .. $n) |
|
711
|
|
|
|
|
|
|
{ |
|
712
|
0
|
|
|
|
|
0
|
$H[$i * $N + $i] -= $s; |
|
713
|
|
|
|
|
|
|
} |
|
714
|
|
|
|
|
|
|
|
|
715
|
0
|
|
|
|
|
0
|
$t += $s; |
|
716
|
0
|
|
|
|
|
0
|
$x = 0.964; |
|
717
|
0
|
|
|
|
|
0
|
$w = $y = $x; |
|
718
|
|
|
|
|
|
|
} |
|
719
|
|
|
|
|
|
|
} |
|
720
|
|
|
|
|
|
|
|
|
721
|
13
|
|
|
|
|
11
|
++$iter; |
|
722
|
|
|
|
|
|
|
|
|
723
|
|
|
|
|
|
|
# Look for two consecutive small sub-diagonal elements. |
|
724
|
13
|
|
|
|
|
22
|
for ($m = $n - 2; $m >= $l; --$m) |
|
725
|
|
|
|
|
|
|
{ |
|
726
|
13
|
|
|
|
|
15
|
$z = $H[$m * $N + $m]; |
|
727
|
13
|
|
|
|
|
13
|
$r = $x - $z; |
|
728
|
13
|
|
|
|
|
12
|
$s = $y - $z; |
|
729
|
13
|
|
|
|
|
19
|
$p = ($r * $s - $w) / $H[($m + 1) * $N + $m] + $H[$m * $N + ($m + 1)]; |
|
730
|
13
|
|
|
|
|
19
|
$q = $H[($m + 1) * $N + ($m + 1)] - $z - $r - $s; |
|
731
|
13
|
|
|
|
|
14
|
$r = $H[($m + 2) * $N + ($m + 1)]; |
|
732
|
13
|
|
|
|
|
15
|
$s = abs ($p) + abs ($q) + abs ($r); |
|
733
|
13
|
|
|
|
|
13
|
$p = $p / $s; |
|
734
|
13
|
|
|
|
|
12
|
$q = $q / $s; |
|
735
|
13
|
|
|
|
|
12
|
$r = $r / $s; |
|
736
|
|
|
|
|
|
|
|
|
737
|
13
|
50
|
|
|
|
31
|
last if $m == $l; |
|
738
|
0
|
0
|
|
|
|
0
|
last if abs ($H[$m * $N + ($m - 1)]) * (abs ($q) + abs ($r)) < eps * (abs ($p) * (abs ($H[($m - 1) * $N + ($m - 1)]) + abs ($z) + abs ($H[($m + 1) * $N + ($m + 1)]))); |
|
739
|
|
|
|
|
|
|
} |
|
740
|
|
|
|
|
|
|
|
|
741
|
13
|
|
|
|
|
19
|
for $i ($m + 2 .. $n) |
|
742
|
|
|
|
|
|
|
{ |
|
743
|
13
|
|
|
|
|
17
|
$H[$i * $N + ($i - 2)] = 0; |
|
744
|
13
|
50
|
|
|
|
26
|
$H[$i * $N + ($i - 3)] = 0 |
|
745
|
|
|
|
|
|
|
if $i > $m + 2; |
|
746
|
|
|
|
|
|
|
} |
|
747
|
|
|
|
|
|
|
|
|
748
|
|
|
|
|
|
|
# Double QR step. |
|
749
|
13
|
|
|
|
|
18
|
for $k ($m .. $n - 1) |
|
750
|
|
|
|
|
|
|
{ |
|
751
|
26
|
|
|
|
|
34
|
$not_last = ($k != $n - 1); |
|
752
|
|
|
|
|
|
|
|
|
753
|
26
|
100
|
|
|
|
45
|
if ($k != $m) |
|
754
|
|
|
|
|
|
|
{ |
|
755
|
13
|
|
|
|
|
15
|
$p = $H[$k * $N + ($k - 1)]; |
|
756
|
13
|
|
|
|
|
17
|
$q = $H[($k + 1) * $N + ($k - 1)]; |
|
757
|
13
|
50
|
|
|
|
17
|
$r = $not_last ? $H[($k + 2) * $N + ($k - 1)] : 0; |
|
758
|
13
|
|
|
|
|
20
|
$x = abs ($p) + abs ($q) + abs ($r); |
|
759
|
|
|
|
|
|
|
|
|
760
|
13
|
50
|
|
|
|
18
|
next if $x == 0; |
|
761
|
|
|
|
|
|
|
|
|
762
|
13
|
|
|
|
|
14
|
$p = $p / $x; |
|
763
|
13
|
|
|
|
|
13
|
$q = $q / $x; |
|
764
|
13
|
|
|
|
|
13
|
$r = $r / $x; |
|
765
|
|
|
|
|
|
|
} |
|
766
|
|
|
|
|
|
|
|
|
767
|
26
|
|
|
|
|
51
|
$s = sign (sqrt ($p * $p + $q * $q + $r * $r), $p); |
|
768
|
26
|
50
|
|
|
|
37
|
if ($s != 0) |
|
769
|
|
|
|
|
|
|
{ |
|
770
|
26
|
100
|
|
|
|
43
|
if ($k != $m) |
|
|
|
50
|
|
|
|
|
|
|
771
|
|
|
|
|
|
|
{ |
|
772
|
13
|
|
|
|
|
20
|
$H[$k * $N + ($k - 1)] = 0 - $s * $x; |
|
773
|
|
|
|
|
|
|
} |
|
774
|
|
|
|
|
|
|
elsif ($l != $m) |
|
775
|
|
|
|
|
|
|
{ |
|
776
|
0
|
|
|
|
|
0
|
$H[$k * $N + ($k - 1)] = - $H[$k * $N + ($k - 1)]; |
|
777
|
|
|
|
|
|
|
} |
|
778
|
|
|
|
|
|
|
|
|
779
|
26
|
|
|
|
|
371
|
$p = $p + $s; |
|
780
|
26
|
|
|
|
|
99
|
$x = $p / $s; |
|
781
|
26
|
|
|
|
|
24
|
$y = $q / $s; |
|
782
|
26
|
|
|
|
|
24
|
$z = $r / $s; |
|
783
|
26
|
|
|
|
|
27
|
$q = $q / $p; |
|
784
|
26
|
|
|
|
|
21
|
$r = $r / $p; |
|
785
|
|
|
|
|
|
|
|
|
786
|
26
|
100
|
|
|
|
29
|
if ($not_last) |
|
787
|
|
|
|
|
|
|
{ |
|
788
|
|
|
|
|
|
|
# Row modification. |
|
789
|
13
|
|
|
|
|
19
|
for $j ($k .. $end) |
|
790
|
|
|
|
|
|
|
{ |
|
791
|
39
|
|
|
|
|
58
|
$p = $H[$k * $N + $j] + $q * $H[($k + 1) * $N + $j] + $r * $H[($k + 2) * $N + $j]; |
|
792
|
|
|
|
|
|
|
|
|
793
|
39
|
|
|
|
|
41
|
$H[$k * $N + $j] -= $p * $x; |
|
794
|
39
|
|
|
|
|
40
|
$H[($k + 1) * $N + $j] -= $p * $y; |
|
795
|
39
|
|
|
|
|
47
|
$H[($k + 2) * $N + $j] -= $p * $z; |
|
796
|
|
|
|
|
|
|
} |
|
797
|
|
|
|
|
|
|
|
|
798
|
|
|
|
|
|
|
# Column modification. |
|
799
|
13
|
|
|
|
|
24
|
for $i (0 .. min ($n, $k + 3)) |
|
800
|
|
|
|
|
|
|
{ |
|
801
|
39
|
|
|
|
|
52
|
$p = $x * $H[$i * $N + $k] + $y * $H[$i * $N + ($k + 1)] + $z * $H[$i * $N + ($k + 2)]; |
|
802
|
|
|
|
|
|
|
|
|
803
|
39
|
|
|
|
|
41
|
$H[$i * $N + $k] -= $p; |
