blib/lib/Math/Matrix.pm | |||
---|---|---|---|
Criterion | Covered | Total | % |
statement | 2055 | 2194 | 93.6 |
branch | 919 | 1472 | 62.4 |
condition | 120 | 255 | 47.0 |
subroutine | 228 | 233 | 97.8 |
pod | 187 | 187 | 100.0 |
total | 3509 | 4341 | 80.8 |
line | stmt | bran | cond | sub | pod | time | code |
---|---|---|---|---|---|---|---|
1 | # -*- mode: perl; coding: utf-8-unix -*- | ||||||
2 | |||||||
3 | package Math::Matrix; | ||||||
4 | |||||||
5 | 124 | 124 | 1324787 | use strict; | |||
124 | 980 | ||||||
124 | 3758 | ||||||
6 | 124 | 124 | 642 | use warnings; | |||
124 | 271 | ||||||
124 | 2984 | ||||||
7 | |||||||
8 | 124 | 124 | 601 | use Carp; | |||
124 | 237 | ||||||
124 | 13185 | ||||||
9 | 124 | 124 | 863 | use Scalar::Util 'blessed'; | |||
124 | 272 | ||||||
124 | 64501 | ||||||
10 | |||||||
11 | our $VERSION = '0.93'; | ||||||
12 | our $eps = 0.00001; | ||||||
13 | |||||||
14 | use overload | ||||||
15 | |||||||
16 | '+' => sub { | ||||||
17 | 3 | 3 | 20 | my ($x, $y, $swap) = @_; | |||
18 | 3 | 7 | $x -> add($y); | ||||
19 | }, | ||||||
20 | |||||||
21 | '-' => sub { | ||||||
22 | 6 | 6 | 47 | my ($x, $y, $swap) = @_; | |||
23 | 6 | 100 | 29 | if ($swap) { | |||
24 | 3 | 100 | 66 | 36 | return $x -> neg() if !ref($y) && $y == 0; | ||
25 | |||||||
26 | 1 | 3 | my $class = ref $x; | ||||
27 | 1 | 4 | return $class -> new($y) -> sub($x); | ||||
28 | } | ||||||
29 | 3 | 9 | $x -> sub($y); | ||||
30 | }, | ||||||
31 | |||||||
32 | '*' => sub { | ||||||
33 | 23 | 23 | 128 | my ($x, $y, $swap) = @_; | |||
34 | 23 | 54 | $x -> mul($y); | ||||
35 | }, | ||||||
36 | |||||||
37 | '**' => sub { | ||||||
38 | 3 | 3 | 20 | my ($x, $y, $swap) = @_; | |||
39 | 3 | 100 | 19 | if ($swap) { | |||
40 | 1 | 3 | my $class = ref $x; | ||||
41 | 1 | 4 | return $class -> new($y) -> pow($x); | ||||
42 | } | ||||||
43 | 2 | 6 | $x -> pow($y); | ||||
44 | }, | ||||||
45 | |||||||
46 | '==' => sub { | ||||||
47 | 2 | 2 | 13 | my ($x, $y, $swap) = @_; | |||
48 | 2 | 6 | $x -> meq($y); | ||||
49 | }, | ||||||
50 | |||||||
51 | '!=' => sub { | ||||||
52 | 2 | 2 | 3852 | my ($x, $y, $swap) = @_; | |||
53 | 2 | 6 | $x -> mne($y); | ||||
54 | }, | ||||||
55 | |||||||
56 | 'int' => sub { | ||||||
57 | 2 | 2 | 14 | my ($x, $y, $swap) = @_; | |||
58 | 2 | 7 | $x -> int(); | ||||
59 | }, | ||||||
60 | |||||||
61 | 'abs' => sub { | ||||||
62 | 1 | 1 | 9 | my ($x, $y, $swap) = @_; | |||
63 | 1 | 4 | $x -> abs(); | ||||
64 | }, | ||||||
65 | |||||||
66 | 124 | 2837 | '~' => 'transpose', | ||||
67 | '""' => 'as_string', | ||||||
68 | 124 | 124 | 157053 | '=' => 'clone'; | |||
124 | 134572 | ||||||
69 | |||||||
70 | =pod | ||||||
71 | |||||||
72 | =encoding utf8 | ||||||
73 | |||||||
74 | =head1 NAME | ||||||
75 | |||||||
76 | Math::Matrix - multiply and invert matrices | ||||||
77 | |||||||
78 | =head1 SYNOPSIS | ||||||
79 | |||||||
80 | use Math::Matrix; | ||||||
81 | |||||||
82 | # Generate a random 3-by-3 matrix. | ||||||
83 | srand(time); | ||||||
84 | my $A = Math::Matrix -> new([rand, rand, rand], | ||||||
85 | [rand, rand, rand], | ||||||
86 | [rand, rand, rand]); | ||||||
87 | $A -> print("A\n"); | ||||||
88 | |||||||
89 | # Append a fourth column to $A. | ||||||
90 | my $x = Math::Matrix -> new([rand, rand, rand]); | ||||||
91 | my $E = $A -> concat($x -> transpose); | ||||||
92 | $E -> print("Equation system\n"); | ||||||
93 | |||||||
94 | # Compute the solution. | ||||||
95 | my $s = $E -> solve; | ||||||
96 | $s -> print("Solutions s\n"); | ||||||
97 | |||||||
98 | # Verify that the solution equals $x. | ||||||
99 | $A -> multiply($s) -> print("A*s\n"); | ||||||
100 | |||||||
101 | =head1 DESCRIPTION | ||||||
102 | |||||||
103 | This module implements various constructors and methods for creating and | ||||||
104 | manipulating matrices. | ||||||
105 | |||||||
106 | All methods return new objects, so, for example, C<$X-E |
||||||
107 | modify C<$X>. | ||||||
108 | |||||||
109 | $X -> add($Y); # $X not modified; output is lost | ||||||
110 | $X = $X -> add($Y); # this works | ||||||
111 | |||||||
112 | Some operators are overloaded (see L) and allow the operand to be | ||||||
113 | modified directly. | ||||||
114 | |||||||
115 | $X = $X + $Y; # this works | ||||||
116 | $X += $Y; # so does this | ||||||
117 | |||||||
118 | =head1 METHODS | ||||||
119 | |||||||
120 | =head2 Constructors | ||||||
121 | |||||||
122 | =over 4 | ||||||
123 | |||||||
124 | =item new() | ||||||
125 | |||||||
126 | Creates a new object from the input arguments and returns it. | ||||||
127 | |||||||
128 | If a single input argument is given, and that argument is a reference to array | ||||||
129 | whose first element is itself a reference to an array, it is assumed that the | ||||||
130 | argument contains the whole matrix, like this: | ||||||
131 | |||||||
132 | $x = Math::Matrix->new([[1, 2, 3], [4, 5, 6]]); # 2-by-3 matrix | ||||||
133 | $x = Math::Matrix->new([[1, 2, 3]]); # 1-by-3 matrix | ||||||
134 | $x = Math::Matrix->new([[1], [2], [3]]); # 3-by-1 matrix | ||||||
135 | |||||||
136 | If a single input argument is given, and that argument is not a reference to an | ||||||
137 | array, a 1-by-1 matrix is returned. | ||||||
138 | |||||||
139 | $x = Math::Matrix->new(1); # 1-by-1 matrix | ||||||
140 | |||||||
141 | Note that all the folling cases result in an empty matrix: | ||||||
142 | |||||||
143 | $x = Math::Matrix->new([[], [], []]); | ||||||
144 | $x = Math::Matrix->new([[]]); | ||||||
145 | $x = Math::Matrix->new([]); | ||||||
146 | |||||||
147 | If C |
||||||
148 | filled matrix with identical dimensions is returned: | ||||||
149 | |||||||
150 | $b = $a->new(); # $b is a zero matrix with the size of $a | ||||||
151 | |||||||
152 | Each row must contain the same number of elements. | ||||||
153 | |||||||
154 | =cut | ||||||
155 | |||||||
156 | sub new { | ||||||
157 | 947 | 947 | 1 | 960421 | my $that = shift; | ||
158 | 947 | 66 | 4130 | my $class = ref($that) || $that; | |||
159 | 947 | 1653 | my $self = []; | ||||
160 | |||||||
161 | # If called as an instance method and no arguments are given, return a | ||||||
162 | # zero matrix of the same size as the invocand. | ||||||
163 | |||||||
164 | 947 | 100 | 100 | 2969 | if (ref($that) && (@_ == 0)) { | ||
165 | 11 | 85 | @$self = map [ (0) x @$_ ], @$that; | ||||
166 | } | ||||||
167 | |||||||
168 | # Otherwise return a new matrix based on the input arguments. The object | ||||||
169 | # data is a blessed reference to an array containing the matrix data. This | ||||||
170 | # array contains a list of arrays, one for each row, which in turn contains | ||||||
171 | # a list of elements. An empty matrix has no rows. | ||||||
172 | # | ||||||
173 | # [[ 1, 2, 3 ], [ 4, 5, 6 ]] 2-by-3 matrix | ||||||
174 | # [[ 1, 2, 3 ]] 1-by-3 matrix | ||||||
175 | # [[ 1 ], [ 2 ], [ 3 ]] 3-by-1 matrix | ||||||
176 | # [[ 1 ]] 1-by-1 matrix | ||||||
177 | # [] empty matrix | ||||||
178 | |||||||
179 | else { | ||||||
180 | |||||||
181 | 936 | 1409 | my $data; | ||||
182 | |||||||
183 | # If there is a single argument, and that is not a reference, | ||||||
184 | # assume new() has been called as, e.g., $class -> new(3). | ||||||
185 | |||||||
186 | 936 | 100 | 100 | 6093 | if (@_ == 1 && !ref($_[0])) { | ||
100 | 66 | ||||||
100 | |||||||
100 | |||||||
187 | 16 | 37 | $data = [[ $_[0] ]]; | ||||
188 | } | ||||||
189 | |||||||
190 | # If there is a single argument, and that is a reference to an array, | ||||||
191 | # and that array contains at least one element, and that element is | ||||||
192 | # itself a reference to an array, then assume new() has been called | ||||||
193 | # with the matrix as one argument, i.e., a reference to an array of | ||||||
194 | # arrays, e.g., $class -> new([ [1, 2], [3, 4] ]) ... | ||||||
195 | |||||||
196 | elsif (@_ == 1 && ref($_[0]) eq 'ARRAY' | ||||||
197 | 908 | 4125 | && @{$_[0]} > 0 && ref($_[0][0]) eq 'ARRAY') | ||||
198 | { | ||||||
199 | 643 | 1031 | $data = $_[0]; | ||||
200 | } | ||||||
201 | |||||||
202 | # ... otherwise assume that each argument to new() is a row. Note that | ||||||
203 | # new() called with no arguments results in an empty matrix. | ||||||
204 | |||||||
205 | else { | ||||||
206 | 277 | 665 | $data = [ @_ ]; | ||||
207 | } | ||||||
208 | |||||||
209 | # Sanity checking. | ||||||
210 | |||||||
211 | 936 | 100 | 2266 | if (@$data) { | |||
212 | 935 | 1442 | my $nrow = @$data; | ||||
213 | 935 | 1219 | my $ncol; | ||||
214 | |||||||
215 | 935 | 2428 | for my $i (0 .. $nrow - 1) { | ||||
216 | 1828 | 2596 | my $row = $data -> [$i]; | ||||
217 | |||||||
218 | # Verify that the row is a reference to an array. | ||||||
219 | |||||||
220 | 1828 | 50 | 3597 | croak "row with index $i is not a reference to an array" | |||
221 | unless ref($row) eq 'ARRAY'; | ||||||
222 | |||||||
223 | # In the first round, get the number of elements, i.e., the | ||||||
224 | # number of columns in the matrix. In the successive | ||||||
225 | # rounds, verify that each row has the same number of | ||||||
226 | # elements. | ||||||
227 | |||||||
228 | 1828 | 100 | 3054 | if ($i == 0) { | |||
229 | 935 | 1800 | $ncol = @$row; | ||||
230 | } else { | ||||||
231 | 893 | 50 | 1989 | croak "each row must have the same number of elements" | |||
232 | unless @$row == $ncol; | ||||||
233 | } | ||||||
234 | } | ||||||
235 | |||||||
236 | # Copy the data into $self only if the matrix is non-emtpy. | ||||||
237 | |||||||
238 | 935 | 100 | 4183 | @$self = map [ @$_ ], @$data if $ncol; | |||
239 | } | ||||||
240 | } | ||||||
241 | |||||||
242 | 947 | 2898 | bless $self, $class; | ||||
243 | } | ||||||
244 | |||||||
245 | =pod | ||||||
246 | |||||||
247 | =item new_from_sub() | ||||||
248 | |||||||
249 | Creates a new matrix object by doing a subroutine call to create each element. | ||||||
250 | |||||||
251 | $sub = sub { ... }; | ||||||
252 | $x = Math::Matrix -> new_from_sub($sub); # 1-by-1 | ||||||
253 | $x = Math::Matrix -> new_from_sub($sub, $m); # $m-by-$m | ||||||
254 | $x = Math::Matrix -> new_from_sub($sub, $m, $n); # $m-by-$n | ||||||
255 | |||||||
256 | The subroutine is called in scalar context with two input arguments, the row and | ||||||
257 | column indices of the element to be created. Note that no checks are performed | ||||||
258 | on the output of the subroutine. | ||||||
259 | |||||||
260 | Example 1, a 4-by-4 identity matrix can be created with | ||||||
261 | |||||||
262 | $sub = sub { $_[0] == $_[1] ? 1 : 0 }; | ||||||
263 | $x = Math::Matrix -> new_from_sub($sub, 4); | ||||||
264 | |||||||
265 | Example 2, the code | ||||||
266 | |||||||
267 | $x = Math::Matrix -> new_from_sub(sub { 2**$_[1] }, 1, 11); | ||||||
268 | |||||||
269 | creates the following 1-by-11 vector with powers of two | ||||||
270 | |||||||
271 | [ 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 ] | ||||||
272 | |||||||
273 | Example 3, the code, using C<$i> and C<$j> for increased readability | ||||||
274 | |||||||
275 | $sub = sub { | ||||||
276 | ($i, $j) = @_; | ||||||
277 | $d = $j - $i; | ||||||
278 | return $d == -1 ? 5 | ||||||
279 | : $d == 0 ? 6 | ||||||
280 | : $d == 1 ? 7 | ||||||
281 | : 0; | ||||||
282 | }; | ||||||
283 | $x = Math::Matrix -> new_from_sub($sub, 5); | ||||||
284 | |||||||
285 | creates the tridiagonal matrix | ||||||
286 | |||||||
287 | [ 6 7 0 0 0 ] | ||||||
288 | [ 5 6 7 0 0 ] | ||||||
289 | [ 0 5 6 7 0 ] | ||||||
290 | [ 0 0 5 6 7 ] | ||||||
291 | [ 0 0 0 5 6 ] | ||||||
292 | |||||||
293 | =cut | ||||||
294 | |||||||
295 | sub new_from_sub { | ||||||
296 | 3 | 50 | 3 | 1 | 3486 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
297 | 3 | 50 | 9 | croak "Too many arguments for ", (caller(0))[3] if @_ > 4; | |||
298 | 3 | 6 | my $class = shift; | ||||
299 | |||||||
300 | 3 | 50 | 6 | croak +(caller(0))[3], " is a class method, not an instance method" | |||
301 | if ref $class; | ||||||
302 | |||||||
303 | 3 | 6 | my $sub = shift; | ||||
304 | 3 | 50 | 8 | croak "The first input argument must be a code reference" | |||
305 | unless ref($sub) eq 'CODE'; | ||||||
306 | |||||||
307 | 3 | 100 | 14 | my ($nrow, $ncol) = @_ == 0 ? (1, 1) | |||
50 | |||||||
308 | : @_ == 1 ? (@_, @_) | ||||||
309 | : (@_); | ||||||
310 | |||||||
311 | 3 | 8 | my $x = bless [], $class; | ||||
312 | 3 | 11 | for my $i (0 .. $nrow - 1) { | ||||
313 | 10 | 36 | for my $j (0 .. $ncol - 1) { | ||||
314 | 52 | 220 | $x -> [$i][$j] = $sub -> ($i, $j); | ||||
315 | } | ||||||
316 | } | ||||||
317 | |||||||
318 | 3 | 21 | return $x; | ||||
319 | } | ||||||
320 | |||||||
321 | =pod | ||||||
322 | |||||||
323 | =item new_from_rows() | ||||||
324 | |||||||
325 | Creates a new matrix by assuming each argument is a row vector. | ||||||
326 | |||||||
327 | $x = Math::Matrix -> new_from_rows($y, $z, ...); | ||||||
328 | |||||||
329 | For example | ||||||
330 | |||||||
331 | $x = Math::Matrix -> new_from_rows([1, 2, 3],[4, 5, 6]); | ||||||
332 | |||||||
333 | returns the matrix | ||||||
334 | |||||||
335 | [ 1 2 3 ] | ||||||
336 | [ 4 5 6 ] | ||||||
337 | |||||||
338 | =cut | ||||||
339 | |||||||
340 | sub new_from_rows { | ||||||
341 | 2 | 50 | 2 | 1 | 129 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
342 | 2 | 5 | my $class = shift; | ||||
343 | |||||||
344 | 2 | 50 | 7 | croak +(caller(0))[3], " is a class method, not an instance method" | |||
345 | if ref $class; | ||||||
346 | |||||||
347 | 2 | 6 | my @args = (); | ||||
348 | 2 | 12 | for (my $i = 0 ; $i <= $#_ ; ++$i) { | ||||
349 | 8 | 13 | my $x = $_[$i]; | ||||
350 | 8 | 50 | 33 | 41 | $x = $class -> new($x) | ||
351 | unless defined(blessed($x)) && $x -> isa($class); | ||||||
352 | 8 | 100 | 20 | if ($x -> is_vector()) { | |||
353 | 4 | 13 | push @args, $x -> to_row(); | ||||
354 | } else { | ||||||
355 | 4 | 13 | push @args, $x; | ||||
356 | } | ||||||
357 | } | ||||||
358 | |||||||