|
804
|
39
|
|
|
|
|
43
|
$H[$i * $N + ($k + 1)] -= $p * $q; |
|
805
|
39
|
|
|
|
|
44
|
$H[$i * $N + ($k + 2)] -= $p * $r; |
|
806
|
|
|
|
|
|
|
} |
|
807
|
|
|
|
|
|
|
|
|
808
|
|
|
|
|
|
|
# Accumulate transformations. |
|
809
|
13
|
|
|
|
|
20
|
for $i ($lo .. $hi) |
|
810
|
|
|
|
|
|
|
{ |
|
811
|
39
|
|
|
|
|
56
|
$p = $x * $$Z[$k][$i] + $y * $$Z[$k + 1][$i] + $z * $$Z[$k + 2][$i]; |
|
812
|
|
|
|
|
|
|
|
|
813
|
39
|
|
|
|
|
40
|
$$Z[$k][$i] -= $p; |
|
814
|
39
|
|
|
|
|
41
|
$$Z[$k + 1][$i] -= $p * $q; |
|
815
|
39
|
|
|
|
|
49
|
$$Z[$k + 2][$i] -= $p * $r; |
|
816
|
|
|
|
|
|
|
} |
|
817
|
|
|
|
|
|
|
} |
|
818
|
|
|
|
|
|
|
else |
|
819
|
|
|
|
|
|
|
{ |
|
820
|
|
|
|
|
|
|
# Row modification. |
|
821
|
13
|
|
|
|
|
20
|
for $j ($k .. $end) |
|
822
|
|
|
|
|
|
|
{ |
|
823
|
26
|
|
|
|
|
32
|
$p = $H[$k * $N + $j] + $q * $H[($k + 1) * $N + $j]; |
|
824
|
|
|
|
|
|
|
|
|
825
|
26
|
|
|
|
|
28
|
$H[$k * $N + $j] -= $p * $x; |
|
826
|
26
|
|
|
|
|
32
|
$H[($k + 1) * $N + $j] -= $p * $y; |
|
827
|
|
|
|
|
|
|
} |
|
828
|
|
|
|
|
|
|
|
|
829
|
|
|
|
|
|
|
# Column modification. |
|
830
|
13
|
|
|
|
|
28
|
for $i (0 .. min ($n, $k + 3)) |
|
831
|
|
|
|
|
|
|
{ |
|
832
|
39
|
|
|
|
|
52
|
$p = $x * $H[$i * $N + $k] + $y * $H[$i * $N + ($k + 1)]; |
|
833
|
|
|
|
|
|
|
|
|
834
|
39
|
|
|
|
|
114
|
$H[$i * $N + $k] -= $p; |
|
835
|
39
|
|
|
|
|
49
|
$H[$i * $N + ($k + 1)] -= $p * $q; |
|
836
|
|
|
|
|
|
|
} |
|
837
|
|
|
|
|
|
|
|
|
838
|
|
|
|
|
|
|
# Accumulate transformations. |
|
839
|
13
|
|
|
|
|
18
|
for $i (0 .. $end) |
|
840
|
|
|
|
|
|
|
{ |
|
841
|
39
|
|
|
|
|
45
|
$p = $x * $$Z[$k][$i] + $y * $$Z[$k + 1][$i]; |
|
842
|
|
|
|
|
|
|
|
|
843
|
39
|
|
|
|
|
40
|
$$Z[$k][$i] -= $p; |
|
844
|
39
|
|
|
|
|
57
|
$$Z[$k + 1][$i] -= $p * $q; |
|
845
|
|
|
|
|
|
|
} |
|
846
|
|
|
|
|
|
|
} |
|
847
|
|
|
|
|
|
|
} |
|
848
|
|
|
|
|
|
|
} |
|
849
|
|
|
|
|
|
|
} |
|
850
|
|
|
|
|
|
|
} |
|
851
|
|
|
|
|
|
|
|
|
852
|
|
|
|
|
|
|
# Backsubstitute to find vectors of upper triangular form. |
|
853
|
3
|
50
|
|
|
|
10
|
return if $norm == 0; |
|
854
|
|
|
|
|
|
|
|
|
855
|
3
|
|
|
|
|
9
|
for $n (reverse (0 .. $end)) |
|
856
|
|
|
|
|
|
|
{ |
|
857
|
8
|
|
|
|
|
16
|
$p = $$d[$n]; |
|
858
|
8
|
|
|
|
|
10
|
$q = $$e[$n]; |
|
859
|
|
|
|
|
|
|
|
|
860
|
8
|
50
|
|
|
|
12
|
if ($q == 0) |
|
|
|
0
|
|
|
|
|
|
|
861
|
|
|
|
|
|
|
{ |
|
862
|
|
|
|
|
|
|
# Real vector. |
|
863
|
8
|
|
|
|
|
8
|
$m = $n; |
|
864
|
8
|
|
|
|
|
12
|
$H[$n * $N + $n] = 1; |
|
865
|
|
|
|
|
|
|
|
|
866
|
8
|
|
|
|
|
15
|
for $i (reverse (0 .. $n - 1)) |
|
867
|
|
|
|
|
|
|
{ |
|
868
|
7
|
|
|
|
|
12
|
$w = $H[$i * $N + $i] - $p; |
|
869
|
7
|
|
|
|
|
9
|
$r = 0; |
|
870
|
|
|
|
|
|
|
|
|
871
|
7
|
|
|
|
|
8
|
for $j ($m .. $n) |
|
872
|
|
|
|
|
|
|
{ |
|
873
|
9
|
|
|
|
|
17
|
$r += $H[$i * $N + $j] * $H[$j * $N + $n]; |
|
874
|
|
|
|
|
|
|
} |
|
875
|
|
|
|
|
|
|
|
|
876
|
7
|
50
|
|
|
|
12
|
if ($$e[$i] < 0) |
|
877
|
|
|
|
|
|
|
{ |
|
878
|
0
|
|
|
|
|
0
|
$z = $w; |
|
879
|
0
|
|
|
|
|
0
|
$s = $r; |
|
880
|
|
|
|
|
|
|
} |
|
881
|
|
|
|
|
|
|
else |
|
882
|
|
|
|
|
|
|
{ |
|
883
|
7
|
|
|
|
|
8
|
$m = $i; |
|
884
|
|
|
|
|
|
|
|
|
885
|
7
|
50
|
|
|
|
12
|
if ($$e[$i] == 0) |
|
886
|
|
|
|
|
|
|
{ |
|
887
|
7
|
50
|
|
|
|
15
|
$H[$i * $N + $n] = ($w != 0 ? |
|
888
|
|
|
|
|
|
|
0 - $r / $w : |
|
889
|
|
|
|
|
|
|
0 - $r / (eps * $norm)); |
|
890
|
|
|
|
|
|
|
} |
|
891
|
|
|
|
|
|
|
else |
|
892
|
|
|
|
|
|
|
{ |
|
893
|
|
|
|
|
|
|
# Solve real equations. |
|
894
|
0
|
|
|
|
|
0
|
$x = $H[$i * $N + ($i + 1)]; |
|
895
|
0
|
|
|
|
|
0
|
$y = $H[($i + 1) * $N + $i]; |
|
896
|
0
|
|
|
|
|
0
|
$q = ($$d[$i] - $p) ** 2 + $$e[$i] ** 2; |
|
897
|
0
|
|
|
|
|
0
|
$t = ($x * $s - $z * $r) / $q; |
|
898
|
|
|
|
|
|
|
|
|
899
|
0
|
|
|
|
|
0
|
$H[$i * $N + $n] = $t; |
|
900
|
0
|
0
|
|
|
|
0
|
$H[($i + 1) * $N + $n] = (abs ($x) > abs ($z) ? |
|
901
|
|
|
|
|
|
|
(0 - $r - $w * $t) / $x : |
|
902
|
|
|
|
|
|
|
(0 - $s - $y * $t) / $z); |
|
903
|
|
|
|
|
|
|
} |
|
904
|
|
|
|
|
|
|
|
|
905
|
|
|
|
|
|
|
# Overflow control. |
|
906
|
7
|
|
|
|
|
10
|
$t = abs ($H[$i * $N + $n]); |
|
907
|
7
|
50
|
|
|
|
14
|
if ((eps * $t) * $t > 1) |
|
908
|
|
|
|
|
|
|
{ |
|
909
|
0
|
|
|
|
|
0
|
for $j ($i .. $n) |
|
910
|
|
|
|
|
|
|
{ |
|
911
|
0
|
|
|
|
|
0
|
$H[$j * $N + $n] /= $t; |
|
912
|
|
|
|
|
|
|
} |
|
913
|
|
|
|
|
|
|
} |
|
914
|
|
|
|
|
|
|
} |
|
915
|
|
|
|
|
|
|
} |
|
916
|
|
|
|
|
|
|
} |
|
917
|
|
|
|
|
|
|
elsif ($q < 0) |
|
918
|
|
|
|
|
|
|
{ |
|
919
|
|
|
|
|
|
|
# Complex vector. |
|
920
|
0
|
|
|
|
|
0
|
$m = $n - 1; |
|
921
|
|
|
|
|
|
|
|
|
922
|
|
|
|
|
|
|
# Last vector component chosen imaginary so that |
|
923
|
|
|
|
|
|
|
# eigenvector matrix is triangular. |
|
924
|
0
|
0
|
|
|
|
0
|
if (abs ($H[$n * $N + ($n - 1)]) > abs ($H[($n - 1) * $N + $n])) |
|
925
|
|
|
|
|
|
|
{ |
|
926
|
0
|
|
|
|
|
0
|
$H[($n - 1) * $N + ($n - 1)] = $q / $H[$n * $N + ($n - 1)]; |
|
927
|
0
|
|
|
|
|
0
|
$H[($n - 1) * $N + $n] = ($p - $H[$n * $N + $n]) / $H[$n * $N + ($n - 1)]; |
|
928
|
|
|
|
|
|
|
} |
|
929
|
|
|
|
|
|
|
else |
|
930
|
|
|
|
|
|
|
{ |
|
931
|
0
|
|
|
|
|
0
|
($H[($n - 1) * $N + ($n - 1)], $H[($n - 1) * $N + $n]) |
|
932
|
|
|
|
|
|
|
= cdiv (0, - $H[($n - 1) * $N + $n], |
|
933
|
|
|
|
|
|
|
$H[($n - 1) * $N + ($n - 1)] - $p, $q); |
|
934
|
|
|
|
|
|
|
} |
|
935
|
|
|
|
|
|
|
|
|
936
|
0
|
|
|
|
|
0
|
$H[$n * $N + ($n - 1)] = 0; |
|
937
|
0
|
|
|
|
|
0
|
$H[$n * $N + $n] = 1; |
|
938
|
|
|
|
|
|
|
|
|
939
|
0
|
|
|
|
|
0
|
for $i (reverse (0 .. $n - 2)) |
|
940
|
|
|
|
|
|
|
{ |
|
941
|
0
|
|
|
|
|
0
|
$w = $H[$i * $N + $i] - $p; |
|
942
|
|
|
|
|
|
|
|
|
943
|
0
|
|
|
|
|
0
|
$ra = 0; |
|
944
|
0
|
|
|
|
|
0
|
$sa = 0; |
|
945
|
|
|
|
|
|
|
|
|
946
|
0
|
|
|
|
|
0
|
for $j ($m .. $n) |
|
947
|
|
|
|
|
|
|
{ |
|
948
|
0
|
|
|
|
|
0
|
$ra += $H[$i * $N + $j] * $H[$j * $N + ($n - 1)]; |
|
949
|
0
|
|
|
|
|
0
|
$sa += $H[$i * $N + $j] * $H[$j * $N + $n]; |
|
950
|
|
|
|
|
|
|
} |
|
951
|
|
|
|
|
|
|
|
|
952
|
0
|
0
|
|
|
|
0
|
if ($$e[$i] < 0) |
|
953
|
|
|
|
|
|
|
{ |
|
954
|
0
|
|
|
|
|
0
|
$z = $w; |
|
955
|
0
|
|
|
|
|
0
|
$r = $ra; |
|
956
|
0
|
|
|
|
|
0
|
$s = $sa; |
|
957
|
|
|
|
|
|
|
} |
|
958
|
|
|
|
|
|
|
else |
|
959
|
|
|
|
|
|
|
{ |
|
960
|
0
|
|
|
|
|
0
|
$m = $i; |
|
961
|
|
|
|
|
|
|
|
|
962
|
0
|
0
|
|
|
|
0
|
if ($$e[$i] == 0) |
|
963
|
|
|
|
|
|
|
{ |
|
964
|
0
|
|
|
|
|
0
|
($H[$i * $N + ($n - 1)], $H[$i * $N + $n]) |
|
965
|
|
|
|
|
|
|
= cdiv (- $ra, - $sa, $w, $q); |
|
966
|
|
|
|
|
|
|
} |
|
967
|
|
|
|
|
|
|
else |
|
968
|
|
|
|
|
|
|
{ |
|
969
|
|
|
|
|
|
|
# Solve complex equations. |
|
970
|
0
|
|
|
|
|
0
|
$x = $H[$i * $N + ($i + 1)]; |
|
971
|
0
|
|
|
|
|
0
|
$y = $H[($i + 1) * $N + $i]; |
|
972
|
|
|
|
|
|
|
|
|
973
|
0
|
|
|
|
|
0
|
$vr = ($$d[$i] - $p) ** 2 + $$e[$i] ** 2 - $q ** 2; |
|
974
|
0
|
|
|
|
|
0
|
$vi = ($$d[$i] - $p) * 2 * $q; |
|
975
|
|
|
|
|
|
|
|
|
976
|
0
|
0
|
0
|
|
|
0
|
if ($vr == 0 && $vi == 0) |
|
977
|
|
|
|
|
|
|
{ |
|
978
|
0
|
|
|
|
|
0
|
$vr = eps * $norm * (abs ($w) + abs ($q) + abs ($x) + abs ($y) + abs ($z)); |
|
979
|
|
|
|
|
|
|
} |
|
980
|
|
|
|
|
|
|
|
|
981
|
0
|
|
|
|
|
0
|
($H[$i * $N + ($n - 1)], $H[$i * $N + $n]) |
|
982
|
|
|
|
|
|
|
= cdiv ($x * $r - $z * $ra + $q * $sa, |
|
983
|
|
|
|
|
|
|
$x * $s - $z * $sa - $q * $ra, |
|
984
|
|
|
|
|
|
|
$vr, |
|
985
|
|
|
|
|
|
|
$vi); |
|
986
|
|
|
|
|
|
|
|
|
987
|
0
|
0
|
|
|
|
0
|
if (abs ($x) > (abs ($z) + abs ($q))) |
|
988
|
|
|
|
|
|
|
{ |
|
989
|
0
|
|
|
|
|
0
|
$H[($i + 1) * $N + ($n - 1)] = (0 - $ra - $w * $H[$i * $N + ($n - 1)] + $q * $H[$i * $N + $n]) / $x; |
|
990
|
0
|
|
|
|
|
0
|
$H[($i + 1) * $N + $n] = (0 - $sa - $w * $H[$i * $N + $n] - $q * $H[$i * $N + ($n - 1)]) / $x; |
|
991
|
|
|
|
|
|
|
} |
|
992
|
|
|
|
|
|
|
else |
|
993
|
|
|
|
|
|
|
{ |
|
994
|
0
|
|
|
|
|
0
|
($H[($i + 1) * $N + ($n - 1)], $H[($i + 1) * $N + $n]) |
|
995
|
|
|
|
|
|
|
= cdiv (0 - $r - $y * $H[$i * $N + ($n - 1)], |
|
996
|
|
|
|
|
|
|
0 - $s - $y * $H[$i * $N + $n], |
|
997
|
|
|
|
|
|
|
$z, |
|
998
|
|
|
|
|
|
|
$q); |
|
999
|
|
|
|
|
|
|
} |
|
1000
|
|
|
|
|
|
|
} |
|
1001
|
|
|
|
|
|
|
|
|
1002
|
|
|
|
|
|
|
# Overflow control. |
|
1003
|
0
|
|
|
|
|
0
|
$t = max (abs ($H[$i * $N + ($n - 1)]), abs ($H[$i * $N + $n])); |
|
1004