359 | 2 | 8 | $class -> new([]) -> catrow(@args); | ||||
360 | } | ||||||
361 | |||||||
362 | =pod | ||||||
363 | |||||||
364 | =item new_from_cols() | ||||||
365 | |||||||
366 | Creates a matrix by assuming each argument is a column vector. | ||||||
367 | |||||||
368 | $x = Math::Matrix -> new_from_cols($y, $z, ...); | ||||||
369 | |||||||
370 | For example, | ||||||
371 | |||||||
372 | $x = Math::Matrix -> new_from_cols([1, 2, 3],[4, 5, 6]); | ||||||
373 | |||||||
374 | returns the matrix | ||||||
375 | |||||||
376 | [ 1 4 ] | ||||||
377 | [ 2 5 ] | ||||||
378 | [ 3 6 ] | ||||||
379 | |||||||
380 | =cut | ||||||
381 | |||||||
382 | sub new_from_cols { | ||||||
383 | 1 | 50 | 1 | 1 | 98 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
384 | 1 | 3 | my $class = shift; | ||||
385 | |||||||
386 | 1 | 50 | 3 | croak +(caller(0))[3], " is a class method, not an instance method" | |||
387 | if ref $class; | ||||||
388 | |||||||
389 | 1 | 5 | $class -> new_from_rows(@_) -> swaprc(); | ||||
390 | } | ||||||
391 | |||||||
392 | =pod | ||||||
393 | |||||||
394 | =item id() | ||||||
395 | |||||||
396 | Returns a new identity matrix. | ||||||
397 | |||||||
398 | $I = Math::Matrix -> id($n); # $n-by-$n identity matrix | ||||||
399 | $I = $x -> id($n); # $n-by-$n identity matrix | ||||||
400 | $I = $x -> id(); # identity matrix with size of $x | ||||||
401 | |||||||
402 | =cut | ||||||
403 | |||||||
404 | sub id { | ||||||
405 | 91 | 91 | 1 | 8691 | my $self = shift; | ||
406 | 91 | 152 | my $ref = ref $self; | ||||
407 | 91 | 66 | 290 | my $class = $ref || $self; | |||
408 | |||||||
409 | 91 | 124 | my $n; | ||||
410 | 91 | 100 | 169 | if (@_) { | |||
411 | 88 | 136 | $n = shift; | ||||
412 | } else { | ||||||
413 | 3 | 50 | 7 | if ($ref) { | |||
414 | 3 | 8 | my ($mx, $nx) = $self -> size(); | ||||
415 | 3 | 50 | 9 | croak "When id() is called as an instance method, the invocand", | |||
416 | " must be a square matrix" unless $mx == $nx; | ||||||
417 | 3 | 6 | $n = $mx; | ||||
418 | } else { | ||||||
419 | 0 | 0 | croak "When id() is called as a class method, the size must be", | ||||
420 | " given as an input argument"; | ||||||
421 | } | ||||||
422 | } | ||||||
423 | |||||||
424 | 91 | 601 | bless [ map [ (0) x ($_ - 1), 1, (0) x ($n - $_) ], 1 .. $n ], $class; | ||||
425 | } | ||||||
426 | |||||||
427 | =pod | ||||||
428 | |||||||
429 | =item new_identity() | ||||||
430 | |||||||
431 | This is an alias for C |
||||||
432 | |||||||
433 | =cut | ||||||
434 | |||||||
435 | sub new_identity { | ||||||
436 | 14 | 14 | 1 | 8829 | id(@_); | ||
437 | } | ||||||
438 | |||||||
439 | =pod | ||||||
440 | |||||||
441 | =item eye() | ||||||
442 | |||||||
443 | This is an alias for C |
||||||
444 | |||||||
445 | =cut | ||||||
446 | |||||||
447 | sub eye { | ||||||
448 | 6 | 6 | 1 | 8903 | new_identity(@_); | ||
449 | } | ||||||
450 | |||||||
451 | =pod | ||||||
452 | |||||||
453 | =item exchg() | ||||||
454 | |||||||
455 | Exchange matrix. | ||||||
456 | |||||||
457 | $x = Math::Matrix -> exchg($n); # $n-by-$n exchange matrix | ||||||
458 | |||||||
459 | =cut | ||||||
460 | |||||||
461 | sub exchg { | ||||||
462 | 5 | 50 | 5 | 1 | 7277 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
463 | 5 | 50 | 13 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
464 | 5 | 8 | my $class = shift; | ||||
465 | |||||||
466 | 5 | 8 | my $n = shift; | ||||
467 | 5 | 42 | bless [ map [ (0) x ($n - $_), 1, (0) x ($_ - 1) ], 1 .. $n ], $class; | ||||
468 | } | ||||||
469 | |||||||
470 | =pod | ||||||
471 | |||||||
472 | =item scalar() | ||||||
473 | |||||||
474 | Returns a scalar matrix, i.e., a diagonal matrix with all the diagonal elements | ||||||
475 | set to the same value. | ||||||
476 | |||||||
477 | # Create an $m-by-$m scalar matrix where each element is $c. | ||||||
478 | $x = Math::Matrix -> scalar($c, $m); | ||||||
479 | |||||||
480 | # Create an $m-by-$n scalar matrix where each element is $c. | ||||||
481 | $x = Math::Matrix -> scalar($c, $m, $n); | ||||||
482 | |||||||
483 | Multiplying a matrix A by a scalar matrix B is effectively the same as multiply | ||||||
484 | each element in A by the constant on the diagonal of B. | ||||||
485 | |||||||
486 | =cut | ||||||
487 | |||||||
488 | sub scalar { | ||||||
489 | 6 | 50 | 6 | 1 | 6856 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
490 | 6 | 50 | 17 | croak "Too many arguments for ", (caller(0))[3] if @_ > 4; | |||
491 | 6 | 10 | my $class = shift; | ||||
492 | |||||||
493 | 6 | 50 | 12 | croak +(caller(0))[3], " is a class method, not an instance method" | |||
494 | if ref $class; | ||||||
495 | |||||||
496 | 6 | 10 | my $c = shift; | ||||
497 | 6 | 100 | 24 | my ($m, $n) = @_ == 0 ? (1, 1) | |||
100 | |||||||
498 | : @_ == 1 ? (@_, @_) | ||||||
499 | : (@_); | ||||||
500 | 6 | 50 | 17 | croak "The number of rows must be equal to the number of columns" | |||
501 | unless $m == $n; | ||||||
502 | |||||||
503 | 6 | 46 | bless [ map [ (0) x ($_ - 1), $c, (0) x ($n - $_) ], 1 .. $m ], $class; | ||||
504 | } | ||||||
505 | |||||||
506 | =pod | ||||||
507 | |||||||
508 | =item zeros() | ||||||
509 | |||||||
510 | Create a zero matrix. | ||||||
511 | |||||||
512 | # Create an $m-by-$m matrix where each element is 0. | ||||||
513 | $x = Math::Matrix -> zeros($m); | ||||||
514 | |||||||
515 | # Create an $m-by-$n matrix where each element is 0. | ||||||
516 | $x = Math::Matrix -> zeros($m, $n); | ||||||
517 | |||||||
518 | =cut | ||||||
519 | |||||||
520 | sub zeros { | ||||||
521 | 13 | 50 | 13 | 1 | 4303 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
522 | 13 | 50 | 29 | croak "Too many arguments for ", (caller(0))[3] if @_ > 3; | |||
523 | 13 | 21 | my $self = shift; | ||||
524 | 13 | 42 | $self -> constant(0, @_); | ||||
525 | }; | ||||||
526 | |||||||
527 | =pod | ||||||
528 | |||||||
529 | =item ones() | ||||||
530 | |||||||
531 | Create a matrix of ones. | ||||||
532 | |||||||
533 | # Create an $m-by-$m matrix where each element is 1. | ||||||
534 | $x = Math::Matrix -> ones($m); | ||||||
535 | |||||||
536 | # Create an $m-by-$n matrix where each element is 1. | ||||||
537 | $x = Math::Matrix -> ones($m, $n); | ||||||
538 | |||||||
539 | =cut | ||||||
540 | |||||||
541 | sub ones { | ||||||
542 | 5 | 50 | 5 | 1 | 4262 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
543 | 5 | 50 | 16 | croak "Too many arguments for ", (caller(0))[3] if @_ > 3; | |||
544 | 5 | 9 | my $self = shift; | ||||
545 | 5 | 13 | $self -> constant(1, @_); | ||||
546 | }; | ||||||
547 | |||||||
548 | =pod | ||||||
549 | |||||||
550 | =item inf() | ||||||
551 | |||||||
552 | Create a matrix of positive infinities. | ||||||
553 | |||||||
554 | # Create an $m-by-$m matrix where each element is Inf. | ||||||
555 | $x = Math::Matrix -> inf($m); | ||||||
556 | |||||||
557 | # Create an $m-by-$n matrix where each element is Inf. | ||||||
558 | $x = Math::Matrix -> inf($m, $n); | ||||||
559 | |||||||
560 | =cut | ||||||
561 | |||||||
562 | sub inf { | ||||||
563 | 5 | 50 | 5 | 1 | 19509 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
564 | 5 | 50 | 15 | croak "Too many arguments for ", (caller(0))[3] if @_ > 3; | |||
565 | 5 | 7 | my $self = shift; | ||||
566 | |||||||
567 | 5 | 30 | require Math::Trig; | ||||
568 | 5 | 31 | my $inf = Math::Trig::Inf(); | ||||
569 | 5 | 26 | $self -> constant($inf, @_); | ||||
570 | }; | ||||||
571 | |||||||
572 | =pod | ||||||
573 | |||||||
574 | =item nan() | ||||||
575 | |||||||
576 | Create a matrix of NaNs (Not-a-Number). | ||||||
577 | |||||||
578 | # Create an $m-by-$m matrix where each element is NaN. | ||||||
579 | $x = Math::Matrix -> nan($m); | ||||||
580 | |||||||
581 | # Create an $m-by-$n matrix where each element is NaN. | ||||||
582 | $x = Math::Matrix -> nan($m, $n); | ||||||
583 | |||||||
584 | =cut | ||||||
585 | |||||||
586 | sub nan { | ||||||
587 | 5 | 50 | 5 | 1 | 4262 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
588 | 5 | 50 | 15 | croak "Too many arguments for ", (caller(0))[3] if @_ > 3; | |||
589 | 5 | 9 | my $self = shift; | ||||
590 | |||||||
591 | 5 | 27 | require Math::Trig; | ||||
592 | 5 | 14 | my $inf = Math::Trig::Inf(); | ||||
593 | 5 | 21 | my $nan = $inf - $inf; | ||||
594 | 5 | 13 | $self -> constant($nan, @_); | ||||
595 | }; | ||||||
596 | |||||||
597 | =pod | ||||||
598 | |||||||
599 | =item constant() | ||||||
600 | |||||||
601 | Returns a constant matrix, i.e., a matrix whose elements all have the same | ||||||
602 | value. | ||||||
603 | |||||||
604 | # Create an $m-by-$m matrix where each element is $c. | ||||||
605 | $x = Math::Matrix -> constant($c, $m); | ||||||
606 | |||||||
607 | # Create an $m-by-$n matrix where each element is $c. | ||||||
608 | $x = Math::Matrix -> constant($c, $m, $n); | ||||||
609 | |||||||
610 | =cut | ||||||
611 | |||||||
612 | sub constant { | ||||||
613 | 33 | 50 | 33 | 1 | 4101 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
614 | 33 | 50 | 66 | croak "Too many arguments for ", (caller(0))[3] if @_ > 4; | |||
615 | 33 | 54 | my $class = shift; | ||||
616 | |||||||
617 | 33 | 50 | 64 | croak +(caller(0))[3], " is a class method, not an instance method" | |||
618 | if ref $class; | ||||||
619 | |||||||
620 | 33 | 51 | my $c = shift; | ||||
621 | 33 | 100 | 106 | my ($m, $n) = @_ == 0 ? (1, 1) | |||
100 | |||||||
622 | : @_ == 1 ? (@_, @_) | ||||||
623 | : (@_); | ||||||
624 | |||||||
625 | 33 | 247 | bless [ map [ ($c) x $n ], 1 .. $m ], $class; | ||||
626 | } | ||||||
627 | |||||||
628 | =pod | ||||||
629 | |||||||
630 | =item rand() | ||||||
631 | |||||||
632 | Returns a matrix of uniformly distributed random numbers in the range [0,1). | ||||||
633 | |||||||
634 | $x = Math::Matrix -> rand($m); # $m-by-$m matrix | ||||||
635 | $x = Math::Matrix -> rand($m, $n); # $m-by-$n matrix | ||||||
636 | |||||||
637 | To generate an C<$m>-by-C<$n> matrix of uniformly distributed random numbers in | ||||||
638 | the range [0,C<$a>), use | ||||||
639 | |||||||
640 | $x = $a * Math::Matrix -> rand($m, $n); | ||||||
641 | |||||||
642 | To generate an C<$m>-by-C<$n> matrix of uniformly distributed random numbers in | ||||||
643 | the range [C<$a>,C<$b>), use | ||||||
644 | |||||||
645 | $x = $a + ($b - $a) * Math::Matrix -> rand($m, $n); | ||||||
646 | |||||||
647 | See also C |
||||||
648 | |||||||
649 | =cut | ||||||
650 | |||||||
651 | sub rand { | ||||||
652 | 6 | 50 | 6 | 1 | 12492 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
653 | 6 | 50 | 16 | croak "Too many arguments for ", (caller(0))[3] if @_ > 3; | |||
654 | 6 | 9 | my $class = shift; | ||||
655 | |||||||
656 | 6 | 50 | 13 | croak +(caller(0))[3], " is a class method, not an instance method" | |||
657 | if ref $class; | ||||||
658 | |||||||
659 | 6 | 100 | 24 | my ($nrow, $ncol) = @_ == 0 ? (1, 1) | |||
100 | |||||||
660 | : @_ == 1 ? (@_, @_) | ||||||
661 | : (@_); | ||||||
662 | |||||||
663 | 6 | 13 | my $x = bless [], $class; | ||||
664 | 6 | 19 | for my $i (0 .. $nrow - 1) { | ||||
665 | 10 | 16 | for my $j (0 .. $ncol - 1) { | ||||
666 | 22 | 122 | $x -> [$i][$j] = CORE::rand; | ||||
667 | } | ||||||
668 | } | ||||||
669 | |||||||
670 | 6 | 17 | return $x; | ||||
671 | } | ||||||
672 | |||||||
673 | =pod | ||||||
674 | |||||||
675 | =item randi() | ||||||
676 | |||||||
677 | Returns a matrix of uniformly distributed random integers. | ||||||
678 | |||||||
679 | $x = Math::Matrix -> randi($max); # 1-by-1 matrix | ||||||
680 | $x = Math::Matrix -> randi($max, $n); # $n-by-$n matrix | ||||||
681 | $x = Math::Matrix -> randi($max, $m, $n); # $m-by-$n matrix | ||||||
682 | |||||||
683 | $x = Math::Matrix -> randi([$min, $max]); # 1-by-1 matrix | ||||||
684 | $x = Math::Matrix -> randi([$min, $max], $n); # $n-by-$n matrix | ||||||
685 | $x = Math::Matrix -> randi([$min, $max], $m, $n); # $m-by-$n matrix | ||||||
686 | |||||||
687 | See also C |
||||||
688 | |||||||
689 | =cut | ||||||
690 | |||||||
691 | sub randi { | ||||||
692 | 6 | 50 | 6 | 1 | 23106 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
693 | 6 | 50 | 16 | croak "Too many arguments for ", (caller(0))[3] if @_ > 4; | |||
694 | 6 | 11 | my $class = shift; | ||||
695 | |||||||
696 | 6 | 50 | 13 | croak +(caller(0))[3], " is a class method, not an instance method" | |||
697 | if ref $class; | ||||||
698 | |||||||
699 | 6 | 12 | my ($min, $max); | ||||
700 | 6 | 7 | my $lim = shift; | ||||
701 | 6 | 100 | 17 | if (ref($lim) eq 'ARRAY') { | |||
702 | 3 | 7 | ($min, $max) = @$lim; | ||||
703 | } else { | ||||||
704 | 3 | 6 | $min = 0; | ||||
705 | 3 | 5 | $max = $lim; | ||||
706 | } | ||||||
707 | |||||||
708 | 6 | 100 | 23 | my ($nrow, $ncol) = @_ == 0 ? (1, 1) | |||
100 | |||||||
709 | : @_ == 1 ? (@_, @_) | ||||||
710 | : (@_); | ||||||
711 | |||||||
712 | 6 | 14 | my $c = $max - $min + 1; | ||||
713 | 6 | 13 | my $x = bless [], $class; | ||||
714 | 6 | 16 | for my $i (0 .. $nrow - 1) { | ||||
715 | 14 | 23 | for my $j (0 .. $ncol - 1) { | ||||
716 | 50 | 199 | $x -> [$i][$j] = $min + CORE::int(CORE::rand($c)); | ||||
717 | } | ||||||
718 | } | ||||||
719 | |||||||
720 | 6 | 18 | return $x; | ||||
721 | } | ||||||
722 | |||||||
723 | =pod | ||||||
724 | |||||||
725 | =item randn() | ||||||
726 | |||||||
727 | Returns a matrix of random numbers from the standard normal distribution. | ||||||
728 | |||||||
729 | $x = Math::Matrix -> randn($m); # $m-by-$m matrix | ||||||
730 | $x = Math::Matrix -> randn($m, $n); # $m-by-$n matrix | ||||||
731 | |||||||
732 | To generate an C<$m>-by-C<$n> matrix with mean C<$mu> and standard deviation | ||||||
733 | C<$sigma>, use | ||||||
734 | |||||||
735 | $x = $mu + $sigma * Math::Matrix -> randn($m, $n); | ||||||
736 | |||||||
737 | See also C |
||||||
738 | |||||||
739 | =cut | ||||||
740 | |||||||
741 | sub randn { | ||||||
742 | 6 | 50 | 6 | 1 | 8381 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
743 | 6 | 50 | 14 | croak "Too many arguments for ", (caller(0))[3] if @_ > 3; | |||
744 | 6 | 13 | my $class = shift; | ||||
745 | |||||||
746 | 6 | 50 | 13 | croak +(caller(0))[3], " is a class method, not an instance method" | |||
747 | if ref $class; | ||||||
748 | |||||||
749 | 6 | 100 | 24 | my ($nrow, $ncol) = @_ == 0 ? (1, 1) | |||
100 | |||||||
750 | : @_ == 1 ? (@_, @_) | ||||||
751 | : (@_); | ||||||
752 | |||||||
753 | 6 | 10 | my $nelm = $nrow * $ncol; | ||||
754 | 6 | 10 | my $twopi = 2 * atan2 0, -1; | ||||
755 | |||||||
756 | # The following might generate one value more than we need. | ||||||
757 | |||||||
758 | 6 | 10 | my $x = []; | ||||
759 | 6 | 16 | for (my $k = 0 ; $k < $nelm ; $k += 2) { | ||||
760 | 13 | 75 | my $c1 = sqrt(-2 * log(CORE::rand)); | ||||
761 | 13 | 21 | my $c2 = $twopi * CORE::rand; | ||||
762 | 13 | 68 | push @$x, $c1 * cos($c2), $c1 * sin($c2); | ||||
763 | } | ||||||
764 | 6 | 100 | 18 | pop @$x if @$x > $nelm; | |||
765 | |||||||
766 | 6 | 14 | $x = bless [ $x ], $class; | ||||
767 | 6 | 21 | $x -> reshape($nrow, $ncol); | ||||
768 | } | ||||||
769 | |||||||
770 | =pod | ||||||
771 | |||||||
772 | =item clone() | ||||||
773 | |||||||
774 | Clones a matrix and returns the clone. | ||||||
775 | |||||||
776 | $b = $a->clone; | ||||||
777 | |||||||
778 | =cut | ||||||
779 | |||||||
780 | sub clone { | ||||||
781 | 127 | 50 | 127 | 1 | 2828 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |
782 | 127 | 198 | my $x = shift; | ||||
783 | 127 | 208 | my $class = ref $x; | ||||
784 | |||||||
785 | 127 | 50 | 276 | croak +(caller(0))[3], " is an instance method, not a class method" | |||
786 | unless $class; | ||||||
787 | |||||||
788 | 127 | 703 | my $y = [ map [ @$_ ], @$x ]; | ||||
789 | 127 | 341 | bless $y, $class; | ||||
790 | } | ||||||
791 | |||||||
792 | =pod | ||||||
793 | |||||||
794 | =item diagonal() | ||||||
795 | |||||||
796 | A constructor method that creates a diagonal matrix from a single list or array | ||||||
797 | of numbers. | ||||||
798 | |||||||
799 | $p = Math::Matrix->diagonal(1, 4, 4, 8); | ||||||
800 | $q = Math::Matrix->diagonal([1, 4, 4, 8]); | ||||||
801 | |||||||
802 | The matrix is zero filled except for the diagonal members, which take the | ||||||
803 | values of the vector. | ||||||
804 | |||||||
805 | The method returns B |
||||||
806 | |||||||
807 | =cut | ||||||
808 | |||||||
809 | # | ||||||
810 | # Either class or object call, create a square matrix with the same | ||||||
811 | # dimensions as the passed-in list or array. | ||||||
812 | # | ||||||
813 | sub diagonal { | ||||||
814 | 2 | 2 | 1 | 2573 | my $that = shift; | ||
815 | 2 | 33 | 12 | my $class = ref($that) || $that; | |||
816 | 2 | 6 | my @diag = @_; | ||||
817 | 2 | 4 | my $self = []; | ||||
818 | |||||||
819 | # diagonal([2,3]) -> diagonal(2,3) | ||||||
820 | 2 | 100 | 7 | @diag = @{$diag[0]} if (ref $diag[0] eq "ARRAY"); | |||
1 | 3 | ||||||
821 | |||||||
822 | 2 | 3 | my $len = scalar @diag; | ||||
823 | 2 | 50 | 5 | return undef if ($len == 0); | |||
824 | |||||||
825 | 2 | 8 | for my $idx (0..$len-1) { | ||||
826 | 8 | 15 | my @r = (0) x $len; | ||||
827 | 8 | 11 | $r[$idx] = $diag[$idx]; | ||||
828 | 8 | 10 | push(@{$self}, [@r]); | ||||
8 | 19 | ||||||
829 | } | ||||||
830 | 2 | 6 | bless $self, $class; | ||||
831 | } | ||||||
832 | |||||||
833 | =pod | ||||||
834 | |||||||
835 | =item tridiagonal() | ||||||
836 | |||||||
837 | A constructor method that creates a matrix from vectors of numbers. | ||||||
838 | |||||||
839 | $p = Math::Matrix->tridiagonal([1, 4, 4, 8]); | ||||||
840 | $q = Math::Matrix->tridiagonal([1, 4, 4, 8], [9, 12, 15]); | ||||||
841 | $r = Math::Matrix->tridiagonal([1, 4, 4, 8], [9, 12, 15], [4, 3, 2]); | ||||||
842 | |||||||
843 | In the first case, the main diagonal takes the values of the vector, while both | ||||||
844 | of the upper and lower diagonals's values are all set to one. | ||||||
845 | |||||||
846 | In the second case, the main diagonal takes the values of the first vector, | ||||||
847 | while the upper and lower diagonals are each set to the values of the second | ||||||
848 | vector. | ||||||
849 | |||||||
850 | In the third case, the main diagonal takes the values of the first vector, | ||||||
851 | while the upper diagonal is set to the values of the second vector, and the | ||||||
852 | lower diagonal is set to the values of the third vector. | ||||||
853 | |||||||
854 | The method returns B |
||||||
855 | |||||||
856 | =cut | ||||||
857 | |||||||
858 | # | ||||||
859 | # Either class or object call, create a square matrix with the same | ||||||
860 | # dimensions as the passed-in list or array. | ||||||
861 | # | ||||||
862 | sub tridiagonal { | ||||||
863 | 4 | 4 | 1 | 7328 | my $that = shift; | ||
864 | 4 | 33 | 19 | my $class = ref($that) || $that; | |||
865 | 4 | 7 | my(@up_d, @main_d, @low_d); | ||||
866 | 4 | 7 | my $self = []; | ||||
867 | |||||||
868 | # | ||||||
869 | # Handle the different ways the tridiagonal vectors could | ||||||
870 | # be passed in. | ||||||
871 | # | ||||||
872 | 4 | 50 | 21 | if (ref $_[0] eq "ARRAY") { | |||
873 | 4 | 11 | @main_d = @{$_[0]}; | ||||
4 | 9 | ||||||
874 | |||||||
875 | 4 | 100 | 11 | if (ref $_[1] eq "ARRAY") { | |||
876 | 3 | 5 | @up_d = @{$_[1]}; | ||||
3 | 6 | ||||||
877 | |||||||
878 | 3 | 100 | 8 | if (ref $_[2] eq "ARRAY") { | |||
879 | 2 | 3 | @low_d = @{$_[2]}; | ||||
2 | 4 | ||||||
880 | } | ||||||
881 | } | ||||||
882 | } else { | ||||||
883 | 0 | 0 | @main_d = @_; | ||||
884 | } | ||||||
885 | |||||||
886 | 4 | 5 | my $len = scalar @main_d; | ||||
887 | 4 | 50 | 10 | return undef if ($len == 0); | |||
888 | |||||||
889 | # | ||||||
890 | # Default the upper and lower diagonals if no vector | ||||||
891 | # was passed in for them. | ||||||
892 | # | ||||||
893 | 4 | 100 | 13 | @up_d = (1) x ($len -1) if (scalar @up_d == 0); | |||
894 | 4 | 100 | 9 | @low_d = @up_d if (scalar @low_d == 0); | |||
895 | |||||||
896 | # | ||||||
897 | # First row... | ||||||
898 | # | ||||||
899 | 4 | 8 | my @arow = (0) x $len; | ||||
900 | 4 | 9 | @arow[0..1] = ($main_d[0], $up_d[0]); | ||||
901 | 4 | 6 | push (@{$self}, [@arow]); | ||||
4 | 8 | ||||||
902 | |||||||
903 | # | ||||||
904 | # Bulk of the matrix... | ||||||
905 | # | ||||||
906 | 4 | 10 | for my $idx (1 .. $#main_d - 1) { | ||||
907 | 8 | 13 | my @r = (0) x $len; | ||||
908 | 8 | 21 | @r[$idx-1 .. $idx+1] = ($low_d[$idx-1], $main_d[$idx], $up_d[$idx]); | ||||
909 | 8 | 12 | push (@{$self}, [@r]); | ||||
8 | 19 | ||||||
910 | } | ||||||
911 | |||||||
912 | # | ||||||
913 | # Last row. | ||||||
914 | # | ||||||
915 | 4 | 8 | my @zrow = (0) x $len; | ||||
916 | 4 | 10 | @zrow[$len-2..$len-1] = ($low_d[$#main_d -1], $main_d[$#main_d]); | ||||
917 | 4 | 6 | push (@{$self}, [@zrow]); | ||||
4 | 7 | ||||||
918 | |||||||
919 | 4 | 14 | bless $self, $class; | ||||
920 | } | ||||||
921 | |||||||
922 | =pod | ||||||
923 | |||||||
924 | =item blkdiag() | ||||||
925 | |||||||
926 | Create block diagonal matrix. Returns a block diagonal matrix given a list of | ||||||
927 | matrices. | ||||||
928 | |||||||
929 | $z = Math::Matrix -> blkdiag($x, $y, ...); | ||||||
930 | |||||||
931 | =cut | ||||||
932 | |||||||
933 | sub blkdiag { | ||||||
934 | 4 | 50 | 4 | 1 | 3743 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
935 | #croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | ||||||
936 | 4 | 7 | my $class = shift; | ||||
937 | |||||||
938 | 4 | 7 | my $y = []; | ||||
939 | 4 | 6 | my $nrowy = 0; | ||||
940 | 4 | 8 | my $ncoly = 0; | ||||
941 | |||||||
942 | 4 | 11 | for my $i (0 .. $#_) { | ||||
943 | 9 | 17 | my $x = $_[$i]; | ||||
944 | |||||||
945 | 9 | 100 | 66 | 43 | $x = $class -> new($x) | ||
946 | unless defined(blessed($x)) && $x -> isa($class); | ||||||
947 | |||||||
948 | 9 | 22 | my ($nrowx, $ncolx) = $x -> size(); | ||||
949 | |||||||
950 | # Upper right submatrix. | ||||||
951 | |||||||
952 | 9 | 17 | for my $i (0 .. $nrowy - 1) { | ||||
953 | 9 | 14 | for my $j (0 .. $ncolx - 1) { | ||||
954 | 11 | 20 | $y -> [$i][$ncoly + $j] = 0; | ||||
955 | } | ||||||
956 | } | ||||||
957 | |||||||
958 | # Lower left submatrix. | ||||||
959 | |||||||
960 | 9 | 16 | for my $i (0 .. $nrowx - 1) { | ||||
961 | 11 | 19 | for my $j (0 .. $ncoly - 1) { | ||||
962 | 17 | 29 | $y -> [$nrowy + $i][$j] = 0; | ||||
963 | } | ||||||
964 | } | ||||||
965 | |||||||
966 | # Lower right submatrix. | ||||||
967 | |||||||
968 | 9 | 15 | for my $i (0 .. $nrowx - 1) { | ||||
969 | 11 | 17 | for my $j (0 .. $ncolx - 1) { | ||||
970 | 13 | 27 | $y -> [$nrowy + $i][$ncoly + $j] = $x -> [$i][$j]; | ||||
971 | } | ||||||
972 | } | ||||||
973 | |||||||
974 | 9 | 14 | $nrowy += $nrowx; | ||||
975 | 9 | 17 | $ncoly += $ncolx; | ||||
976 | } | ||||||
977 | |||||||
978 | 4 | 12 | bless $y, $class; | ||||
979 | } | ||||||
980 | |||||||
981 | =pod | ||||||
982 | |||||||
983 | =back | ||||||
984 | |||||||
985 | =head2 Identify matrices | ||||||
986 | |||||||
987 | =over 4 | ||||||
988 | |||||||
989 | =item is_empty() | ||||||
990 | |||||||
991 | Returns 1 is the invocand is empty, i.e., it has no elements. | ||||||
992 | |||||||
993 | $bool = $x -> is_empty(); | ||||||
994 | |||||||
995 | =cut | ||||||
996 | |||||||
997 | sub is_empty { | ||||||
998 | 56 | 50 | 56 | 1 | 262 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
999 | 56 | 50 | 123 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1000 | 56 | 87 | my $x = shift; | ||||
1001 | 56 | 151 | return $x -> nelm() == 0; | ||||
1002 | } | ||||||
1003 | |||||||
1004 | =pod | ||||||
1005 | |||||||
1006 | =item is_scalar() | ||||||
1007 | |||||||
1008 | Returns 1 is the invocand is a scalar, i.e., it has one element. | ||||||
1009 | |||||||
1010 | $bool = $x -> is_scalar(); | ||||||
1011 | |||||||
1012 | =cut | ||||||
1013 | |||||||
1014 | sub is_scalar { | ||||||
1015 | 111 | 50 | 111 | 1 | 344 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1016 | 111 | 50 | 208 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1017 | 111 | 171 | my $x = shift; | ||||
1018 | 111 | 100 | 225 | return $x -> nelm() == 1 ? 1 : 0; | |||
1019 | } | ||||||
1020 | |||||||
1021 | =pod | ||||||
1022 | |||||||
1023 | =item is_vector() | ||||||
1024 | |||||||
1025 | Returns 1 is the invocand is a vector, i.e., a row vector or a column vector. | ||||||
1026 | |||||||
1027 | $bool = $x -> is_vector(); | ||||||
1028 | |||||||
1029 | =cut | ||||||
1030 | |||||||
1031 | sub is_vector { | ||||||
1032 | 52 | 50 | 52 | 1 | 161 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1033 | 52 | 50 | 123 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1034 | 52 | 90 | my $x = shift; | ||||
1035 | 52 | 100 | 100 | 122 | return $x -> is_col() || $x -> is_row() ? 1 : 0; | ||
1036 | } | ||||||
1037 | |||||||
1038 | =pod | ||||||
1039 | |||||||
1040 | =item is_row() | ||||||
1041 | |||||||
1042 | Returns 1 if the invocand has exactly one row, and 0 otherwise. | ||||||
1043 | |||||||
1044 | $bool = $x -> is_row(); | ||||||
1045 | |||||||
1046 | =cut | ||||||
1047 | |||||||
1048 | sub is_row { | ||||||
1049 | 73 | 50 | 73 | 1 | 191 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1050 | 73 | 50 | 152 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1051 | 73 | 122 | my $x = shift; | ||||
1052 | 73 | 100 | 158 | return $x -> nrow() == 1 ? 1 : 0; | |||
1053 | } | ||||||
1054 | |||||||
1055 | =pod | ||||||
1056 | |||||||
1057 | =item is_col() | ||||||
1058 | |||||||
1059 | Returns 1 if the invocand has exactly one column, and 0 otherwise. | ||||||
1060 | |||||||
1061 | $bool = $x -> is_col(); | ||||||
1062 | |||||||
1063 | =cut | ||||||
1064 | |||||||
1065 | sub is_col { | ||||||
1066 | 81 | 50 | 81 | 1 | 196 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1067 | 81 | 50 | 160 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1068 | 81 | 118 | my $x = shift; | ||||
1069 | 81 | 100 | 188 | return $x -> ncol() == 1 ? 1 : 0; | |||
1070 | } | ||||||
1071 | |||||||
1072 | =pod | ||||||
1073 | |||||||
1074 | =item is_square() | ||||||
1075 | |||||||
1076 | Returns 1 is the invocand is square, and 0 otherwise. | ||||||
1077 | |||||||
1078 | $bool = $x -> is_square(); | ||||||
1079 | |||||||
1080 | =cut | ||||||
1081 | |||||||
1082 | sub is_square { | ||||||
1083 | 78 | 50 | 78 | 1 | 197 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1084 | 78 | 50 | 161 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1085 | 78 | 110 | my $x = shift; | ||||
1086 | 78 | 175 | my ($nrow, $ncol) = $x -> size(); | ||||
1087 | 78 | 100 | 292 | return $nrow == $ncol ? 1 : 0; | |||
1088 | } | ||||||
1089 | |||||||
1090 | =pod | ||||||
1091 | |||||||
1092 | =item is_symmetric() | ||||||
1093 | |||||||
1094 | Returns 1 is the invocand is symmetric, and 0 otherwise. | ||||||
1095 | |||||||
1096 | $bool = $x -> is_symmetric(); | ||||||
1097 | |||||||
1098 | An symmetric matrix satisfies x(i,j) = x(j,i) for all i and j, for example | ||||||
1099 | |||||||
1100 | [ 1 2 -3 ] | ||||||
1101 | [ 2 -4 5 ] | ||||||
1102 | [ -3 5 6 ] | ||||||
1103 | |||||||
1104 | =cut | ||||||
1105 | |||||||
1106 | sub is_symmetric { | ||||||
1107 | 50 | 50 | 50 | 1 | 139 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1108 | 50 | 50 | 114 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1109 | 50 | 77 | my $x = shift; | ||||
1110 | |||||||
1111 | 50 | 121 | my ($nrow, $ncol) = $x -> size(); | ||||
1112 | 50 | 100 | 126 | return 0 unless $nrow == $ncol; | |||
1113 | |||||||
1114 | 44 | 128 | for my $i (1 .. $nrow - 1) { | ||||
1115 | 100 | 155 | for my $j (0 .. $i - 1) { | ||||
1116 | 232 | 100 | 540 | return 0 unless $x -> [$i][$j] == $x -> [$j][$i]; | |||
1117 | } | ||||||
1118 | } | ||||||
1119 | |||||||
1120 | 25 | 112 | return 1; | ||||
1121 | } | ||||||
1122 | |||||||
1123 | =pod | ||||||
1124 | |||||||
1125 | =item is_antisymmetric() | ||||||
1126 | |||||||