|
0
|
0
|
|
|
|
0
|
if ((eps * $t) * $t > 1) |
|
1005
|
|
|
|
|
|
|
{ |
|
1006
|
0
|
|
|
|
|
0
|
for $j ($i .. $n) |
|
1007
|
|
|
|
|
|
|
{ |
|
1008
|
0
|
|
|
|
|
0
|
$H[$j * $N + ($n - 1)] /= $t; |
|
1009
|
0
|
|
|
|
|
0
|
$H[$j * $N + $n] /= $t; |
|
1010
|
|
|
|
|
|
|
} |
|
1011
|
|
|
|
|
|
|
} |
|
1012
|
|
|
|
|
|
|
} |
|
1013
|
|
|
|
|
|
|
} |
|
1014
|
|
|
|
|
|
|
} |
|
1015
|
|
|
|
|
|
|
} |
|
1016
|
|
|
|
|
|
|
|
|
1017
|
|
|
|
|
|
|
# Vectors of isolated roots. |
|
1018
|
3
|
|
|
|
|
9
|
for $i (0 .. $end) |
|
1019
|
|
|
|
|
|
|
{ |
|
1020
|
8
|
100
|
100
|
|
|
25
|
if ($i < $lo || $i > $hi) |
|
1021
|
|
|
|
|
|
|
{ |
|
1022
|
2
|
|
|
|
|
3
|
for $j ($i .. $end) |
|
1023
|
|
|
|
|
|
|
{ |
|
1024
|
3
|
|
|
|
|
7
|
$$Z[$j][$i] = $H[$i * $N + $j]; |
|
1025
|
|
|
|
|
|
|
} |
|
1026
|
|
|
|
|
|
|
} |
|
1027
|
|
|
|
|
|
|
} |
|
1028
|
|
|
|
|
|
|
|
|
1029
|
|
|
|
|
|
|
# Multiply by transformation matrix to give |
|
1030
|
|
|
|
|
|
|
# vectors of original full matrix. |
|
1031
|
3
|
|
|
|
|
8
|
for $j (reverse ($lo .. $end)) |
|
1032
|
|
|
|
|
|
|
{ |
|
1033
|
7
|
|
|
|
|
13
|
$m = min ($j, $hi); |
|
1034
|
|
|
|
|
|
|
|
|
1035
|
7
|
|
|
|
|
15
|
for $i ($lo .. $hi) |
|
1036
|
|
|
|
|
|
|
{ |
|
1037
|
18
|
|
|
|
|
19
|
$z = 0; |
|
1038
|
|
|
|
|
|
|
|
|
1039
|
18
|
|
|
|
|
20
|
for $k ($lo .. $m) |
|
1040
|
|
|
|
|
|
|
{ |
|
1041
|
36
|
|
|
|
|
47
|
$z += $$Z[$k][$i] * $H[$k * $N + $j]; |
|
1042
|
|
|
|
|
|
|
} |
|
1043
|
|
|
|
|
|
|
|
|
1044
|
18
|
|
|
|
|
37
|
$$Z[$j][$i] = $z; |
|
1045
|
|
|
|
|
|
|
} |
|
1046
|
|
|
|
|
|
|
} |
|
1047
|
|
|
|
|
|
|
} |
|
1048
|
|
|
|
|
|
|
|
|
1049
|
|
|
|
|
|
|
# Form the eigenvectors of a real general matrix by back |
|
1050
|
|
|
|
|
|
|
# transforming those of the corresponding balanced matrix |
|
1051
|
|
|
|
|
|
|
# determined by 'balance'. |
|
1052
|
|
|
|
|
|
|
# |
|
1053
|
|
|
|
|
|
|
# See EiSPACK procedure 'balbak'. |
|
1054
|
3
|
50
|
|
|
|
9
|
if ($prop{balance}) |
|
1055
|
|
|
|
|
|
|
{ |
|
1056
|
3
|
|
|
|
|
6
|
my ($i, $j, $k); |
|
1057
|
|
|
|
|
|
|
|
|
1058
|
|
|
|
|
|
|
# Undo scaling. |
|
1059
|
3
|
|
|
|
|
7
|
for $i ($lo .. $hi) |
|
1060
|
|
|
|
|
|
|
{ |
|
1061
|
6
|
|
|
|
|
8
|
my $s = $scale[$i]; |
|
1062
|
|
|
|
|
|
|
|
|
1063
|
6
|
|
|
|
|
8
|
for $j (0 .. $end) |
|
1064
|
|
|
|
|
|
|
{ |
|
1065
|
18
|
|
|
|
|
21
|
$$Z[$j][$i] *= $s; |
|
1066
|
|
|
|
|
|
|
} |
|
1067
|
|
|
|
|
|
|
} |
|
1068
|
|
|
|
|
|
|
|
|
1069
|
|
|
|
|
|
|
# Undo permutations. |
|
1070
|
3
|
|
|
|
|
10
|
for $i (reverse (0 .. $lo - 1)) |
|
1071
|
|
|
|
|
|
|
{ |
|
1072
|
1
|
|
|
|
|
2
|
$k = $perm[$i]; |
|
1073
|
1
|
50
|
|
|
|
15
|
if ($k != $i) |
|
1074
|
|
|
|
|
|
|
{ |
|
1075
|
0
|
|
|
|
|
0
|
for $j (0 .. $end) |
|
1076
|
|
|
|
|
|
|
{ |
|
1077
|
0
|
|
|
|
|
0
|
($$Z[$j][$i], $$Z[$j][$k]) |
|
1078
|
|
|
|
|
|
|
= ($$Z[$j][$k], $$Z[$j][$i]); |
|
1079
|
|
|
|
|
|
|
} |
|
1080
|
|
|
|
|
|
|
} |
|
1081
|
|
|
|
|
|
|
} |
|
1082
|
|
|
|
|
|
|
|
|
1083
|
3
|
|
|
|
|
11
|
for $i ($hi + 1 .. $end) |
|
1084
|
|
|
|
|
|
|
{ |
|
1085
|
1
|
|
|
|
|
2
|
$k = $perm[$i]; |
|
1086
|
1
|
50
|
|
|
|
5
|
if ($k != $i) |
|
1087
|
|
|
|
|
|
|
{ |
|
1088
|
0
|
|
|
|
|
0
|
for $j (0 .. $end) |
|
1089
|
|
|
|
|
|
|
{ |
|
1090
|
0
|
|
|
|
|
0
|
($$Z[$j][$i], $$Z[$j][$k]) |
|
1091
|
|
|
|
|
|
|
= ($$Z[$j][$k], $$Z[$j][$i]); |
|
1092
|
|
|
|
|
|
|
} |
|
1093
|
|
|
|
|
|
|
} |
|
1094
|
|
|
|
|
|
|
} |
|
1095
|
|
|
|
|
|
|
} |
|
1096
|
|
|
|
|
|
|
} |
|
1097
|
|
|
|
|
|
|
|
|
1098
|
|
|
|
|
|
|
# Create complex eigenvalues. |
|
1099
|
4
|
|
|
|
|
10
|
for my $i (0 .. $end) |
|
1100
|
|
|
|
|
|
|
{ |
|
1101
|
11
|
50
|
|
|
|
22
|
$$d[$i] = Math::Complex->make ($$d[$i], $$e[$i]) |
|
1102
|
|
|
|
|
|
|
if $$e[$i] != 0; |
|
1103
|
|
|
|
|
|
|
} |
|
1104
|
|
|
|
|
|
|
|
|
1105
|
|
|
|
|
|
|
# Normalize eigenvectors. |
|
1106
|
|
|
|
|
|
|
$self->normalize |
|
1107
|
4
|
50
|
|
|
|
29
|
if $prop{normalize}; |
|
1108
|
|
|
|
|
|
|
|
|
1109
|
|
|
|
|
|
|
# Make first non-zero vector element a positive number. |
|
1110
|
4
|
50
|
|
|
|
10
|
if ($prop{positive}) |
|
1111
|
|
|
|
|
|
|
{ |
|
1112
|
4
|
|
|
|
|
8
|
my ($i, $j, $k); |
|
1113
|
|
|
|
|
|
|
|