1127 | Returns 1 is the invocand is antisymmetric a.k.a. skew-symmetric, and 0 | ||||||
1128 | otherwise. | ||||||
1129 | |||||||
1130 | $bool = $x -> is_antisymmetric(); | ||||||
1131 | |||||||
1132 | An antisymmetric matrix satisfies x(i,j) = -x(j,i) for all i and j, for | ||||||
1133 | example | ||||||
1134 | |||||||
1135 | [ 0 2 -3 ] | ||||||
1136 | [ -2 0 4 ] | ||||||
1137 | [ 3 -4 0 ] | ||||||
1138 | |||||||
1139 | =cut | ||||||
1140 | |||||||
1141 | sub is_antisymmetric { | ||||||
1142 | 25 | 50 | 25 | 1 | 88 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1143 | 25 | 50 | 52 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1144 | 25 | 42 | my $x = shift; | ||||
1145 | |||||||
1146 | 25 | 62 | my ($nrow, $ncol) = $x -> size(); | ||||
1147 | 25 | 100 | 73 | return 0 unless $nrow == $ncol; | |||
1148 | |||||||
1149 | # Check the diagonal. | ||||||
1150 | |||||||
1151 | 22 | 62 | for my $i (0 .. $nrow - 1) { | ||||
1152 | 38 | 100 | 152 | return 0 unless $x -> [$i][$i] == 0; | |||
1153 | } | ||||||
1154 | |||||||
1155 | # Check the off-diagonal. | ||||||
1156 | |||||||
1157 | 5 | 16 | for my $i (1 .. $nrow - 1) { | ||||
1158 | 5 | 12 | for my $j (0 .. $i - 1) { | ||||
1159 | 6 | 100 | 27 | return 0 unless $x -> [$i][$j] == -$x -> [$j][$i]; | |||
1160 | } | ||||||
1161 | } | ||||||
1162 | |||||||
1163 | 2 | 9 | return 1; | ||||
1164 | } | ||||||
1165 | |||||||
1166 | =pod | ||||||
1167 | |||||||
1168 | =item is_persymmetric() | ||||||
1169 | |||||||
1170 | Returns 1 is the invocand is persymmetric, and 0 otherwise. | ||||||
1171 | |||||||
1172 | $bool = $x -> is_persymmetric(); | ||||||
1173 | |||||||
1174 | A persymmetric matrix is a square matrix which is symmetric with respect to the | ||||||
1175 | anti-diagonal, e.g.: | ||||||
1176 | |||||||
1177 | [ f h j k ] | ||||||
1178 | [ c g i j ] | ||||||
1179 | [ b d g h ] | ||||||
1180 | [ a b c f ] | ||||||
1181 | |||||||
1182 | =cut | ||||||
1183 | |||||||
1184 | sub is_persymmetric { | ||||||
1185 | 23 | 50 | 23 | 1 | 84 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1186 | 23 | 50 | 53 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1187 | 23 | 40 | my $x = shift; | ||||
1188 | |||||||
1189 | 23 | 62 | $x -> fliplr() -> is_symmetric(); | ||||
1190 | } | ||||||
1191 | |||||||
1192 | =pod | ||||||
1193 | |||||||
1194 | =item is_hankel() | ||||||
1195 | |||||||
1196 | Returns 1 is the invocand is a Hankel matric a.k.a. a catalecticant matrix, and | ||||||
1197 | 0 otherwise. | ||||||
1198 | |||||||
1199 | $bool = $x -> is_hankel(); | ||||||
1200 | |||||||
1201 | A Hankel matrix is a square matrix in which each ascending skew-diagonal from | ||||||
1202 | left to right is constant, e.g.: | ||||||
1203 | |||||||
1204 | [ e f g h i ] | ||||||
1205 | [ d e f g h ] | ||||||
1206 | [ c d e f g ] | ||||||
1207 | [ b c d e f ] | ||||||
1208 | [ a b c d e ] | ||||||
1209 | |||||||
1210 | =cut | ||||||
1211 | |||||||
1212 | sub is_hankel { | ||||||
1213 | 23 | 50 | 23 | 1 | 78 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1214 | 23 | 50 | 77 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1215 | 23 | 42 | my $x = shift; | ||||
1216 | |||||||
1217 | 23 | 53 | my ($nrow, $ncol) = $x -> size(); | ||||
1218 | 23 | 100 | 60 | return 0 unless $nrow == $ncol; | |||
1219 | |||||||
1220 | # Check the lower triangular part. | ||||||
1221 | |||||||
1222 | 20 | 63 | for my $i (0 .. $nrow - 2) { | ||||
1223 | 34 | 52 | my $first = $x -> [$i][0]; | ||||
1224 | 34 | 62 | for my $k (1 .. $nrow - $i - 1) { | ||||
1225 | 71 | 100 | 215 | return 0 unless $x -> [$i + $k][$k] == $first; | |||
1226 | } | ||||||
1227 | } | ||||||
1228 | |||||||
1229 | # Check the strictly upper triangular part. | ||||||
1230 | |||||||
1231 | 8 | 25 | for my $j (1 .. $ncol - 2) { | ||||
1232 | 15 | 25 | my $first = $x -> [0][$j]; | ||||
1233 | 15 | 30 | for my $k (1 .. $nrow - $j - 1) { | ||||
1234 | 33 | 100 | 75 | return 0 unless $x -> [$k][$j + $k] == $first; | |||
1235 | } | ||||||
1236 | } | ||||||
1237 | |||||||
1238 | 7 | 32 | return 1; | ||||
1239 | } | ||||||
1240 | |||||||
1241 | =pod | ||||||
1242 | |||||||
1243 | =item is_zero() | ||||||
1244 | |||||||
1245 | Returns 1 is the invocand is a zero matrix, and 0 otherwise. A zero matrix | ||||||
1246 | contains no element whose value is different from zero. | ||||||
1247 | |||||||
1248 | $bool = $x -> is_zero(); | ||||||
1249 | |||||||
1250 | =cut | ||||||
1251 | |||||||
1252 | sub is_zero { | ||||||
1253 | 25 | 50 | 25 | 1 | 92 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1254 | 25 | 50 | 66 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1255 | 25 | 41 | my $x = shift; | ||||
1256 | 25 | 74 | return $x -> is_constant(0); | ||||
1257 | } | ||||||
1258 | |||||||
1259 | =pod | ||||||
1260 | |||||||
1261 | =item is_one() | ||||||
1262 | |||||||
1263 | Returns 1 is the invocand is a matrix of ones, and 0 otherwise. A matrix of | ||||||
1264 | ones contains no element whose value is different from one. | ||||||
1265 | |||||||
1266 | $bool = $x -> is_one(); | ||||||
1267 | |||||||
1268 | =cut | ||||||
1269 | |||||||
1270 | sub is_one { | ||||||
1271 | 25 | 50 | 25 | 1 | 91 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1272 | 25 | 50 | 55 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1273 | 25 | 42 | my $x = shift; | ||||
1274 | 25 | 87 | return $x -> is_constant(1); | ||||
1275 | } | ||||||
1276 | |||||||
1277 | =pod | ||||||
1278 | |||||||
1279 | =item is_constant() | ||||||
1280 | |||||||
1281 | Returns 1 is the invocand is a constant matrix, and 0 otherwise. A constant | ||||||
1282 | matrix is a matrix where no two elements have different values. | ||||||
1283 | |||||||
1284 | $bool = $x -> is_constant(); | ||||||
1285 | |||||||
1286 | =cut | ||||||
1287 | |||||||
1288 | sub is_constant { | ||||||
1289 | 75 | 50 | 75 | 1 | 179 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1290 | 75 | 50 | 136 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
1291 | 75 | 119 | my $x = shift; | ||||
1292 | |||||||
1293 | 75 | 173 | my ($nrow, $ncol) = $x -> size(); | ||||
1294 | |||||||
1295 | # An empty matrix contains no elements that are different from $c. | ||||||
1296 | |||||||
1297 | 75 | 100 | 180 | return 1 if $nrow * $ncol == 0; | |||
1298 | |||||||
1299 | 72 | 100 | 143 | my $c = @_ ? shift() : $x -> [0][0]; | |||
1300 | 72 | 185 | for my $i (0 .. $nrow - 1) { | ||||
1301 | 78 | 127 | for my $j (0 .. $ncol - 1) { | ||||
1302 | 147 | 100 | 719 | return 0 if $x -> [$i][$j] != $c; | |||
1303 | } | ||||||
1304 | } | ||||||
1305 | |||||||
1306 | 3 | 12 | return 1; | ||||
1307 | } | ||||||
1308 | |||||||
1309 | =pod | ||||||
1310 | |||||||
1311 | =item is_identity() | ||||||
1312 | |||||||
1313 | Returns 1 is the invocand is an identity matrix, and 0 otherwise. An | ||||||
1314 | identity matrix contains ones on the main diagonal and zeros elsewhere. | ||||||
1315 | |||||||
1316 | $bool = $x -> is_identity(); | ||||||
1317 | |||||||
1318 | =cut | ||||||
1319 | |||||||
1320 | sub is_identity { | ||||||
1321 | 25 | 50 | 25 | 1 | 78 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1322 | 25 | 50 | 52 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1323 | 25 | 47 | my $x = shift; | ||||
1324 | |||||||
1325 | 25 | 55 | my ($nrow, $ncol) = $x -> size(); | ||||
1326 | 25 | 100 | 74 | return 0 unless $nrow == $ncol; | |||
1327 | |||||||
1328 | 22 | 79 | for my $i (0 .. $nrow - 1) { | ||||
1329 | 24 | 44 | for my $j (0 .. $ncol - 1) { | ||||
1330 | 36 | 100 | 164 | return 0 if $x -> [$i][$j] != ($i == $j ? 1 : 0); | |||
100 | |||||||
1331 | } | ||||||
1332 | } | ||||||
1333 | |||||||
1334 | 3 | 14 | return 1; | ||||
1335 | } | ||||||
1336 | |||||||
1337 | =pod | ||||||
1338 | |||||||
1339 | =item is_exchg() | ||||||
1340 | |||||||
1341 | Returns 1 is the invocand is an exchange matrix, and 0 otherwise. | ||||||
1342 | |||||||
1343 | $bool = $x -> is_exchg(); | ||||||
1344 | |||||||
1345 | An exchange matrix contains ones on the main anti-diagonal and zeros elsewhere, | ||||||
1346 | for example | ||||||
1347 | |||||||
1348 | [ 0 0 1 ] | ||||||
1349 | [ 0 1 0 ] | ||||||
1350 | [ 1 0 0 ] | ||||||
1351 | |||||||
1352 | =cut | ||||||
1353 | |||||||
1354 | sub is_exchg { | ||||||
1355 | 25 | 50 | 25 | 1 | 87 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1356 | 25 | 50 | 57 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1357 | 25 | 38 | my $x = shift; | ||||
1358 | |||||||
1359 | 25 | 58 | my ($nrow, $ncol) = $x -> size(); | ||||
1360 | 25 | 100 | 78 | return 0 unless $nrow == $ncol; | |||
1361 | |||||||
1362 | 22 | 61 | my $imax = $nrow - 1; | ||||
1363 | 22 | 59 | for my $i (0 .. $nrow - 1) { | ||||
1364 | 23 | 38 | for my $j (0 .. $ncol - 1) { | ||||
1365 | 47 | 100 | 200 | return 0 if $x -> [$i][$j] != ($i + $j == $imax ? 1 : 0); | |||
100 | |||||||
1366 | } | ||||||
1367 | } | ||||||
1368 | |||||||
1369 | 3 | 14 | return 1; | ||||
1370 | } | ||||||
1371 | |||||||
1372 | =pod | ||||||
1373 | |||||||
1374 | =item is_bool() | ||||||
1375 | |||||||
1376 | Returns 1 is the invocand is a boolean matrix, and 0 otherwise. | ||||||
1377 | |||||||
1378 | $bool = $x -> is_bool(); | ||||||
1379 | |||||||
1380 | A boolean matrix is a matrix is a matrix whose entries are either 0 or 1, for | ||||||
1381 | example | ||||||
1382 | |||||||
1383 | [ 0 1 1 ] | ||||||
1384 | [ 1 0 0 ] | ||||||
1385 | [ 0 1 0 ] | ||||||
1386 | |||||||
1387 | =cut | ||||||
1388 | |||||||
1389 | sub is_bool { | ||||||
1390 | 25 | 50 | 25 | 1 | 80 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1391 | 25 | 50 | 51 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1392 | 25 | 43 | my $x = shift; | ||||
1393 | |||||||
1394 | 25 | 61 | my ($nrow, $ncol) = $x -> size(); | ||||
1395 | |||||||
1396 | 25 | 76 | for my $i (0 .. $nrow - 1) { | ||||
1397 | 34 | 59 | for my $j (0 .. $ncol - 1) { | ||||
1398 | 80 | 118 | my $val = $x -> [$i][$j]; | ||||
1399 | 80 | 100 | 100 | 291 | return 0 if $val != 0 && $val != 1; | ||
1400 | } | ||||||
1401 | } | ||||||
1402 | |||||||
1403 | 5 | 22 | return 1; | ||||
1404 | } | ||||||
1405 | |||||||
1406 | =pod | ||||||
1407 | |||||||
1408 | =item is_perm() | ||||||
1409 | |||||||
1410 | Returns 1 is the invocand is an permutation matrix, and 0 otherwise. | ||||||
1411 | |||||||
1412 | $bool = $x -> is_perm(); | ||||||
1413 | |||||||
1414 | A permutation matrix is a square matrix with exactly one 1 in each row and | ||||||
1415 | column, and all other elements 0, for example | ||||||
1416 | |||||||
1417 | [ 0 1 0 ] | ||||||
1418 | [ 1 0 0 ] | ||||||
1419 | [ 0 0 1 ] | ||||||
1420 | |||||||
1421 | =cut | ||||||
1422 | |||||||
1423 | sub is_perm { | ||||||
1424 | 25 | 50 | 25 | 1 | 91 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1425 | 25 | 50 | 53 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1426 | 25 | 38 | my $x = shift; | ||||
1427 | |||||||
1428 | 25 | 60 | my ($nrow, $ncol) = $x -> size(); | ||||
1429 | 25 | 100 | 79 | return 0 unless $nrow == $ncol; | |||
1430 | |||||||
1431 | 22 | 63 | my $rowsum = [ (0) x $nrow ]; | ||||
1432 | 22 | 62 | my $colsum = [ (0) x $ncol ]; | ||||
1433 | |||||||
1434 | 22 | 57 | for my $i (0 .. $nrow - 1) { | ||||
1435 | 30 | 56 | for my $j (0 .. $ncol - 1) { | ||||
1436 | 74 | 98 | my $val = $x -> [$i][$j]; | ||||
1437 | 74 | 100 | 100 | 261 | return 0 if $val != 0 && $val != 1; | ||
1438 | 57 | 100 | 124 | if ($val == 1) { | |||
1439 | 16 | 50 | 30 | return 0 if ++$rowsum -> [$i] > 1; | |||
1440 | 16 | 50 | 42 | return 0 if ++$colsum -> [$j] > 1; | |||
1441 | } | ||||||
1442 | } | ||||||
1443 | } | ||||||
1444 | |||||||
1445 | 5 | 12 | for my $i (0 .. $nrow - 1) { | ||||
1446 | 10 | 50 | 22 | return 0 if $rowsum -> [$i] != 1; | |||
1447 | 10 | 50 | 19 | return 0 if $colsum -> [$i] != 1; | |||
1448 | } | ||||||
1449 | |||||||
1450 | 5 | 24 | return 1; | ||||
1451 | } | ||||||
1452 | |||||||
1453 | =pod | ||||||
1454 | |||||||
1455 | =item is_int() | ||||||
1456 | |||||||
1457 | Returns 1 is the invocand is an integer matrix, i.e., a matrix of integers, and | ||||||
1458 | 0 otherwise. | ||||||
1459 | |||||||
1460 | $bool = $x -> is_int(); | ||||||
1461 | |||||||
1462 | =cut | ||||||
1463 | |||||||
1464 | sub is_int { | ||||||
1465 | 25 | 50 | 25 | 1 | 85 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1466 | 25 | 50 | 69 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1467 | 25 | 46 | my $x = shift; | ||||
1468 | |||||||
1469 | 25 | 55 | my ($nrow, $ncol) = $x -> size(); | ||||
1470 | |||||||
1471 | 25 | 72 | for my $i (0 .. $nrow - 1) { | ||||
1472 | 83 | 120 | for my $j (0 .. $ncol - 1) { | ||||
1473 | 347 | 50 | 662 | return 0 unless $x -> [$i][$j] == int $x -> [$i][$j]; | |||
1474 | } | ||||||
1475 | } | ||||||
1476 | |||||||
1477 | 25 | 134 | return 1; | ||||
1478 | } | ||||||
1479 | |||||||
1480 | =pod | ||||||
1481 | |||||||
1482 | =item is_diag() | ||||||
1483 | |||||||
1484 | Returns 1 is the invocand is diagonal, and 0 otherwise. | ||||||
1485 | |||||||
1486 | $bool = $x -> is_diag(); | ||||||
1487 | |||||||
1488 | A diagonal matrix is a square matrix where all non-zero elements, if any, are on | ||||||
1489 | the main diagonal. It has the following pattern, where only the elements marked | ||||||
1490 | as C |
||||||
1491 | |||||||
1492 | [ x 0 0 0 0 ] | ||||||
1493 | [ 0 x 0 0 0 ] | ||||||
1494 | [ 0 0 x 0 0 ] | ||||||
1495 | [ 0 0 0 x 0 ] | ||||||
1496 | [ 0 0 0 0 x ] | ||||||
1497 | |||||||
1498 | =cut | ||||||
1499 | |||||||
1500 | sub is_diag { | ||||||
1501 | 25 | 50 | 25 | 1 | 86 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1502 | 25 | 50 | 54 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1503 | 25 | 39 | my $x = shift; | ||||
1504 | 25 | 67 | $x -> is_band(0); | ||||
1505 | } | ||||||
1506 | |||||||
1507 | =pod | ||||||
1508 | |||||||
1509 | =item is_adiag() | ||||||
1510 | |||||||
1511 | Returns 1 is the invocand is anti-diagonal, and 0 otherwise. | ||||||
1512 | |||||||
1513 | $bool = $x -> is_adiag(); | ||||||
1514 | |||||||
1515 | A diagonal matrix is a square matrix where all non-zero elements, if any, are on | ||||||
1516 | the main antidiagonal. It has the following pattern, where only the elements | ||||||
1517 | marked as C |
||||||
1518 | |||||||
1519 | [ 0 0 0 0 x ] | ||||||
1520 | [ 0 0 0 x 0 ] | ||||||
1521 | [ 0 0 x 0 0 ] | ||||||
1522 | [ 0 x 0 0 0 ] | ||||||
1523 | [ x 0 0 0 0 ] | ||||||
1524 | |||||||
1525 | =cut | ||||||
1526 | |||||||
1527 | sub is_adiag { | ||||||
1528 | 25 | 50 | 25 | 1 | 82 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1529 | 25 | 50 | 54 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1530 | 25 | 43 | my $x = shift; | ||||
1531 | 25 | 59 | $x -> is_aband(0); | ||||
1532 | } | ||||||
1533 | |||||||
1534 | =pod | ||||||
1535 | |||||||
1536 | =item is_tridiag() | ||||||
1537 | |||||||
1538 | Returns 1 is the invocand is tridiagonal, and 0 otherwise. | ||||||
1539 | |||||||
1540 | $bool = $x -> is_tridiag(); | ||||||
1541 | |||||||
1542 | A tridiagonal matrix is a square matrix with nonzero elements only on the | ||||||
1543 | diagonal and slots horizontally or vertically adjacent the diagonal (i.e., along | ||||||
1544 | the subdiagonal and superdiagonal). It has the following pattern, where only the | ||||||
1545 | elements marked as C |
||||||
1546 | |||||||
1547 | [ x x 0 0 0 ] | ||||||
1548 | [ x x x 0 0 ] | ||||||
1549 | [ 0 x x x 0 ] | ||||||
1550 | [ 0 0 x x x ] | ||||||
1551 | [ 0 0 0 x x ] | ||||||
1552 | |||||||
1553 | =cut | ||||||
1554 | |||||||
1555 | sub is_tridiag { | ||||||
1556 | 25 | 50 | 25 | 1 | 94 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1557 | 25 | 50 | 66 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1558 | 25 | 37 | my $x = shift; | ||||
1559 | 25 | 63 | $x -> is_band(1); | ||||
1560 | } | ||||||
1561 | |||||||
1562 | =pod | ||||||
1563 | |||||||
1564 | =item is_atridiag() | ||||||
1565 | |||||||
1566 | Returns 1 is the invocand is anti-tridiagonal, and 0 otherwise. | ||||||
1567 | |||||||
1568 | $bool = $x -> is_tridiag(); | ||||||
1569 | |||||||
1570 | A anti-tridiagonal matrix is a square matrix with nonzero elements only on the | ||||||
1571 | anti-diagonal and slots horizontally or vertically adjacent the diagonal (i.e., | ||||||
1572 | along the anti-subdiagonal and anti-superdiagonal). It has the following | ||||||
1573 | pattern, where only the elements marked as C |
||||||
1574 | |||||||
1575 | [ 0 0 0 x x ] | ||||||
1576 | [ 0 0 x x x ] | ||||||
1577 | [ 0 x x x 0 ] | ||||||
1578 | [ x x x 0 0 ] | ||||||
1579 | [ x x 0 0 0 ] | ||||||
1580 | |||||||
1581 | =cut | ||||||
1582 | |||||||
1583 | sub is_atridiag { | ||||||
1584 | 25 | 50 | 25 | 1 | 79 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1585 | 25 | 50 | 54 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1586 | 25 | 39 | my $x = shift; | ||||
1587 | 25 | 60 | $x -> is_aband(1); | ||||
1588 | } | ||||||
1589 | |||||||
1590 | =pod | ||||||
1591 | |||||||
1592 | =item is_pentadiag() | ||||||
1593 | |||||||
1594 | Returns 1 is the invocand is pentadiagonal, and 0 otherwise. | ||||||
1595 | |||||||
1596 | $bool = $x -> is_pentadiag(); | ||||||
1597 | |||||||
1598 | A pentadiagonal matrix is a square matrix with nonzero elements only on the | ||||||
1599 | diagonal and the two diagonals above and below the main diagonal. It has the | ||||||
1600 | following pattern, where only the elements marked as C |
||||||
1601 | |||||||
1602 | [ x x x 0 0 0 ] | ||||||
1603 | [ x x x x 0 0 ] | ||||||
1604 | [ x x x x x 0 ] | ||||||
1605 | [ 0 x x x x x ] | ||||||
1606 | [ 0 0 x x x x ] | ||||||
1607 | [ 0 0 0 x x x ] | ||||||
1608 | |||||||
1609 | =cut | ||||||
1610 | |||||||
1611 | sub is_pentadiag { | ||||||
1612 | 25 | 50 | 25 | 1 | 79 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1613 | 25 | 50 | 47 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1614 | 25 | 42 | my $x = shift; | ||||
1615 | 25 | 62 | $x -> is_band(2); | ||||
1616 | } | ||||||
1617 | |||||||
1618 | =pod | ||||||
1619 | |||||||
1620 | =item is_apentadiag() | ||||||
1621 | |||||||
1622 | Returns 1 is the invocand is anti-pentadiagonal, and 0 otherwise. | ||||||
1623 | |||||||
1624 | $bool = $x -> is_pentadiag(); | ||||||
1625 | |||||||
1626 | A anti-pentadiagonal matrix is a square matrix with nonzero elements only on the | ||||||
1627 | anti-diagonal and two anti-diagonals above and below the main anti-diagonal. It | ||||||
1628 | has the following pattern, where only the elements marked as C |
||||||
1629 | non-zero, | ||||||
1630 | |||||||
1631 | [ 0 0 0 x x x ] | ||||||
1632 | [ 0 0 x x x x ] | ||||||
1633 | [ 0 x x x x x ] | ||||||
1634 | [ x x x x x 0 ] | ||||||
1635 | [ x x x x 0 0 ] | ||||||
1636 | [ x x x 0 0 0 ] | ||||||
1637 | |||||||
1638 | =cut | ||||||
1639 | |||||||
1640 | sub is_apentadiag { | ||||||
1641 | 25 | 50 | 25 | 1 | 84 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1642 | 25 | 50 | 49 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1643 | 25 | 44 | my $x = shift; | ||||
1644 | 25 | 62 | $x -> is_aband(2); | ||||
1645 | } | ||||||
1646 | |||||||
1647 | =pod | ||||||
1648 | |||||||
1649 | =item is_heptadiag() | ||||||
1650 | |||||||
1651 | Returns 1 is the invocand is heptadiagonal, and 0 otherwise. | ||||||
1652 | |||||||
1653 | $bool = $x -> is_heptadiag(); | ||||||
1654 | |||||||
1655 | A heptadiagonal matrix is a square matrix with nonzero elements only on the | ||||||
1656 | diagonal and the two diagonals above and below the main diagonal. It has the | ||||||
1657 | following pattern, where only the elements marked as C |
||||||
1658 | |||||||
1659 | [ x x x x 0 0 ] | ||||||
1660 | [ x x x x x 0 ] | ||||||
1661 | [ x x x x x x ] | ||||||
1662 | [ x x x x x x ] | ||||||
1663 | [ 0 x x x x x ] | ||||||
1664 | [ 0 0 x x x x ] | ||||||
1665 | |||||||
1666 | =cut | ||||||
1667 | |||||||
1668 | sub is_heptadiag { | ||||||
1669 | 25 | 50 | 25 | 1 | 74 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1670 | 25 | 50 | 52 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1671 | 25 | 44 | my $x = shift; | ||||
1672 | 25 | 64 | $x -> is_band(3); | ||||
1673 | } | ||||||
1674 | |||||||
1675 | =pod | ||||||
1676 | |||||||
1677 | =item is_aheptadiag() | ||||||
1678 | |||||||
1679 | Returns 1 is the invocand is anti-heptadiagonal, and 0 otherwise. | ||||||
1680 | |||||||
1681 | $bool = $x -> is_heptadiag(); | ||||||
1682 | |||||||
1683 | A anti-heptadiagonal matrix is a square matrix with nonzero elements only on the | ||||||
1684 | anti-diagonal and two anti-diagonals above and below the main anti-diagonal. It | ||||||
1685 | has the following pattern, where only the elements marked as C |
||||||
1686 | non-zero, | ||||||
1687 | |||||||
1688 | [ 0 0 x x x x ] | ||||||
1689 | [ 0 x x x x x ] | ||||||
1690 | [ x x x x x x ] | ||||||
1691 | [ x x x x x x ] | ||||||
1692 | [ x x x x x 0 ] | ||||||
1693 | [ x x x x 0 0 ] | ||||||
1694 | |||||||
1695 | =cut | ||||||
1696 | |||||||
1697 | sub is_aheptadiag { | ||||||
1698 | 25 | 50 | 25 | 1 | 88 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1699 | 25 | 50 | 89 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1700 | 25 | 43 | my $x = shift; | ||||
1701 | 25 | 61 | $x -> is_aband(3); | ||||
1702 | } | ||||||
1703 | |||||||
1704 | =pod | ||||||
1705 | |||||||
1706 | =item is_band() | ||||||
1707 | |||||||
1708 | Returns 1 is the invocand is a band matrix with a specified bandwidth, and 0 | ||||||
1709 | otherwise. | ||||||
1710 | |||||||
1711 | $bool = $x -> is_band($k); | ||||||
1712 | |||||||
1713 | A band matrix is a square matrix with nonzero elements only on the diagonal and | ||||||
1714 | on the C<$k> diagonals above and below the main diagonal. The bandwidth C<$k> | ||||||
1715 | must be non-negative. | ||||||
1716 | |||||||
1717 | $bool = $x -> is_band(0); # is $x diagonal? | ||||||
1718 | $bool = $x -> is_band(1); # is $x tridiagonal? | ||||||
1719 | $bool = $x -> is_band(2); # is $x pentadiagonal? | ||||||
1720 | $bool = $x -> is_band(3); # is $x heptadiagonal? | ||||||
1721 | |||||||
1722 | See also C |
||||||
1723 | |||||||
1724 | =cut | ||||||
1725 | |||||||
1726 | sub is_band { | ||||||
1727 | 225 | 50 | 225 | 1 | 611 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
1728 | 225 | 50 | 396 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
1729 | 225 | 314 | my $x = shift; | ||||
1730 | 225 | 382 | my $class = ref $x; | ||||
1731 | |||||||
1732 | 225 | 473 | my ($nrow, $ncol) = $x -> size(); | ||||
1733 | 225 | 100 | 598 | return 0 unless $nrow == $ncol; # must be square | |||
1734 | |||||||
1735 | 198 | 308 | my $k = shift; # bandwidth | ||||
1736 | 198 | 50 | 362 | croak "Bandwidth can not be undefined" unless defined $k; | |||
1737 | 198 | 50 | 416 | if (ref $k) { | |||
1738 | 0 | 0 | 0 | 0 | $k = $class -> new($k) | ||
1739 | unless defined(blessed($k)) && $k -> isa($class); | ||||||
1740 | 0 | 0 | 0 | croak "Bandwidth must be a scalar" unless $k -> is_scalar(); | |||
1741 | 0 | 0 | $k = $k -> [0][0]; | ||||
1742 | } | ||||||
1743 | |||||||
1744 | 198 | 100 | 540 | return 0 if $nrow <= $k; # if the band doesn't fit inside | |||
1745 | 136 | 100 | 380 | return 1 if $nrow == $k + 1; # if the whole band fits exactly | |||
1746 | |||||||
1747 | 106 | 271 | for my $i (0 .. $nrow - $k - 2) { | ||||
1748 | 130 | 241 | for my $j ($k + 1 + $i .. $ncol - 1) { | ||||
1749 | 188 | 100 | 100 | 929 | return 0 if ($x -> [$i][$j] != 0 || | ||
1750 | $x -> [$j][$i] != 0); | ||||||
1751 | } | ||||||
1752 | } | ||||||
1753 | |||||||
1754 | 23 | 109 | return 1; | ||||
1755 | } | ||||||
1756 | |||||||
1757 | =pod | ||||||
1758 | |||||||
1759 | =item is_aband() | ||||||
1760 | |||||||
1761 | Returns 1 is the invocand is "anti-banded" with a specified bandwidth, and 0 | ||||||
1762 | otherwise. | ||||||
1763 | |||||||
1764 | $bool = $x -> is_aband($k); | ||||||
1765 | |||||||
1766 | Some examples | ||||||
1767 | |||||||
1768 | $bool = $x -> is_aband(0); # is $x anti-diagonal? | ||||||
1769 | $bool = $x -> is_aband(1); # is $x anti-tridiagonal? | ||||||
1770 | $bool = $x -> is_aband(2); # is $x anti-pentadiagonal? | ||||||
1771 | $bool = $x -> is_aband(3); # is $x anti-heptadiagonal? | ||||||
1772 | |||||||
1773 | A band matrix is a square matrix with nonzero elements only on the diagonal and | ||||||
1774 | on the C<$k> diagonals above and below the main diagonal. The bandwidth C<$k> | ||||||
1775 | must be non-negative. | ||||||
1776 | |||||||
1777 | A "anti-banded" matrix is a square matrix with nonzero elements only on the | ||||||
1778 | anti-diagonal and C<$k> anti-diagonals above and below the main anti-diagonal. | ||||||
1779 | |||||||
1780 | See also C |
||||||
1781 | |||||||
1782 | =cut | ||||||
1783 | |||||||
1784 | sub is_aband { | ||||||
1785 | 225 | 50 | 225 | 1 | 607 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
1786 | 225 | 50 | 403 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
1787 | 225 | 320 | my $x = shift; | ||||
1788 | 225 | 370 | my $class = ref $x; | ||||
1789 | |||||||
1790 | 225 | 494 | my ($nrow, $ncol) = $x -> size(); | ||||
1791 | 225 | 100 | 622 | return 0 unless $nrow == $ncol; # must be square | |||
1792 | |||||||
1793 | 198 | 271 | my $k = shift; # bandwidth | ||||
1794 | 198 | 50 | 381 | croak "Bandwidth can not be undefined" unless defined $k; | |||
1795 | 198 | 50 | 341 | if (ref $k) { | |||
1796 | 0 | 0 | 0 | 0 | $k = $class -> new($k) | ||
1797 | unless defined(blessed($k)) && $k -> isa($class); | ||||||
1798 | 0 | 0 | 0 | croak "Bandwidth must be a scalar" unless $k -> is_scalar(); | |||
1799 | 0 | 0 | $k = $k -> [0][0]; | ||||
1800 | } | ||||||
1801 | |||||||
1802 | 198 | 100 | 670 | return 0 if $nrow <= $k; # if the band doesn't fit inside | |||
1803 | 136 | 100 | 383 | return 1 if $nrow == $k + 1; # if the whole band fits exactly | |||
1804 | |||||||
1805 | # Check upper part. | ||||||
1806 | |||||||
1807 | 106 | 310 | for my $i (0 .. $nrow - $k - 2) { | ||||
1808 | 134 | 224 | for my $j (0 .. $nrow - $k - 2 - $i) { | ||||
1809 | 210 | 100 | 702 | return 0 if $x -> [$i][$j] != 0; | |||
1810 | } | ||||||
1811 | } | ||||||
1812 | |||||||
1813 | # Check lower part. | ||||||
1814 | |||||||
1815 | 35 | 75 | for my $i ($k + 1 .. $nrow - 1) { | ||||
1816 | 57 | 100 | for my $j ($nrow - $i + $k .. $nrow - 1) { | ||||
1817 | 89 | 100 | 215 | return 0 if $x -> [$i][$j] != 0; | |||
1818 | } | ||||||
1819 | } | ||||||
1820 | |||||||
1821 | 27 | 172 | return 1; | ||||
1822 | } | ||||||
1823 | |||||||
1824 | =pod | ||||||
1825 | |||||||
1826 | =item is_triu() | ||||||
1827 | |||||||
1828 | Returns 1 is the invocand is upper triangular, and 0 otherwise. | ||||||
1829 | |||||||
1830 | $bool = $x -> is_triu(); | ||||||
1831 | |||||||
1832 | An upper triangular matrix is a square matrix where all non-zero elements are on | ||||||
1833 | or above the main diagonal. It has the following pattern, where only the | ||||||
1834 | elements marked as C |
||||||
1835 | only the elements marked as C |
||||||
1836 | |||||||
1837 | [ x x x x ] | ||||||
1838 | [ 0 x x x ] | ||||||
1839 | [ 0 0 x x ] | ||||||
1840 | [ 0 0 0 x ] | ||||||
1841 | |||||||
1842 | =cut | ||||||
1843 | |||||||
1844 | sub is_triu { | ||||||
1845 | 25 | 50 | 25 | 1 | 98 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1846 | 25 | 50 | 62 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1847 | 25 | 41 | my $x = shift; | ||||
1848 | |||||||
1849 | 25 | 64 | my $nrow = $x -> nrow(); | ||||
1850 | 25 | 61 | my $ncol = $x -> ncol(); | ||||
1851 | |||||||
1852 | 25 | 100 | 70 | return 0 unless $nrow == $ncol; | |||
1853 | |||||||
1854 | 22 | 67 | for my $i (1 .. $nrow - 1) { | ||||
1855 | 30 | 61 | for my $j (0 .. $i - 1) { | ||||