|
1114
|
4
|
|
|
|
|
9
|
for $j (0 .. $end) |
|
1115
|
|
|
|
|
|
|
{ |
|
1116
|
11
|
|
|
|
|
18
|
for $i (0 .. $end) |
|
1117
|
|
|
|
|
|
|
{ |
|
1118
|
11
|
50
|
|
|
|
20
|
next if $$Z[$j][$i] == 0; |
|
1119
|
|
|
|
|
|
|
|
|
1120
|
11
|
100
|
|
|
|
18
|
if ($$Z[$j][$i] < 0) |
|
1121
|
|
|
|
|
|
|
{ |
|
1122
|
5
|
|
|
|
|
7
|
for $k ($i .. $end) |
|
1123
|
|
|
|
|
|
|
{ |
|
1124
|
15
|
|
|
|
|
20
|
$$Z[$j][$k] = - $$Z[$j][$k]; |
|
1125
|
|
|
|
|
|
|
} |
|
1126
|
|
|
|
|
|
|
} |
|
1127
|
|
|
|
|
|
|
|
|
1128
|
11
|
|
|
|
|
12
|
last; |
|
1129
|
|
|
|
|
|
|
} |
|
1130
|
|
|
|
|
|
|
} |
|
1131
|
|
|
|
|
|
|
} |
|
1132
|
|
|
|
|
|
|
|
|
1133
|
|
|
|
|
|
|
# Return object. |
|
1134
|
4
|
|
|
|
|
36
|
$self; |
|
1135
|
|
|
|
|
|
|
} |
|
1136
|
|
|
|
|
|
|
|
|
1137
|
|
|
|
|
|
|
# Balance a real matrix. |
|
1138
|
|
|
|
|
|
|
# |
|
1139
|
|
|
|
|
|
|
# See LAPACK procedure 'dgebal'. |
|
1140
|
|
|
|
|
|
|
sub gebal ($$%) |
|
1141
|
|
|
|
|
|
|
{ |
|
1142
|
|
|
|
|
|
|
# Arguments. |
|
1143
|
3
|
|
|
3
|
0
|
13
|
my ($n, $a, %opt) = @_; |
|
1144
|
|
|
|
|
|
|
|
|
1145
|
|
|
|
|
|
|
# Default options. |
|
1146
|
3
|
|
50
|
|
|
49
|
$opt{permute} //= 1; |
|
1147
|
3
|
|
50
|
|
|
14
|
$opt{scale} //= 1; |
|
1148
|
3
|
|
50
|
|
|
7
|
$opt{low} //= undef; |
|
1149
|
3
|
|
50
|
|
|
7
|
$opt{high} //= undef; |
|
1150
|
|
|
|
|
|
|
|
|
1151
|
|
|
|
|
|
|
# Index of last row/column. |
|
1152
|
3
|
|
|
|
|
5
|
my $end = $n - 1; |
|
1153
|
|
|
|
|
|
|
|
|
1154
|
|
|
|
|
|
|
# Row and column indices of the beginning and end |
|
1155
|
|
|
|
|
|
|
# of the principal sub-matrix. |
|
1156
|
3
|
|
|
|
|
11
|
my $k = 0; |
|
1157
|
3
|
|
|
|
|
6
|
my $l = $end; |
|
1158
|
|
|
|
|
|
|
|
|
1159
|
|
|
|
|
|
|
# Permutation vector. |
|
1160
|
3
|
|
|
|
|
8
|
my @perm = (0 .. $end); |
|
1161
|
|
|
|
|
|
|
|
|
1162
|
|
|
|
|
|
|
# Scaling vector. |
|
1163
|
3
|
|
|
|
|
14
|
my @scale = map (1, 0 .. $end); |
|
1164
|
|
|
|
|
|
|
|
|
1165
|
3
|
50
|
|
|
|
11
|
if ($n > 1) |
|
1166
|
|
|
|
|
|
|
{ |
|
1167
|
|
|
|
|
|
|
# Isolate eigenvalues. |
|
1168
|
3
|
50
|
|
|
|
7
|
if ($opt{permute}) |
|
1169
|
|
|
|
|
|
|
{ |
|
1170
|
|
|
|
|
|
|
# Search for rows isolating an eigenvalue |
|
1171
|
|
|
|
|
|
|
# and push them down. |
|
1172
|
|
|
|
|
|
|
L: |
|
1173
|
|
|
|
|
|
|
{ |
|
1174
|
3
|
|
|
|
|
4
|
for my $j (reverse (0 .. $l)) |
|
|
3
|
|
|
|
|
8
|
|
|
1175
|
|
|
|
|
|
|
{ |
|
1176
|
7
|
|
|
|
|
9
|
my $swap = 1; |
|
1177
|
|
|
|
|
|
|
|
|
1178
|
7
|
|
|
|
|
11
|
for my $i (0 .. $l) |
|
1179
|
|
|
|
|
|
|
{ |
|
1180
|
20
|
100
|
100
|
|
|
50
|
$swap = 0 if $i != $j && $$a[$j * $n + $i] != 0; |
|
1181
|
|
|
|
|
|
|
} |
|
1182
|
|
|
|
|
|
|
|
|
1183
|
7
|
100
|
|
|
|
13
|
next unless $swap; |
|
1184
|
|
|
|
|
|
|
|
|
1185
|
1
|
50
|
|
|
|
4
|
if ($j != $l) |
|
1186
|
|
|
|
|
|
|
{ |
|
1187
|
|
|
|
|
|
|
# Exchange row and column. |
|
1188
|
0
|
|
|
|
|
0
|
@perm[$j, $l] = @perm[$l, $j]; |
|
1189
|
|
|
|
|
|
|
|
|
1190
|
0
|
|
|
|
|
0
|
blas_swap ($l + 1, $a, $a, |
|
1191
|
|
|
|
|
|
|
x_ind => $j, |
|
1192
|
|
|
|
|
|
|
x_incr => $n, |
|
1193
|
|
|
|
|
|
|
y_ind => $l, |
|
1194
|
|
|
|
|
|
|
y_incr => $n); |
|
1195
|
0
|
|
|
|
|
0
|
blas_swap ($n - $k, $a, $a, |
|
1196
|
|
|
|
|
|
|
x_ind => $j * $n + $k, |
|
1197
|
|
|
|
|
|
|
x_incr => 1, |
|
1198
|
|
|
|
|
|
|
y_ind => $l * $n + $k, |
|
1199
|
|
|
|
|
|
|
y_incr => 1); |
|
1200
|
|
|
|
|
|
|
} |
|
1201
|
|
|
|
|
|
|
|
|
1202
|
1
|
|
|
|
|
2
|
$l -= 1; |
|
1203
|
1
|
|
|
|
|
3
|
next L; |
|
1204
|
|
|
|
|
|
|
} |
|
1205
|
|
|
|
|
|
|
} |
|
1206
|
|
|
|
|
|
|
|
|
1207
|
|
|
|
|
|
|
# Search for columns isolating an eigenvalue |
|
1208
|
|
|
|
|
|
|
# and push them left. |
|
1209
|
|
|
|
|
|
|
K: |
|
1210
|
|
|
|
|
|
|
{ |
|
1211
|
3
|
|
|
|
|
6
|
for my $j ($k .. $l) |
|
|
3
|
|
|
|
|
9
|
|
|
1212
|
|
|
|
|
|
|
{ |
|
1213
|
7
|
|
|
|
|
9
|
my $swap = 1; |
|
1214
|
|
|
|
|
|
|
|
|
1215
|
7
|
|
|
|
|
11
|
for my $i ($k .. $l) |
|
1216
|
|
|
|
|
|
|
{ |
|
1217
|
19
|
100
|
66
|
|
|
51
|
$swap = 0 if $i != $j && $$a[$i * $n + $j] != 0; |
|
1218
|
|
|
|
|
|
|
} |
|
1219
|
|
|
|
|
|
|
|
|
1220
|
7
|
100
|
|
|
|
16
|
next unless $swap; |
|
1221
|