1856 | 37 | 100 | 154 | return 0 unless $x -> [$i][$j] == 0; | |||
1857 | } | ||||||
1858 | } | ||||||
1859 | |||||||
1860 | 6 | 24 | return 1; | ||||
1861 | } | ||||||
1862 | |||||||
1863 | =pod | ||||||
1864 | |||||||
1865 | =item is_striu() | ||||||
1866 | |||||||
1867 | Returns 1 is the invocand is strictly upper triangular, and 0 otherwise. | ||||||
1868 | |||||||
1869 | $bool = $x -> is_striu(); | ||||||
1870 | |||||||
1871 | A strictly upper triangular matrix is a square matrix where all non-zero | ||||||
1872 | elements are strictly above the main diagonal. It has the following pattern, | ||||||
1873 | where only the elements marked as C |
||||||
1874 | |||||||
1875 | [ 0 x x x ] | ||||||
1876 | [ 0 0 x x ] | ||||||
1877 | [ 0 0 0 x ] | ||||||
1878 | [ 0 0 0 0 ] | ||||||
1879 | |||||||
1880 | =cut | ||||||
1881 | |||||||
1882 | sub is_striu { | ||||||
1883 | 25 | 50 | 25 | 1 | 86 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1884 | 25 | 50 | 56 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1885 | 25 | 43 | my $x = shift; | ||||
1886 | |||||||
1887 | 25 | 59 | my $nrow = $x -> nrow(); | ||||
1888 | 25 | 55 | my $ncol = $x -> ncol(); | ||||
1889 | |||||||
1890 | 25 | 100 | 107 | return 0 unless $nrow == $ncol; | |||
1891 | |||||||
1892 | 22 | 63 | for my $i (0 .. $nrow - 1) { | ||||
1893 | 36 | 70 | for my $j (0 .. $i) { | ||||
1894 | 50 | 100 | 189 | return 0 unless $x -> [$i][$j] == 0; | |||
1895 | } | ||||||
1896 | } | ||||||
1897 | |||||||
1898 | 2 | 15 | return 1; | ||||
1899 | } | ||||||
1900 | |||||||
1901 | =pod | ||||||
1902 | |||||||
1903 | =item is_tril() | ||||||
1904 | |||||||
1905 | Returns 1 is the invocand is lower triangular, and 0 otherwise. | ||||||
1906 | |||||||
1907 | $bool = $x -> is_tril(); | ||||||
1908 | |||||||
1909 | A lower triangular matrix is a square matrix where all non-zero elements are on | ||||||
1910 | or below the main diagonal. It has the following pattern, where only the | ||||||
1911 | elements marked as C |
||||||
1912 | |||||||
1913 | [ x 0 0 0 ] | ||||||
1914 | [ x x 0 0 ] | ||||||
1915 | [ x x x 0 ] | ||||||
1916 | [ x x x x ] | ||||||
1917 | |||||||
1918 | =cut | ||||||
1919 | |||||||
1920 | sub is_tril { | ||||||
1921 | 25 | 50 | 25 | 1 | 84 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1922 | 25 | 50 | 58 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1923 | 25 | 40 | my $x = shift; | ||||
1924 | |||||||
1925 | 25 | 61 | my $nrow = $x -> nrow(); | ||||
1926 | 25 | 54 | my $ncol = $x -> ncol(); | ||||
1927 | |||||||
1928 | 25 | 100 | 72 | return 0 unless $nrow == $ncol; | |||
1929 | |||||||
1930 | 22 | 70 | for my $i (0 .. $nrow - 1) { | ||||
1931 | 28 | 69 | for my $j ($i + 1 .. $ncol - 1) { | ||||
1932 | 35 | 100 | 141 | return 0 unless $x -> [$i][$j] == 0; | |||
1933 | } | ||||||
1934 | } | ||||||
1935 | |||||||
1936 | 6 | 26 | return 1; | ||||
1937 | } | ||||||
1938 | |||||||
1939 | =pod | ||||||
1940 | |||||||
1941 | =item is_stril() | ||||||
1942 | |||||||
1943 | Returns 1 is the invocand is strictly lower triangular, and 0 otherwise. | ||||||
1944 | |||||||
1945 | $bool = $x -> is_stril(); | ||||||
1946 | |||||||
1947 | A strictly lower triangular matrix is a square matrix where all non-zero | ||||||
1948 | elements are strictly below the main diagonal. It has the following pattern, | ||||||
1949 | where only the elements marked as C |
||||||
1950 | |||||||
1951 | [ 0 0 0 0 ] | ||||||
1952 | [ x 0 0 0 ] | ||||||
1953 | [ x x 0 0 ] | ||||||
1954 | [ x x x 0 ] | ||||||
1955 | |||||||
1956 | =cut | ||||||
1957 | |||||||
1958 | sub is_stril { | ||||||
1959 | 25 | 50 | 25 | 1 | 84 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1960 | 25 | 50 | 60 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1961 | 25 | 38 | my $x = shift; | ||||
1962 | |||||||
1963 | 25 | 58 | my $nrow = $x -> nrow(); | ||||
1964 | 25 | 58 | my $ncol = $x -> ncol(); | ||||
1965 | |||||||
1966 | 25 | 100 | 74 | return 0 unless $nrow == $ncol; | |||
1967 | |||||||
1968 | 22 | 60 | for my $i (0 .. $nrow - 1) { | ||||
1969 | 24 | 54 | for my $j ($i .. $ncol - 1) { | ||||
1970 | 46 | 100 | 194 | return 0 unless $x -> [$i][$j] == 0; | |||
1971 | } | ||||||
1972 | } | ||||||
1973 | |||||||
1974 | 2 | 9 | return 1; | ||||
1975 | } | ||||||
1976 | |||||||
1977 | =pod | ||||||
1978 | |||||||
1979 | =item is_atriu() | ||||||
1980 | |||||||
1981 | Returns 1 is the invocand is upper anti-triangular, and 0 otherwise. | ||||||
1982 | |||||||
1983 | $bool = $x -> is_atriu(); | ||||||
1984 | |||||||
1985 | An upper anti-triangular matrix is a square matrix where all non-zero elements | ||||||
1986 | are on or above the main anti-diagonal. It has the following pattern, where only | ||||||
1987 | the elements marked as C |
||||||
1988 | |||||||
1989 | [ x x x x ] | ||||||
1990 | [ x x x 0 ] | ||||||
1991 | [ x x 0 0 ] | ||||||
1992 | [ x 0 0 0 ] | ||||||
1993 | |||||||
1994 | =cut | ||||||
1995 | |||||||
1996 | sub is_atriu { | ||||||
1997 | 25 | 50 | 25 | 1 | 86 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
1998 | 25 | 50 | 50 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
1999 | 25 | 37 | my $x = shift; | ||||
2000 | |||||||
2001 | 25 | 64 | my $nrow = $x -> nrow(); | ||||
2002 | 25 | 56 | my $ncol = $x -> ncol(); | ||||
2003 | |||||||
2004 | 25 | 100 | 74 | return 0 unless $nrow == $ncol; | |||
2005 | |||||||
2006 | 22 | 65 | for my $i (1 .. $nrow - 1) { | ||||
2007 | 29 | 52 | for my $j ($ncol - $i .. $ncol - 1) { | ||||
2008 | 34 | 100 | 145 | return 0 unless $x -> [$i][$j] == 0; | |||
2009 | } | ||||||
2010 | } | ||||||
2011 | |||||||
2012 | 6 | 52 | return 1; | ||||
2013 | } | ||||||
2014 | |||||||
2015 | =pod | ||||||
2016 | |||||||
2017 | =item is_satriu() | ||||||
2018 | |||||||
2019 | Returns 1 is the invocand is strictly upper anti-triangular, and 0 otherwise. | ||||||
2020 | |||||||
2021 | $bool = $x -> is_satriu(); | ||||||
2022 | |||||||
2023 | A strictly anti-triangular matrix is a square matrix where all non-zero elements | ||||||
2024 | are strictly above the main diagonal. It has the following pattern, where only | ||||||
2025 | the elements marked as C |
||||||
2026 | |||||||
2027 | [ x x x 0 ] | ||||||
2028 | [ x x 0 0 ] | ||||||
2029 | [ x 0 0 0 ] | ||||||
2030 | [ 0 0 0 0 ] | ||||||
2031 | |||||||
2032 | =cut | ||||||
2033 | |||||||
2034 | sub is_satriu { | ||||||
2035 | 25 | 50 | 25 | 1 | 77 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2036 | 25 | 50 | 56 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
2037 | 25 | 45 | my $x = shift; | ||||
2038 | |||||||
2039 | 25 | 56 | my $nrow = $x -> nrow(); | ||||
2040 | 25 | 60 | my $ncol = $x -> ncol(); | ||||
2041 | |||||||
2042 | 25 | 100 | 82 | return 0 unless $nrow == $ncol; | |||
2043 | |||||||
2044 | 22 | 61 | for my $i (0 .. $nrow - 1) { | ||||
2045 | 34 | 65 | for my $j ($ncol - $i - 1 .. $ncol - 1) { | ||||
2046 | 42 | 100 | 171 | return 0 unless $x -> [$i][$j] == 0; | |||
2047 | } | ||||||
2048 | } | ||||||
2049 | |||||||
2050 | 2 | 11 | return 1; | ||||
2051 | } | ||||||
2052 | |||||||
2053 | =pod | ||||||
2054 | |||||||
2055 | =item is_atril() | ||||||
2056 | |||||||
2057 | Returns 1 is the invocand is lower anti-triangular, and 0 otherwise. | ||||||
2058 | |||||||
2059 | $bool = $x -> is_atril(); | ||||||
2060 | |||||||
2061 | A lower anti-triangular matrix is a square matrix where all non-zero elements | ||||||
2062 | are on or below the main anti-diagonal. It has the following pattern, where only | ||||||
2063 | the elements marked as C |
||||||
2064 | |||||||
2065 | [ 0 0 0 x ] | ||||||
2066 | [ 0 0 x x ] | ||||||
2067 | [ 0 x x x ] | ||||||
2068 | [ x x x x ] | ||||||
2069 | |||||||
2070 | =cut | ||||||
2071 | |||||||
2072 | sub is_atril { | ||||||
2073 | 25 | 50 | 25 | 1 | 85 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2074 | 25 | 50 | 53 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
2075 | 25 | 39 | my $x = shift; | ||||
2076 | |||||||
2077 | 25 | 55 | my $nrow = $x -> nrow(); | ||||
2078 | 25 | 51 | my $ncol = $x -> ncol(); | ||||
2079 | |||||||
2080 | 25 | 100 | 69 | return 0 unless $nrow == $ncol; | |||
2081 | |||||||
2082 | 22 | 64 | for my $i (0 .. $nrow - 1) { | ||||
2083 | 28 | 62 | for my $j (0 .. $ncol - $i - 2) { | ||||
2084 | 39 | 100 | 145 | return 0 unless $x -> [$i][$j] == 0; | |||
2085 | } | ||||||
2086 | } | ||||||
2087 | |||||||
2088 | 6 | 29 | return 1; | ||||
2089 | } | ||||||
2090 | |||||||
2091 | =pod | ||||||
2092 | |||||||
2093 | =item is_satril() | ||||||
2094 | |||||||
2095 | Returns 1 is the invocand is strictly lower anti-triangular, and 0 otherwise. | ||||||
2096 | |||||||
2097 | $bool = $x -> is_satril(); | ||||||
2098 | |||||||
2099 | A strictly lower anti-triangular matrix is a square matrix where all non-zero | ||||||
2100 | elements are strictly below the main anti-diagonal. It has the following | ||||||
2101 | pattern, where only the elements marked as C |
||||||
2102 | |||||||
2103 | [ 0 0 0 0 ] | ||||||
2104 | [ 0 0 0 x ] | ||||||
2105 | [ 0 0 x x ] | ||||||
2106 | [ 0 x x x ] | ||||||
2107 | |||||||
2108 | =cut | ||||||
2109 | |||||||
2110 | sub is_satril { | ||||||
2111 | 25 | 50 | 25 | 1 | 111 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2112 | 25 | 50 | 52 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
2113 | 25 | 47 | my $x = shift; | ||||
2114 | |||||||
2115 | 25 | 54 | my $nrow = $x -> nrow(); | ||||
2116 | 25 | 52 | my $ncol = $x -> ncol(); | ||||
2117 | |||||||
2118 | 25 | 100 | 78 | return 0 unless $nrow == $ncol; | |||
2119 | |||||||
2120 | 22 | 76 | for my $i (0 .. $nrow - 1) { | ||||
2121 | 24 | 42 | for my $j (0 .. $ncol - $i - 1) { | ||||
2122 | 45 | 100 | 180 | return 0 unless $x -> [$i][$j] == 0; | |||
2123 | } | ||||||
2124 | } | ||||||
2125 | |||||||
2126 | 2 | 10 | return 1; | ||||
2127 | } | ||||||
2128 | |||||||
2129 | =pod | ||||||
2130 | |||||||
2131 | =back | ||||||
2132 | |||||||
2133 | =head2 Identify elements | ||||||
2134 | |||||||
2135 | This section contains methods for identifying and locating elements within an | ||||||
2136 | array. See also C |
||||||
2137 | |||||||
2138 | =over 4 | ||||||
2139 | |||||||
2140 | =item find() | ||||||
2141 | |||||||
2142 | Returns the location of each non-zero element. | ||||||
2143 | |||||||
2144 | $K = $x -> find(); # linear index | ||||||
2145 | ($I, $J) = $x -> find(); # subscripts | ||||||
2146 | |||||||
2147 | For example, to find the linear index of each element that is greater than or | ||||||
2148 | equal to 1, use | ||||||
2149 | |||||||
2150 | $K = $x -> sge(1) -> find(); | ||||||
2151 | |||||||
2152 | =cut | ||||||
2153 | |||||||
2154 | sub find { | ||||||
2155 | 4 | 50 | 4 | 1 | 37 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2156 | 4 | 50 | 10 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
2157 | 4 | 6 | my $x = shift; | ||||
2158 | |||||||
2159 | 4 | 12 | my ($m, $n) = $x -> size(); | ||||
2160 | |||||||
2161 | 4 | 7 | my $I = []; | ||||
2162 | 4 | 7 | my $J = []; | ||||
2163 | 4 | 9 | for my $j (0 .. $n - 1) { | ||||
2164 | 6 | 11 | for my $i (0 .. $m - 1) { | ||||
2165 | 12 | 100 | 25 | next unless $x->[$i][$j]; | |||
2166 | 10 | 16 | push @$I, $i; | ||||
2167 | 10 | 26 | push @$J, $j; | ||||
2168 | } | ||||||
2169 | } | ||||||
2170 | |||||||
2171 | 4 | 100 | 14 | return $I, $J if wantarray; | |||
2172 | |||||||
2173 | 2 | 6 | my $K = [ map { $m * $J -> [$_] + $I -> [$_] } 0 .. $#$I ]; | ||||
5 | 12 | ||||||
2174 | 2 | 6 | return $K; | ||||
2175 | } | ||||||
2176 | |||||||
2177 | =pod | ||||||
2178 | |||||||
2179 | =item is_finite() | ||||||
2180 | |||||||
2181 | Returns a matrix of ones and zeros. The element is one if the corresponding | ||||||
2182 | element in the invocand matrix is finite, and zero otherwise. | ||||||
2183 | |||||||
2184 | $y = $x -> is_finite(); | ||||||
2185 | |||||||
2186 | =cut | ||||||
2187 | |||||||
2188 | sub is_finite { | ||||||
2189 | 2 | 50 | 2 | 1 | 14 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2190 | 2 | 50 | 5 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
2191 | 2 | 3 | my $x = shift; | ||||
2192 | |||||||
2193 | 2 | 14 | require Math::Trig; | ||||
2194 | 2 | 6 | my $pinf = Math::Trig::Inf(); # positiv infinity | ||||
2195 | 2 | 8 | my $ninf = -$pinf; # negative infinity | ||||
2196 | |||||||
2197 | 2 | 7 | bless [ map { [ | ||||
2198 | map { | ||||||
2199 | 2 | 100 | 100 | 21 | $ninf < $_ && $_ < $pinf ? 1 : 0 | ||
6 | 31 | ||||||
2200 | } @$_ | ||||||
2201 | ] } @$x ], ref $x; | ||||||
2202 | } | ||||||
2203 | |||||||
2204 | =pod | ||||||
2205 | |||||||
2206 | =item is_inf() | ||||||
2207 | |||||||
2208 | Returns a matrix of ones and zeros. The element is one if the corresponding | ||||||
2209 | element in the invocand matrix is positive or negative infinity, and zero | ||||||
2210 | otherwise. | ||||||
2211 | |||||||
2212 | $y = $x -> is_inf(); | ||||||
2213 | |||||||
2214 | =cut | ||||||
2215 | |||||||
2216 | sub is_inf { | ||||||
2217 | 2 | 50 | 2 | 1 | 14 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2218 | 2 | 50 | 6 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
2219 | 2 | 3 | my $x = shift; | ||||
2220 | |||||||
2221 | 2 | 11 | require Math::Trig; | ||||
2222 | 2 | 9 | my $pinf = Math::Trig::Inf(); # positiv infinity | ||||
2223 | 2 | 8 | my $ninf = -$pinf; # negative infinity | ||||
2224 | |||||||
2225 | 2 | 6 | bless [ map { [ | ||||
2226 | map { | ||||||
2227 | 2 | 100 | 100 | 4 | $_ == $pinf || $_ == $ninf ? 1 : 0; | ||
6 | 27 | ||||||
2228 | } @$_ | ||||||
2229 | ] } @$x ], ref $x; | ||||||
2230 | } | ||||||
2231 | |||||||
2232 | =pod | ||||||
2233 | |||||||
2234 | =item is_nan() | ||||||
2235 | |||||||
2236 | Returns a matrix of ones and zeros. The element is one if the corresponding | ||||||
2237 | element in the invocand matrix is a NaN (Not-a-Number), and zero otherwise. | ||||||
2238 | |||||||
2239 | $y = $x -> is_nan(); | ||||||