|
|
|
|
|
|
|
|
1222
|
1
|
50
|
|
|
|
2
|
if ($j != $k) |
|
1223
|
|
|
|
|
|
|
{ |
|
1224
|
|
|
|
|
|
|
# Exchange row and column. |
|
1225
|
0
|
|
|
|
|
0
|
@perm[$j, $k] = @perm[$k, $j]; |
|
1226
|
|
|
|
|
|
|
|
|
1227
|
0
|
|
|
|
|
0
|
blas_swap ($l + 1, $a, $a, |
|
1228
|
|
|
|
|
|
|
x_ind => $j, |
|
1229
|
|
|
|
|
|
|
x_incr => $n, |
|
1230
|
|
|
|
|
|
|
y_ind => $k, |
|
1231
|
|
|
|
|
|
|
y_incr => $n); |
|
1232
|
0
|
|
|
|
|
0
|
blas_swap ($n - $k, $a, $a, |
|
1233
|
|
|
|
|
|
|
x_ind => $j * $n + $k, |
|
1234
|
|
|
|
|
|
|
x_incr => 1, |
|
1235
|
|
|
|
|
|
|
y_ind => $k * $n + $k, |
|
1236
|
|
|
|
|
|
|
y_incr => 1); |
|
1237
|
|
|
|
|
|
|
} |
|
1238
|
|
|
|
|
|
|
|
|
1239
|
1
|
|
|
|
|
3
|
$k += 1; |
|
1240
|
1
|
|
|
|
|
2
|
next K; |
|
1241
|
|
|
|
|
|
|
} |
|
1242
|
|
|
|
|
|
|
} |
|
1243
|
|
|
|
|
|
|
} |
|
1244
|
|
|
|
|
|
|
|
|
1245
|
|
|
|
|
|
|
# Balance the sub-matrix in rows k to l. |
|
1246
|
3
|
50
|
|
|
|
9
|
if ($opt{scale}) |
|
1247
|
|
|
|
|
|
|
{ |
|
1248
|
3
|
|
|
|
|
8
|
my ($b, $c, $ca, $f, $g, $r, $ra, $s, $no_conv, |
|
1249
|
|
|
|
|
|
|
$sfmin1, $sfmax1, $sfmin2, $sfmax2); |
|
1250
|
|
|
|
|
|
|
|
|
1251
|
|
|
|
|
|
|
# Scale factors are powers of two. |
|
1252
|
3
|
|
|
|
|
4
|
$b = 2; |
|
1253
|
|
|
|
|
|
|
|
|
1254
|
3
|
|
|
|
|
5
|
if (1) |
|
1255
|
|
|
|
|
|
|
{ |
|
1256
|
3
|
|
|
|
|
10
|
my $base = 2; |
|
1257
|
3
|
|
|
|
|
6
|
my $eps = DBL_EPSILON; |
|
1258
|
3
|
|
|
|
|
5
|
my $small = 1 / DBL_MAX; |
|
1259
|
|
|
|
|
|
|
# Safe minimum, such that 1/sfmin does not overflow. |
|
1260
|
3
|
50
|
|
|
|
7
|
my $sfmin = ($small >= DBL_MIN ? $small * (1 + $eps) : DBL_MIN); |
|
1261
|
|
|
|
|
|
|
|
|
1262
|
3
|
|
|
|
|
5
|
$sfmin1 = $sfmin / ($eps * $base); |
|
1263
|
3
|
|
|
|
|
5
|
$sfmax1 = 1 / $sfmin1; |
|
1264
|
3
|
|
|
|
|
4
|
$sfmin2 = $sfmin1 * $b; |
|
1265
|
3
|
|
|
|
|
5
|
$sfmax2 = 1 / $sfmin2; |
|
1266
|
|
|
|
|
|
|
} |
|
1267
|
|
|
|
|
|
|
|
|
1268
|
|
|
|
|
|
|
# Iterative loop for norm reduction. |
|
1269
|
3
|
|
|
|
|
3
|
while (1) |
|
1270
|
|
|
|
|
|
|
{ |
|
1271
|
4
|
|
|
|
|
5
|
$no_conv = 0; |
|
1272
|
|
|
|
|
|
|
|
|
1273
|
4
|
|
|
|
|
10
|
for my $i ($k .. $l) |
|
1274
|
|
|
|
|
|
|
{ |
|
1275
|
9
|
|
|
|
|
27
|
$c = blas_norm ($l - $k + 1, $a, |
|
1276
|
|
|
|
|
|
|
norm => BLAS_TWO_NORM, |
|
1277
|
|
|
|
|
|
|
x_ind => $k * $n + $i, |
|
1278
|
|
|
|
|
|
|
x_incr => $n); |
|
1279
|
9
|
|
|
|
|
383
|
$r = blas_norm ($l - $k + 1, $a, |
|
1280
|
|
|
|
|
|
|
norm => BLAS_TWO_NORM, |
|
1281
|
|
|
|
|
|
|
x_ind => $i * $n + $k, |
|
1282
|
|
|
|
|
|
|
x_incr => 1); |
|
1283
|
9
|
|
|
|
|
327
|
(undef, $ca) = blas_amax_val ($l + 1, $a, |
|
1284
|
|
|
|
|
|
|
x_ind => $i, |
|
1285
|
|
|
|
|
|
|
x_incr => $n); |
|
1286
|
9
|
|
|
|
|
212
|
(undef, $ra) = blas_amax_val ($n - $k, $a, |
|
1287
|
|
|
|
|
|
|
x_ind => $i * $n + $k, |
|
1288
|
|
|
|
|
|
|
x_incr => 1); |
|
1289
|
|
|
|
|
|
|
|
|
1290
|
|
|
|
|
|
|
# Guard against zero c or r due to underflow. |
|
1291
|
9
|
50
|
33
|
|
|
261
|
next if $c == 0 || $r == 0; |
|
1292
|
|
|
|
|
|
|
|
|
1293
|
9
|
|
|
|
|
13
|
$s = $c + $r; |
|
1294
|
9
|
|
|
|
|
9
|
$f = 1; |
|
1295
|
|
|
|
|
|
|
|
|
1296
|
9
|
|
|
|
|
11
|
$g = $r / $b; |
|
1297
|
9
|
|
66
|
|
|
27
|
while ($c < $g |
|
|
|
|
66
|
|
|
|
|
|
1298
|
|
|
|
|
|
|
&& max ($f, max ($c, $ca)) < $sfmax2 |
|
1299
|
|
|
|
|
|
|
&& min ($g, min ($r, $ra)) > $sfmin2) |
|
1300
|
|
|
|
|
|
|
{ |
|
1301
|
1
|
50
|
|
|
|
6
|
croak ('Infinite loop') |
|
1302
|
|
|
|
|
|
|
if isnan ($f + $c + $ca + $g + $r + $ra); |
|
1303
|
|
|
|
|
|
|
|
|
1304
|
1
|
|
|
|
|
2
|
$f *= $b; |
|
1305
|
1
|
|
|
|
|
4
|
$c *= $b; |
|
1306
|
1
|
|
|
|
|
2
|
$ca *= $b; |
|
1307
|
1
|
|
|
|
|
2
|
$g /= $b; |
|
1308
|
1
|
|
|
|
|
2
|
$r /= $b; |
|
1309
|
1
|
|
|
|
|
3
|
$ra /= $b; |
|
1310
|
|
|
|
|
|
|
} |
|
1311
|
|
|
|
|
|
|
|
|
1312
|
9
|
|
|
|
|
10
|
$g = $c / $b; |
|
1313
|
9
|
|
66
|
|
|
20
|
while ($g >= $r |
|
|
|
|
66
|
|
|
|
|
|
1314
|
|
|
|
|
|
|
&& max ($r, $ra) < $sfmax2 |
|
1315
|
|
|
|
|
|
|
&& min ($g, min ($f, min ($c, $ca))) > $sfmin2) |
|
1316
|
|
|
|
|
|
|
{ |
|
1317
|
2
|
|
|
|
|
4
|
$f /= $b; |
|
1318
|
2
|
|
|
|
|
3
|
$c /= $b; |
|
1319
|
2
|
|
|
|
|
2
|
$ca /= $b; |
|
1320
|
2
|
|
|
|
|
3
|
$g /= $b; |
|
1321
|
2
|
|
|
|
|
2
|
$r *= $b; |
|
1322
|
2
|
|
|
|
|
4
|
$ra *= $b; |
|
1323
|
|
|
|
|
|
|
} |
|
1324
|
|
|
|
|
|
|
|
|
1325
|
|
|
|
|
|
|
# Now balance. |
|
1326
|
9
|
50
|
66
|
|
|
65
|
if (! (($c + $r) >= 0.95 * $s |
|
|
|
|
33
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
1327
|
|
|
|
|
|
|
|| ($f < 1 && $scale[$i] < 1 && $f * $scale[$i] <= $sfmin1) |
|
1328
|
|
|
|
|
|
|
|| ($f > 1 && $scale[$i] > 1 && $scale[$i] >= $sfmax1 / $f))) |
|
1329
|
|
|
|
|
|
|
{ |
|
1330
|
3
|
|
|
|
|
12
|
blas_rscale ($n - $k, $a, |
|
1331
|
|
|
|
|
|
|
alpha => $f, |
|
1332
|
|
|
|
|
|
|
x_ind => $i * $n + $k, |
|
1333
|
|
|
|
|
|
|
x_incr => 1); |
|
1334
|
3
|
|
|
|
|
96
|
blas_scale ($l + 1, $a, |
|
1335
|
|
|
|
|
|
|
alpha => $f, |
|
1336
|
|
|
|
|
|
|
x_ind => $i, |
|
1337
|
|
|
|
|
|
|
x_incr => $n); |
|
1338
|
|
|
|
|
|
|
|
|
1339
|
3
|
|
|
|
|
45
|
$scale[$i] *= $f; |
|
1340
|
3
|
|
|
|
|
6
|
$no_conv = 1; |
|
1341
|
|
|
|
|
|
|
} |
|
1342
|
|
|
|
|
|
|
} |
|
1343
|
|
|
|
|
|
|
|
|
1344
|
4
|
100
|
|
|
|
11
|
last unless $no_conv; |
|
1345
|
|
|
|
|
|
|
} |
|
1346
|
|
|
|
|
|
|
} |
|
1347
|
|
|
|
|
|
|
} |
|
1348
|
|
|
|
|
|
|
|
|
1349
|
3
|
|
|
|
|
9
|
${$opt{low}} = $k |
|
1350
|
3
|
50
|
|
|
|
12
|
if ref ($opt{low}); |
|
1351
|
|
|
|
|
|
|
|
|
1352
|
3
|
|
|
|
|
4
|
${$opt{high}} = $l |
|
1353
|
3
|
50
|
|
|
|
11
|
if ref ($opt{high}); |
|
1354
|
|
|
|
|
|
|
|
|
1355
|
3
|
|
|
|
|
11
|
return (\@perm, \@scale); |
|
1356
|
|
|
|
|
|
|
} |
|
1357
|
|
|
|
|
|
|
|
|
1358
|
|
|
|
|
|
|
# Normalize eigenvectors. |
|
1359
|
|
|
|
|
|
|
sub normalize |
|
1360
|
|
|
|
|
|
|
{ |
|
1361
|
4
|
|
|
4
|
1
|
9
|
my $self = shift; |
|
1362
|
|
|
|
|
|
|
|
|
1363
|
|
|
|
|
|
|
# Work variables. |
|
1364
|
4
|
|
|
|
|
6
|
my $len; |
|
1365
|
|
|
|
|
|
|
|
|
1366
|
4
|
|
|
|
|
6
|
for my $v (@{ $$self{vector} }) |
|
|
4
|
|
|
|
|
14
|
|
|
1367
|
|
|
|
|
|
|
{ |
|
1368
|
11
|
|
|
|
|
257
|
$len = blas_norm (@$v, $v, norm => BLAS_TWO_NORM); |
|
1369
|
11
|
50
|
|
|
|
507
|
blas_rscale (@$v, $v, alpha => $len) if $len != 0; |
|
1370
|
|
|
|
|
|
|
} |
|
1371
|
|
|
|
|
|
|
|
|
1372
|
|
|
|
|
|
|
# Return object. |
|
1373
|
4
|
|
|
|
|
106
|
$self; |
|
1374
|
|
|
|
|
|
|
} |
|
1375
|
|
|
|
|
|
|
|
|
1376
|
|
|
|
|
|
|
# Sort eigenvalues and corresponding eigenvectors. |
|
1377
|
|
|
|
|
|
|
sub sort |
|
1378
|
|
|
|
|
|
|
{ |
|
1379
|
4
|
|
|
4
|
1
|
8
|
my $self = shift; |
|
1380
|
4
|
|
50
|
|
|
14
|
my $order = shift // 'abs_desc'; |
|
1381
|
|
|
|
|
|
|
|
|
1382
|
|
|
|
|
|
|
# Permutation vector. |
|
1383
|
4
|
|
|
|
|
6
|
my @p = (); |
|
1384
|
|
|
|
|
|
|
|
|
1385
|
4
|
50
|
|
|
|
22
|
if ($order =~ m/\Avec_/) |
|
|
|
50
|
|
|
|
|
|
|
1386
|
|
|
|
|
|
|
{ |
|
1387
|
0
|
|
|
|
|
0
|
my $Z = $$self{vector}; |
|
1388
|
|
|
|
|
|
|
|
|
1389
|
|
|
|
|
|
|
@p = ($order eq 'vec_desc' ? |
|
1390
|
0
|
|
|
|
|
0
|
sort { _cmp_vec ($$Z[$b], $$Z[$a]) } 0 .. $#$Z : |
|
1391
|
|
|
|
|
|
|
($order eq 'vec_asc' ? |
|
1392
|
0
|
0
|
|
|
|
0
|
sort { _cmp_vec ($$Z[$a], $$Z[$b]) } 0 .. $#$Z : |
|
|
0
|
0
|
|
|
|
0
|
|
|
1393
|
|
|
|
|
|
|
croak ("Invalid argument"))); |
|
1394
|
|
|
|
|
|
|
} |
|
1395
|
4
|
|
|
|
|
27
|
elsif (grep (ref ($_), @{ $$self{value} })) |
|
1396
|
|
|
|
|
|
|
{ |
|
1397
|
|
|
|
|
|
|
# Consider complex eigenvalues. |
|
1398
|
0
|
|
|
|
|
0
|
my (@d, @e, @m) = (); |
|
1399
|
|
|
|
|
|
|
|
|
1400
|
0
|
|
|
|
|
0
|
for (@{ $$self{value} }) |
|
|
0
|
|
|
|
|
0
|
|
|
1401
|
|
|
|
|
|
|
{ |
|
1402
|
0
|
0
|
|
|
|
0
|
if (ref ($_)) |
|
1403
|
|
|
|
|
|
|
{ |
|
1404
|
0
|
|
|
|
|
0
|
push (@d, $_->Re); |
|
1405
|
0
|
|
|
|
|
0
|
push (@e, $_->Im); |
|
1406
|
0
|
|
|
|
|
0
|
push (@m, abs ($_)); |
|
1407
|
|
|
|
|
|
|
} |
|
1408
|
|
|
|
|
|
|
else |
|
1409
|
|
|
|
|
|
|
{ |
|
1410
|
0
|
|
|
|
|
0
|
push (@d, $_); |
|
1411
|
0
|
|
|
|
|
0
|
push (@e, 0); |
|
1412
|
0
|
|
|
|
|
0
|
push (@m, abs ($_)); |
|
1413
|
|
|
|
|
|
|
} |
|
1414
|
|
|
|
|
|
|
} |
|
1415
|
|
|
|
|
|
|
|
|
1416
|
|
|
|
|
|
|
@p = ($order eq 'abs_desc' ? |
|
1417
|
0
|
0
|
0
|
|
|
0
|