2240 | |||||||
2241 | =cut | ||||||
2242 | |||||||
2243 | sub is_nan { | ||||||
2244 | 2 | 50 | 2 | 1 | 13 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2245 | 2 | 50 | 5 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
2246 | 2 | 4 | my $x = shift; | ||||
2247 | |||||||
2248 | 2 | 100 | 7 | bless [ map [ map { $_ != $_ ? 1 : 0 } @$_ ], @$x ], ref $x; | |||
6 | 19 | ||||||
2249 | } | ||||||
2250 | |||||||
2251 | =pod | ||||||
2252 | |||||||
2253 | =item all() | ||||||
2254 | |||||||
2255 | Tests whether all of the elements along various dimensions of a matrix are | ||||||
2256 | non-zero. If the dimension argument is not given, the first non-singleton | ||||||
2257 | dimension is used. | ||||||
2258 | |||||||
2259 | $y = $x -> all($dim); | ||||||
2260 | $y = $x -> all(); | ||||||
2261 | |||||||
2262 | =cut | ||||||
2263 | |||||||
2264 | sub all { | ||||||
2265 | 12 | 50 | 12 | 1 | 93 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2266 | 12 | 50 | 26 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
2267 | 12 | 19 | my $x = shift; | ||||
2268 | 12 | 42 | $x -> apply(\&_all, @_); | ||||
2269 | } | ||||||
2270 | |||||||
2271 | =pod | ||||||
2272 | |||||||
2273 | =item any() | ||||||
2274 | |||||||
2275 | Tests whether any of the elements along various dimensions of a matrix are | ||||||
2276 | non-zero. If the dimension argument is not given, the first non-singleton | ||||||
2277 | dimension is used. | ||||||
2278 | |||||||
2279 | $y = $x -> any($dim); | ||||||
2280 | $y = $x -> any(); | ||||||
2281 | |||||||
2282 | =cut | ||||||
2283 | |||||||
2284 | sub any { | ||||||
2285 | 12 | 50 | 12 | 1 | 88 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2286 | 12 | 50 | 26 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
2287 | 12 | 18 | my $x = shift; | ||||
2288 | 12 | 41 | $x -> apply(\&_any, @_); | ||||
2289 | } | ||||||
2290 | |||||||
2291 | =pod | ||||||
2292 | |||||||
2293 | =item cumall() | ||||||
2294 | |||||||
2295 | A cumulative variant of C |
||||||
2296 | the first non-singleton dimension is used. | ||||||
2297 | |||||||
2298 | $y = $x -> cumall($dim); | ||||||
2299 | $y = $x -> cumall(); | ||||||
2300 | |||||||
2301 | =cut | ||||||
2302 | |||||||
2303 | sub cumall { | ||||||
2304 | 12 | 50 | 12 | 1 | 90 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2305 | 12 | 50 | 28 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
2306 | 12 | 17 | my $x = shift; | ||||
2307 | 12 | 40 | $x -> apply(\&_cumall, @_); | ||||
2308 | } | ||||||
2309 | |||||||
2310 | =pod | ||||||
2311 | |||||||
2312 | =item cumany() | ||||||
2313 | |||||||
2314 | A cumulative variant of C |
||||||
2315 | the first non-singleton dimension is used. | ||||||
2316 | |||||||
2317 | $y = $x -> cumany($dim); | ||||||
2318 | $y = $x -> cumany(); | ||||||
2319 | |||||||
2320 | =cut | ||||||
2321 | |||||||
2322 | sub cumany { | ||||||
2323 | 12 | 50 | 12 | 1 | 70 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2324 | 12 | 50 | 25 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
2325 | 12 | 16 | my $x = shift; | ||||
2326 | 12 | 38 | $x -> apply(\&_cumany, @_); | ||||
2327 | } | ||||||
2328 | |||||||
2329 | =pod | ||||||
2330 | |||||||
2331 | =back | ||||||
2332 | |||||||
2333 | =head2 Basic properties | ||||||
2334 | |||||||
2335 | =over 4 | ||||||
2336 | |||||||
2337 | =item size() | ||||||
2338 | |||||||
2339 | You can determine the dimensions of a matrix by calling: | ||||||
2340 | |||||||
2341 | ($m, $n) = $a -> size; | ||||||
2342 | |||||||
2343 | =cut | ||||||
2344 | |||||||
2345 | sub size { | ||||||
2346 | 2087 | 2087 | 1 | 722868 | my $self = shift; | ||
2347 | 2087 | 2807 | my $m = @{$self}; | ||||
2087 | 6195 | ||||||
2348 | 2087 | 100 | 4344 | my $n = $m ? @{$self->[0]} : 0; | |||
1918 | 3213 | ||||||
2349 | 2087 | 5352 | ($m, $n); | ||||
2350 | } | ||||||
2351 | |||||||
2352 | =pod | ||||||
2353 | |||||||
2354 | =item nelm() | ||||||
2355 | |||||||
2356 | Returns the number of elements in the matrix. | ||||||
2357 | |||||||
2358 | $n = $x -> nelm(); | ||||||
2359 | |||||||
2360 | =cut | ||||||
2361 | |||||||
2362 | sub nelm { | ||||||
2363 | 193 | 50 | 193 | 1 | 1339 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2364 | 193 | 50 | 379 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
2365 | 193 | 261 | my $x = shift; | ||||
2366 | 193 | 100 | 701 | return @$x ? @$x * @{$x->[0]} : 0; | |||
164 | 793 | ||||||
2367 | } | ||||||
2368 | |||||||
2369 | =pod | ||||||
2370 | |||||||
2371 | =item nrow() | ||||||
2372 | |||||||
2373 | Returns the number of rows. | ||||||
2374 | |||||||
2375 | $m = $x -> nrow(); | ||||||
2376 | |||||||
2377 | =cut | ||||||
2378 | |||||||
2379 | sub nrow { | ||||||
2380 | 657 | 50 | 657 | 1 | 7284 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2381 | 657 | 50 | 1176 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
2382 | 657 | 863 | my $x = shift; | ||||
2383 | 657 | 1605 | return scalar @$x; | ||||
2384 | } | ||||||
2385 | |||||||
2386 | =pod | ||||||
2387 | |||||||
2388 | =item ncol() | ||||||
2389 | |||||||
2390 | Returns the number of columns. | ||||||
2391 | |||||||
2392 | $n = $x -> ncol(); | ||||||
2393 | |||||||
2394 | =cut | ||||||
2395 | |||||||
2396 | sub ncol { | ||||||
2397 | 590 | 50 | 590 | 1 | 2114 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2398 | 590 | 50 | 1077 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
2399 | 590 | 803 | my $x = shift; | ||||
2400 | 590 | 100 | 1735 | return @$x ? scalar(@{$x->[0]}) : 0; | |||
543 | 1339 | ||||||
2401 | } | ||||||
2402 | |||||||
2403 | =pod | ||||||
2404 | |||||||
2405 | =item npag() | ||||||
2406 | |||||||
2407 | Returns the number of pages. A non-matrix has one page. | ||||||
2408 | |||||||
2409 | $n = $x -> pag(); | ||||||
2410 | |||||||
2411 | =cut | ||||||
2412 | |||||||
2413 | sub npag { | ||||||
2414 | 6 | 50 | 6 | 1 | 907 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2415 | 6 | 50 | 14 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
2416 | 6 | 10 | my $x = shift; | ||||
2417 | 6 | 100 | 32 | return @$x ? 1 : 0; | |||
2418 | } | ||||||
2419 | |||||||
2420 | =pod | ||||||
2421 | |||||||
2422 | =item ndim() | ||||||
2423 | |||||||
2424 | Returns the number of dimensions. This is the number of dimensions along which | ||||||
2425 | the length is different from one. | ||||||
2426 | |||||||
2427 | $n = $x -> ndim(); | ||||||
2428 | |||||||
2429 | =cut | ||||||
2430 | |||||||
2431 | sub ndim { | ||||||
2432 | 6 | 50 | 6 | 1 | 948 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2433 | 6 | 50 | 18 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
2434 | 6 | 10 | my $x = shift; | ||||
2435 | 6 | 13 | my ($nrow, $ncol) = $x -> size(); | ||||
2436 | 6 | 10 | my $ndim = 0; | ||||
2437 | 6 | 100 | 14 | ++$ndim if $nrow != 1; | |||
2438 | 6 | 100 | 12 | ++$ndim if $ncol != 1; | |||
2439 | 6 | 22 | return $ndim; | ||||
2440 | } | ||||||
2441 | |||||||
2442 | =pod | ||||||
2443 | |||||||
2444 | =item bandwidth() | ||||||
2445 | |||||||
2446 | Returns the bandwidth of a matrix. In scalar context, returns the number of the | ||||||
2447 | non-zero diagonal furthest away from the main diagonal. In list context, | ||||||
2448 | separate values are returned for the lower and upper bandwidth. | ||||||
2449 | |||||||
2450 | $n = $x -> bandwidth(); | ||||||
2451 | ($l, $u) = $x -> bandwidth(); | ||||||
2452 | |||||||
2453 | The bandwidth is a non-negative integer. If the bandwidth is 0, the matrix is | ||||||
2454 | diagonal or zero. If the bandwidth is 1, the matrix is tridiagonal. If the | ||||||
2455 | bandwidth is 2, the matrix is pentadiagonal etc. | ||||||
2456 | |||||||
2457 | A matrix with the following pattern, where C |
||||||
2458 | return 2 in scalar context, and (1,2) in list context. | ||||||
2459 | |||||||
2460 | [ x x x 0 0 0 ] | ||||||
2461 | [ x x x x 0 0 ] | ||||||
2462 | [ 0 x x x x 0 ] | ||||||
2463 | [ 0 0 x x x x ] | ||||||
2464 | [ 0 0 0 x x x ] | ||||||
2465 | [ 0 0 0 0 x x ] | ||||||
2466 | |||||||
2467 | See also C |
||||||
2468 | |||||||
2469 | =cut | ||||||
2470 | |||||||
2471 | sub bandwidth { | ||||||
2472 | 18 | 50 | 18 | 1 | 4413 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
2473 | 18 | 50 | 46 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
2474 | 18 | 27 | my $x = shift; | ||||
2475 | |||||||
2476 | 18 | 36 | my ($nrow, $ncol) = $x -> size(); | ||||
2477 | |||||||
2478 | 18 | 31 | my $upper = 0; | ||||
2479 | 18 | 24 | my $lower = 0; | ||||
2480 | |||||||
2481 | 18 | 41 | for my $i (0 .. $nrow - 1) { | ||||
2482 | 52 | 72 | for my $j (0 .. $ncol - 1) { | ||||
2483 | 192 | 100 | 320 | next if $x -> [$i][$j] == 0; | |||
2484 | 146 | 178 | my $dist = $j - $i; | ||||
2485 | 146 | 100 | 210 | if ($dist > 0) { | |||
2486 | 52 | 100 | 103 | $upper = $dist if $dist > $upper; | |||
2487 | } else { | ||||||
2488 | 94 | 100 | 170 | $lower = $dist if $dist < $lower; | |||
2489 | } | ||||||
2490 | } | ||||||
2491 | } | ||||||
2492 | |||||||
2493 | 18 | 26 | $lower = -$lower; | ||||
2494 | 18 | 100 | 47 | return $lower, $upper if wantarray; | |||
2495 | 9 | 50 | 21 | return $lower > $upper ? $lower : $upper; | |||
2496 | } | ||||||
2497 | |||||||
2498 | =pod | ||||||
2499 | |||||||
2500 | =back | ||||||
2501 | |||||||
2502 | =head2 Manipulate matrices | ||||||
2503 | |||||||
2504 | These methods are for combining matrices, splitting matrices, extracing parts of | ||||||
2505 | a matrix, inserting new parts into a matrix, deleting parts of a matrix etc. | ||||||
2506 | There are also methods for shuffling elements around (relocating elements) | ||||||
2507 | inside a matrix. | ||||||
2508 | |||||||
2509 | These methods are not concerned with the values of the elements. | ||||||
2510 | |||||||
2511 | =over 4 | ||||||
2512 | |||||||
2513 | =item catrow() | ||||||
2514 | |||||||
2515 | Concatenate rows, i.e., concatenate matrices vertically. Any number of arguments | ||||||
2516 | is allowed. All non-empty matrices must have the same number or columns. The | ||||||
2517 | result is a new matrix. | ||||||
2518 | |||||||
2519 | $x = Math::Matrix -> new([1, 2], [4, 5]); # 2-by-2 matrix | ||||||
2520 | $y = Math::Matrix -> new([3, 6]); # 1-by-2 matrix | ||||||
2521 | $z = $x -> catrow($y); # 3-by-2 matrix | ||||||
2522 | |||||||
2523 | =cut | ||||||
2524 | |||||||
2525 | sub catrow { | ||||||
2526 | 25 | 25 | 1 | 132 | my $x = shift; | ||
2527 | 25 | 46 | my $class = ref $x; | ||||
2528 | |||||||
2529 | 25 | 36 | my $ncol; | ||||
2530 | 25 | 47 | my $z = bless [], $class; # initialize output | ||||
2531 | |||||||
2532 | 25 | 62 | for my $y ($x, @_) { | ||||
2533 | 63 | 141 | my $ncoly = $y -> ncol(); | ||||
2534 | 63 | 100 | 134 | next if $ncoly == 0; # ignore empty $y | |||
2535 | |||||||
2536 | 44 | 100 | 89 | if (defined $ncol) { | |||
2537 | 22 | 50 | 64 | croak "All operands must have the same number of columns in ", | |||
2538 | (caller(0))[3] unless $ncoly == $ncol; | ||||||
2539 | } else { | ||||||
2540 | 22 | 33 | $ncol = $ncoly; | ||||
2541 | } | ||||||
2542 | |||||||
2543 | 44 | 144 | push @$z, map [ @$_ ], @$y; | ||||
2544 | } | ||||||
2545 | |||||||
2546 | 25 | 82 | return $z; | ||||
2547 | } | ||||||
2548 | |||||||
2549 | =pod | ||||||
2550 | |||||||
2551 | =item catcol() | ||||||
2552 | |||||||
2553 | Concatenate columns, i.e., matrices horizontally. Any number of arguments is | ||||||
2554 | allowed. All non-empty matrices must have the same number or rows. The result is | ||||||
2555 | a new matrix. | ||||||
2556 | |||||||
2557 | $x = Math::Matrix -> new([1, 2], [4, 5]); # 2-by-2 matrix | ||||||
2558 | $y = Math::Matrix -> new([3], [6]); # 2-by-1 matrix | ||||||
2559 | $z = $x -> catcol($y); # 2-by-3 matrix | ||||||
2560 | |||||||
2561 | =cut | ||||||
2562 | |||||||
2563 | sub catcol { | ||||||
2564 | 92 | 92 | 1 | 259 | my $x = shift; | ||
2565 | 92 | 169 | my $class = ref $x; | ||||
2566 | |||||||
2567 | 92 | 115 | my $nrow; | ||||
2568 | 92 | 203 | my $z = bless [], $class; # initialize output | ||||
2569 | |||||||
2570 | 92 | 219 | for my $y ($x, @_) { | ||||
2571 | 191 | 368 | my $nrowy = $y -> nrow(); | ||||
2572 | 191 | 100 | 387 | next if $nrowy == 0; # ignore empty $y | |||
2573 | |||||||
2574 | 176 | 100 | 315 | if (defined $nrow) { | |||
2575 | 87 | 50 | 187 | croak "All operands must have the same number of rows in ", | |||
2576 | (caller(0))[3] unless $nrowy == $nrow; | ||||||
2577 | } else { | ||||||
2578 | 89 | 132 | $nrow = $nrowy; | ||||
2579 | } | ||||||
2580 | |||||||
2581 | 176 | 341 | for my $i (0 .. $nrow - 1) { | ||||
2582 | 419 | 614 | push @{ $z -> [$i] }, @{ $y -> [$i] }; | ||||
419 | 628 | ||||||
419 | 854 | ||||||
2583 | } | ||||||
2584 | } | ||||||
2585 | |||||||
2586 | 92 | 175 | return $z; | ||||
2587 | } | ||||||
2588 | |||||||
2589 | =pod | ||||||
2590 | |||||||
2591 | =item getrow() | ||||||
2592 | |||||||
2593 | Get the specified row(s). Returns a new matrix with the specified rows. The | ||||||
2594 | number of rows in the output is identical to the number of elements in the | ||||||
2595 | input. | ||||||
2596 | |||||||
2597 | $y = $x -> getrow($i); # get one | ||||||
2598 | $y = $x -> getrow([$i0, $i1, $i2]); # get multiple | ||||||
2599 | |||||||
2600 | =cut | ||||||
2601 | |||||||
2602 | sub getrow { | ||||||
2603 | 4 | 50 | 4 | 1 | 42 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
2604 | 4 | 50 | 24 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
2605 | 4 | 6 | my $x = shift; | ||||
2606 | 4 | 8 | my $class = ref $x; | ||||
2607 | |||||||
2608 | 4 | 6 | my $idx = shift; | ||||
2609 | 4 | 50 | 10 | croak "Row index can not be undefined" unless defined $idx; | |||
2610 | 4 | 100 | 10 | if (ref $idx) { | |||
2611 | 3 | 50 | 33 | 19 | $idx = __PACKAGE__ -> new($idx) | ||
2612 | unless defined(blessed($idx)) && $idx -> isa($class); | ||||||