sort { abs ($d[$b]) <=> abs ($d[$a]) || $m[$b] <=> $m[$a] || $d[$b] <=> $d[$a] || $e[$b] <=> $e[$a] } 0 .. $#d : |
|
|
|
|
0
|
|
|
|
|
|
1418
|
|
|
|
|
|
|
($order eq 'abs_asc' ? |
|
1419
|
0
|
0
|
0
|
|
|
0
|
sort { abs ($d[$a]) <=> abs ($d[$b]) || $m[$a] <=> $m[$b] || $d[$a] <=> $d[$b] || $e[$a] <=> $e[$b] } 0 .. $#d : |
|
|
|
|
0
|
|
|
|
|
|
1420
|
|
|
|
|
|
|
($order eq 'norm_desc' ? |
|
1421
|
0
|
0
|
0
|
|
|
0
|
sort { $m[$b] <=> $m[$a] || $d[$b] <=> $d[$a] || $e[$b] <=> $e[$a] } 0 .. $#d : |
|
1422
|
|
|
|
|
|
|
($order eq 'norm_asc' ? |
|
1423
|
0
|
0
|
0
|
|
|
0
|
sort { $m[$a] <=> $m[$b] || $d[$a] <=> $d[$b] || $e[$a] <=> $e[$b] } 0 .. $#d : |
|
1424
|
|
|
|
|
|
|
($order eq 'desc' ? |
|
1425
|
0
|
0
|
|
|
|
0
|
sort { $d[$b] <=> $d[$a] || $e[$b] <=> $e[$a] } 0 .. $#d : |
|
1426
|
|
|
|
|
|
|
($order eq 'asc' ? |
|
1427
|
0
|
0
|
|
|
|
0
|
sort { $d[$a] <=> $d[$b] || $e[$a] <=> $e[$b] } 0 .. $#d : |
|
|
0
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
1428
|
|
|
|
|
|
|
croak ("Invalid argument"))))))); |
|
1429
|
|
|
|
|
|
|
} |
|
1430
|
|
|
|
|
|
|
else |
|
1431
|
|
|
|
|
|
|
{ |
|
1432
|
|
|
|
|
|
|
# Only real eigenvalues. |
|
1433
|
4
|
|
|
|
|
10
|
my $d = $$self{value}; |
|
1434
|
|
|
|
|
|
|
|
|
1435
|
|
|
|
|
|
|
@p = ($order eq 'abs_desc' || $order eq 'norm_desc' ? |
|
1436
|
0
|
0
|
|
|
|
0
|
sort { abs ($$d[$b]) <=> abs ($$d[$a]) || $$d[$b] <=> $$d[$a] } 0 .. $#$d : |
|
1437
|
|
|
|
|
|
|
($order eq 'abs_asc' || $order eq 'norm_asc' ? |
|
1438
|
0
|
0
|
|
|
|
0
|
sort { abs ($$d[$a]) <=> abs ($$d[$b]) || $$d[$a] <=> $$d[$b] } 0 .. $#$d : |
|
1439
|
|
|
|
|
|
|
($order eq 'desc' ? |
|
1440
|
0
|
|
|
|
|
0
|
sort { $$d[$b] <=> $$d[$a] } 0 .. $#$d : |
|
1441
|
|
|
|
|
|
|
($order eq 'asc' ? |
|
1442
|
4
|
50
|
33
|
|
|
64
|
sort { $$d[$a] <=> $$d[$b] } 0 .. $#$d : |
|
|
9
|
50
|
33
|
|
|
37
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
1443
|
|
|
|
|
|
|
croak ("Invalid argument"))))); |
|
1444
|
|
|
|
|
|
|
} |
|
1445
|
|
|
|
|
|
|
|
|
1446
|
|
|
|
|
|
|
# Reorder eigenvalues and corresponding eigenvectors. |
|
1447
|
4
|
50
|
|
|
|
27
|
if (@p > 0) |
|
1448
|
|
|
|
|
|
|
{ |
|
1449
|
4
|
|
|
|
|
6
|
my $ref; |
|
1450
|
|
|
|
|
|
|
|
|
1451
|
4
|
|
|
|
|
8
|
$ref = $$self{value}; |
|
1452
|
4
|
|
|
|
|
19
|
@$ref = @$ref[@p]; |
|
1453
|
|
|
|
|
|
|
|
|
1454
|
4
|
|
|
|
|
8
|
$ref = $$self{vector}; |
|
1455
|
4
|
|
|
|
|
18
|
@$ref = @$ref[@p]; |
|
1456
|
|
|
|
|
|
|
} |
|
1457
|
|
|
|
|
|
|
|
|
1458
|
|
|
|
|
|
|
# Return object. |
|
1459
|
4
|
|
|
|
|
10
|
$self; |
|
1460
|
|
|
|
|
|
|
} |
|
1461
|
|
|
|
|
|
|
|
|
1462
|
|
|
|
|
|
|
# Compare two eigenvectors. |
|
1463
|
|
|
|
|
|
|
sub _cmp_vec |
|
1464
|
|
|
|
|
|
|
{ |
|
1465
|
0
|
|
|
0
|
|
0
|
my ($u, $v) = @_; |
|
1466
|
|
|
|
|
|
|
|
|
1467
|
0
|
0
|
|
|
|
0
|
croak ("Invalid argument") |
|
1468
|
|
|
|
|
|
|
if $#$u != $#$v; |
|
1469
|
|
|
|
|
|
|
|
|
1470
|
0
|
|
|
|
|
0
|
my $d = 0; |
|
1471
|
|
|
|
|
|
|
|
|
1472
|
0
|
|
|
|
|
0
|
for my $i (0 .. $#$u) |
|
1473
|
|
|
|
|
|
|
{ |
|
1474
|
0
|
0
|
|
|
|
0
|
last if $d = ($$u[$i] <=> $$v[$i]); |
|
1475
|
|
|
|
|
|
|
} |
|
1476
|
|
|
|
|
|
|
|
|
1477
|
0
|
|
|
|
|
0
|
$d; |
|
1478
|
|
|
|
|
|
|
} |
|
1479
|
|
|
|
|
|
|
|
|
1480
|
|
|
|
|
|
|
# Return one or more eigenvalues. |
|
1481
|
|
|
|
|
|
|
sub value |
|
1482
|
|
|
|
|
|
|
{ |
|
1483
|
4
|
|
|
4
|
1
|
9
|
my $self = shift; |
|
1484
|
|
|
|
|
|
|
|
|
1485
|
4
|
50
|
|
|
|
12
|
@_ > 0 ? @{ $$self{value} }[@_] : @{ $$self{value} }; |
|
|
0
|
|
|
|
|
0
|
|
|
|
4
|
|
|
|
|
15
|
|
|
1486
|
|
|
|
|
|
|
} |
|
1487
|
|
|
|
|
|
|
|
|
1488
|
|
|
|
|
|
|
*values = \&value; |
|
1489
|
|
|
|
|
|
|
|
|
1490
|
|
|
|
|
|
|
# Return one or more eigenvectors. |
|
1491
|
|
|
|
|
|
|
sub vector |
|
1492
|
|
|
|
|
|
|
{ |
|
1493
|
11
|
|
|
11
|
1
|
3797
|
my $self = shift; |
|
1494
|
|
|
|
|
|
|
|
|
1495
|
11
|
50
|
|
|
|
30
|
@_ > 0 ? @{ $$self{vector} }[@_] : @{ $$self{vector} }; |
|
|
11
|
|
|
|
|
32
|
|
|
|
0
|
|
|
|
|
|
|
|
1496
|
|
|
|
|
|
|
} |
|
1497
|
|
|
|
|
|
|
|
|
1498
|
|
|
|
|
|
|
*vectors = \&vector; |
|
1499
|
|
|
|
|
|
|
|
|
1500
|
|
|
|
|
|
|
1; |
|
1501
|
|
|
|
|
|
|
|
|
1502
|
|
|
|
|
|
|
__END__ |