2613 | 3 | 17 | $idx = $idx -> to_row(); | ||||
2614 | 3 | 6 | $idx = $idx -> [0]; | ||||
2615 | } else { | ||||||
2616 | 1 | 12 | $idx = [ $idx ]; | ||||
2617 | } | ||||||
2618 | |||||||
2619 | 4 | 11 | my ($nrowx, $ncolx) = $x -> size(); | ||||
2620 | |||||||
2621 | 4 | 6 | my $y = []; | ||||
2622 | 4 | 9 | for my $iy (0 .. $#$idx) { | ||||
2623 | 5 | 8 | my $ix = $idx -> [$iy]; | ||||
2624 | 5 | 50 | 12 | croak "Row index value $ix too large for $nrowx-by-$ncolx matrix in ", | |||
2625 | (caller(0))[3] if $ix >= $nrowx; | ||||||
2626 | 5 | 5 | $y -> [$iy] = [ @{ $x -> [$ix] } ]; | ||||
5 | 13 | ||||||
2627 | } | ||||||
2628 | |||||||
2629 | 4 | 23 | bless $y, $class; | ||||
2630 | } | ||||||
2631 | |||||||
2632 | =pod | ||||||
2633 | |||||||
2634 | =item getcol() | ||||||
2635 | |||||||
2636 | Get the specified column(s). Returns a new matrix with the specified columns. | ||||||
2637 | The number of columns in the output is identical to the number of elements in | ||||||
2638 | the input. | ||||||
2639 | |||||||
2640 | $y = $x -> getcol($j); # get one | ||||||
2641 | $y = $x -> getcol([$j0, $j1, $j2]); # get multiple | ||||||
2642 | |||||||
2643 | =cut | ||||||
2644 | |||||||
2645 | sub getcol { | ||||||
2646 | 4 | 50 | 4 | 1 | 37 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
2647 | 4 | 50 | 10 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
2648 | 4 | 7 | my $x = shift; | ||||
2649 | 4 | 6 | my $class = ref $x; | ||||
2650 | |||||||
2651 | 4 | 7 | my $idx = shift; | ||||
2652 | 4 | 50 | 7 | croak "Column index can not be undefined" unless defined $idx; | |||
2653 | 4 | 100 | 10 | if (ref $idx) { | |||
2654 | 3 | 50 | 33 | 18 | $idx = __PACKAGE__ -> new($idx) | ||
2655 | unless defined(blessed($idx)) && $idx -> isa($class); | ||||||
2656 | 3 | 14 | $idx = $idx -> to_row(); | ||||
2657 | 3 | 5 | $idx = $idx -> [0]; | ||||
2658 | } else { | ||||||
2659 | 1 | 3 | $idx = [ $idx ]; | ||||
2660 | } | ||||||
2661 | |||||||
2662 | 4 | 11 | my ($nrowx, $ncolx) = $x -> size(); | ||||
2663 | |||||||
2664 | 4 | 6 | my $y = []; | ||||
2665 | 4 | 11 | for my $jy (0 .. $#$idx) { | ||||
2666 | 5 | 8 | my $jx = $idx -> [$jy]; | ||||
2667 | 5 | 50 | 11 | croak "Column index value $jx too large for $nrowx-by-$ncolx matrix in ", | |||
2668 | (caller(0))[3] if $jx >= $ncolx; | ||||||
2669 | 5 | 8 | for my $i (0 .. $nrowx - 1) { | ||||
2670 | 20 | 47 | $y -> [$i][$jy] = $x -> [$i][$jx]; | ||||
2671 | } | ||||||
2672 | } | ||||||
2673 | |||||||
2674 | 4 | 15 | bless $y, $class; | ||||
2675 | } | ||||||
2676 | |||||||
2677 | =pod | ||||||
2678 | |||||||
2679 | =item delrow() | ||||||
2680 | |||||||
2681 | Delete row(s). Returns a new matrix identical to the invocand but with the | ||||||
2682 | specified row(s) deleted. | ||||||
2683 | |||||||
2684 | $y = $x -> delrow($i); # delete one | ||||||
2685 | $y = $x -> delrow([$i0, $i1, $i2]); # delete multiple | ||||||
2686 | |||||||
2687 | =cut | ||||||
2688 | |||||||
2689 | sub delrow { | ||||||
2690 | 5 | 50 | 5 | 1 | 44 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
2691 | 5 | 50 | 11 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
2692 | 5 | 7 | my $x = shift; | ||||
2693 | 5 | 10 | my $class = ref $x; | ||||
2694 | |||||||
2695 | 5 | 6 | my $idxdel = shift; | ||||
2696 | 5 | 50 | 11 | croak "Row index can not be undefined" unless defined $idxdel; | |||
2697 | 5 | 100 | 8 | if (ref $idxdel) { | |||
2698 | 4 | 50 | 33 | 22 | $idxdel = __PACKAGE__ -> new($idxdel) | ||
2699 | unless defined(blessed($idxdel)) && $idxdel -> isa($class); | ||||||
2700 | 4 | 10 | $idxdel = $idxdel -> to_row(); | ||||
2701 | 4 | 9 | $idxdel = $idxdel -> [0]; | ||||
2702 | } else { | ||||||
2703 | 1 | 4 | $idxdel = [ $idxdel ]; | ||||
2704 | } | ||||||
2705 | |||||||
2706 | 5 | 12 | my $nrowx = $x -> nrow(); | ||||
2707 | |||||||
2708 | # This should be made faster. | ||||||
2709 | |||||||
2710 | 5 | 10 | my $idxget = []; | ||||
2711 | 5 | 8 | for my $i (0 .. $nrowx - 1) { | ||||
2712 | 20 | 27 | my $seen = 0; | ||||
2713 | 20 | 28 | for my $idx (@$idxdel) { | ||||
2714 | 28 | 100 | 51 | if ($i == int $idx) { | |||
2715 | 9 | 10 | $seen = 1; | ||||
2716 | 9 | 14 | last; | ||||
2717 | } | ||||||
2718 | } | ||||||
2719 | 20 | 100 | 38 | push @$idxget, $i unless $seen; | |||
2720 | } | ||||||
2721 | |||||||
2722 | 5 | 8 | my $y = []; | ||||
2723 | 5 | 19 | @$y = map [ @$_ ], @$x[ @$idxget ]; | ||||
2724 | 5 | 18 | bless $y, $class; | ||||
2725 | } | ||||||
2726 | |||||||
2727 | =pod | ||||||
2728 | |||||||
2729 | =item delcol() | ||||||
2730 | |||||||
2731 | Delete column(s). Returns a new matrix identical to the invocand but with the | ||||||
2732 | specified column(s) deleted. | ||||||
2733 | |||||||
2734 | $y = $x -> delcol($j); # delete one | ||||||
2735 | $y = $x -> delcol([$j0, $j1, $j2]); # delete multiple | ||||||
2736 | |||||||
2737 | =cut | ||||||
2738 | |||||||
2739 | sub delcol { | ||||||
2740 | 5 | 50 | 5 | 1 | 44 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
2741 | 5 | 50 | 10 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
2742 | 5 | 10 | my $x = shift; | ||||
2743 | 5 | 8 | my $class = ref $x; | ||||
2744 | |||||||
2745 | 5 | 7 | my $idxdel = shift; | ||||
2746 | 5 | 50 | 10 | croak "Column index can not be undefined" unless defined $idxdel; | |||
2747 | 5 | 100 | 11 | if (ref $idxdel) { | |||
2748 | 4 | 50 | 33 | 21 | $idxdel = __PACKAGE__ -> new($idxdel) | ||
2749 | unless defined(blessed($idxdel)) && $idxdel -> isa($class); | ||||||
2750 | 4 | 13 | $idxdel = $idxdel -> to_row(); | ||||
2751 | 4 | 7 | $idxdel = $idxdel -> [0]; | ||||
2752 | } else { | ||||||
2753 | 1 | 2 | $idxdel = [ $idxdel ]; | ||||
2754 | } | ||||||
2755 | |||||||
2756 | 5 | 14 | my ($nrowx, $ncolx) = $x -> size(); | ||||
2757 | |||||||
2758 | # This should be made faster. | ||||||
2759 | |||||||
2760 | 5 | 10 | my $idxget = []; | ||||
2761 | 5 | 11 | for my $j (0 .. $ncolx - 1) { | ||||
2762 | 20 | 26 | my $seen = 0; | ||||
2763 | 20 | 26 | for my $idx (@$idxdel) { | ||||
2764 | 28 | 100 | 52 | if ($j == int $idx) { | |||
2765 | 9 | 10 | $seen = 1; | ||||
2766 | 9 | 12 | last; | ||||
2767 | } | ||||||
2768 | } | ||||||
2769 | 20 | 100 | 39 | push @$idxget, $j unless $seen; | |||
2770 | } | ||||||
2771 | |||||||
2772 | 5 | 8 | my $y = []; | ||||
2773 | 5 | 100 | 11 | if (@$idxget) { | |||
2774 | 4 | 8 | for my $row (@$x) { | ||||
2775 | 16 | 23 | push @$y, [ @{$row}[ @$idxget ] ]; | ||||
16 | 29 | ||||||
2776 | } | ||||||
2777 | } | ||||||
2778 | 5 | 16 | bless $y, $class; | ||||
2779 | } | ||||||
2780 | |||||||
2781 | =pod | ||||||
2782 | |||||||
2783 | =item concat() | ||||||
2784 | |||||||
2785 | Concatenate two matrices horizontally. The matrices must have the same number of | ||||||
2786 | rows. The result is a new matrix or B |
||||||
2787 | |||||||
2788 | $x = Math::Matrix -> new([1, 2], [4, 5]); # 2-by-2 matrix | ||||||
2789 | $y = Math::Matrix -> new([3], [6]); # 2-by-1 matrix | ||||||
2790 | $z = $x -> concat($y); # 2-by-3 matrix | ||||||
2791 | |||||||
2792 | =cut | ||||||
2793 | |||||||
2794 | sub concat { | ||||||
2795 | 11 | 11 | 1 | 59 | my $self = shift; | ||
2796 | 11 | 17 | my $other = shift; | ||||
2797 | 11 | 46 | my $result = $self->clone(); | ||||
2798 | |||||||
2799 | 11 | 50 | 26 | return undef if scalar(@{$self}) != scalar(@{$other}); | |||
11 | 23 | ||||||
11 | 28 | ||||||
2800 | 11 | 20 | for my $i (0 .. $#{$self}) { | ||||
11 | 27 | ||||||
2801 | 27 | 41 | push @{$result->[$i]}, @{$other->[$i]}; | ||||
27 | 42 | ||||||
27 | 72 | ||||||
2802 | } | ||||||
2803 | 11 | 34 | $result; | ||||
2804 | } | ||||||
2805 | |||||||
2806 | =pod | ||||||
2807 | |||||||
2808 | =item splicerow() | ||||||
2809 | |||||||
2810 | Row splicing. This is like Perl's built-in splice() function, except that it | ||||||
2811 | works on the rows of a matrix. | ||||||
2812 | |||||||
2813 | $y = $x -> splicerow($offset); | ||||||
2814 | $y = $x -> splicerow($offset, $length); | ||||||
2815 | $y = $x -> splicerow($offset, $length, $a, $b, ...); | ||||||
2816 | |||||||
2817 | The built-in splice() function modifies the first argument and returns the | ||||||
2818 | removed elements, if any. However, since splicerow() does not modify the | ||||||
2819 | invocand, it returns the modified version as the first output argument and the | ||||||
2820 | removed part as a (possibly empty) second output argument. | ||||||
2821 | |||||||
2822 | $x = Math::Matrix -> new([[ 1, 2], | ||||||
2823 | [ 3, 4], | ||||||
2824 | [ 5, 6], | ||||||
2825 | [ 7, 8]]); | ||||||
2826 | $a = Math::Matrix -> new([[11, 12], | ||||||
2827 | [13, 14]]); | ||||||
2828 | ($y, $z) = $x -> splicerow(1, 2, $a); | ||||||
2829 | |||||||
2830 | Gives C<$y> | ||||||
2831 | |||||||
2832 | [ 1 2 ] | ||||||
2833 | [ 11 12 ] | ||||||
2834 | [ 13 14 ] | ||||||
2835 | [ 7 8 ] | ||||||
2836 | |||||||
2837 | and C<$z> | ||||||
2838 | |||||||
2839 | [ 3 4 ] | ||||||
2840 | [ 5 6 ] | ||||||
2841 | |||||||
2842 | =cut | ||||||
2843 | |||||||
2844 | sub splicerow { | ||||||
2845 | 12 | 50 | 12 | 1 | 84 | croak "Not enough input arguments" if @_ < 1; | |
2846 | 12 | 17 | my $x = shift; | ||||
2847 | 12 | 21 | my $class = ref $x; | ||||
2848 | |||||||
2849 | 12 | 17 | my $offs = 0; | ||||
2850 | 12 | 30 | my $len = $x -> nrow(); | ||||
2851 | 12 | 25 | my $repl = $class -> new([]); | ||||
2852 | |||||||
2853 | 12 | 100 | 26 | if (@_) { | |||
2854 | 10 | 15 | $offs = shift; | ||||
2855 | 10 | 50 | 19 | croak "Offset can not be undefined" unless defined $offs; | |||
2856 | 10 | 50 | 21 | if (ref $offs) { | |||
2857 | 0 | 0 | 0 | 0 | $offs = $class -> new($offs) | ||
2858 | unless defined(blessed($offs)) && $offs -> isa($class); | ||||||
2859 | 0 | 0 | 0 | croak "Offset must be a scalar" unless $offs -> is_scalar(); | |||
2860 | 0 | 0 | $offs = $offs -> [0][0]; | ||||
2861 | } | ||||||
2862 | |||||||
2863 | 10 | 100 | 18 | if (@_) { | |||
2864 | 4 | 7 | $len = shift; | ||||
2865 | 4 | 50 | 7 | croak "Length can not be undefined" unless defined $len; | |||
2866 | 4 | 50 | 9 | if (ref $len) { | |||
2867 | 0 | 0 | 0 | 0 | $len = $class -> new($len) | ||
2868 | unless defined(blessed($len)) && $len -> isa($class); | ||||||
2869 | 0 | 0 | 0 | croak "length must be a scalar" unless $len -> is_scalar(); | |||
2870 | 0 | 0 | $len = $len -> [0][0]; | ||||
2871 | } | ||||||
2872 | |||||||
2873 | 4 | 100 | 8 | if (@_) { | |||
2874 | 2 | 7 | $repl = $repl -> catrow(@_); | ||||
2875 | } | ||||||
2876 | } | ||||||
2877 | } | ||||||
2878 | |||||||
2879 | 12 | 29 | my $y = $x -> clone(); | ||||
2880 | 12 | 26 | my $z = $class -> new([]); | ||||
2881 | |||||||
2882 | 12 | 35 | @$z = splice @$y, $offs, $len, @$repl; | ||||
2883 | 12 | 100 | 59 | return wantarray ? ($y, $z) : $y; | |||
2884 | } | ||||||
2885 | |||||||
2886 | =pod | ||||||
2887 | |||||||
2888 | =item splicecol() | ||||||
2889 | |||||||
2890 | Column splicing. This is like Perl's built-in splice() function, except that it | ||||||
2891 | works on the columns of a matrix. | ||||||
2892 | |||||||
2893 | $y = $x -> splicecol($offset); | ||||||
2894 | $y = $x -> splicecol($offset, $length); | ||||||
2895 | $y = $x -> splicecol($offset, $length, $a, $b, ...); | ||||||
2896 | |||||||
2897 | The built-in splice() function modifies the first argument and returns the | ||||||
2898 | removed elements, if any. However, since splicecol() does not modify the | ||||||
2899 | invocand, it returns the modified version as the first output argument and the | ||||||
2900 | removed part as a (possibly empty) second output argument. | ||||||
2901 | |||||||
2902 | $x = Math::Matrix -> new([[ 1, 3, 5, 7 ], | ||||||
2903 | [ 2, 4, 6, 8 ]]); | ||||||
2904 | $a = Math::Matrix -> new([[11, 13], | ||||||
2905 | [12, 14]]); | ||||||
2906 | ($y, $z) = $x -> splicerow(1, 2, $a); | ||||||
2907 | |||||||
2908 | Gives C<$y> | ||||||
2909 | |||||||
2910 | [ 1 11 13 7 ] | ||||||
2911 | [ 2 12 14 8 ] | ||||||
2912 | |||||||
2913 | and C<$z> | ||||||
2914 | |||||||
2915 | [ 3 5 ] | ||||||
2916 | [ 4 6 ] | ||||||
2917 | |||||||
2918 | =cut | ||||||
2919 | |||||||
2920 | sub splicecol { | ||||||
2921 | 22 | 50 | 22 | 1 | 119 | croak "Not enough input arguments" if @_ < 1; | |
2922 | 22 | 42 | my $x = shift; | ||||
2923 | 22 | 45 | my $class = ref $x; | ||||
2924 | |||||||
2925 | 22 | 56 | my ($nrowx, $ncolx) = $x -> size(); | ||||
2926 | |||||||
2927 | 22 | 41 | my $offs = 0; | ||||
2928 | 22 | 46 | my $len = $ncolx; | ||||
2929 | 22 | 64 | my $repl = $class -> new([]); | ||||
2930 | |||||||
2931 | 22 | 100 | 55 | if (@_) { | |||
2932 | 20 | 39 | $offs = shift; | ||||
2933 | 20 | 50 | 46 | croak "Offset can not be undefined" unless defined $offs; | |||
2934 | 20 | 50 | 42 | if (ref $offs) { | |||
2935 | 0 | 0 | 0 | 0 | $offs = $class -> new($offs) | ||
2936 | unless defined(blessed($offs)) && $offs -> isa($class); | ||||||
2937 | 0 | 0 | 0 | croak "Offset must be a scalar" unless $offs -> is_scalar(); | |||
2938 | 0 | 0 | $offs = $offs -> [0][0]; | ||||
2939 | } | ||||||
2940 | |||||||
2941 | 20 | 100 | 52 | if (@_) { | |||
2942 | 14 | 25 | $len = shift; | ||||
2943 | 14 | 50 | 32 | croak "Length can not be undefined" unless defined $len; | |||
2944 | 14 | 50 | 34 | if (ref $len) { | |||
2945 | 0 | 0 | 0 | 0 | $len = $class -> new($len) | ||
2946 | unless defined(blessed($len)) && $len -> isa($class); | ||||||
2947 | 0 | 0 | 0 | croak "length must be a scalar" unless $len -> is_scalar(); | |||
2948 | 0 | 0 | $len = $len -> [0][0]; | ||||
2949 | } | ||||||
2950 | |||||||
2951 | 14 | 100 | 37 | if (@_) { | |||
2952 | 2 | 16 | $repl = $repl -> catcol(@_); | ||||
2953 | } | ||||||
2954 | } | ||||||
2955 | } | ||||||
2956 | |||||||
2957 | 22 | 54 | my $y = $x -> clone(); | ||||
2958 | 22 | 52 | my $z = $class -> new([]); | ||||
2959 | |||||||
2960 | 22 | 50 | 73 | if ($offs > $len) { | |||
2961 | 0 | 0 | carp "splicecol() offset past end of array"; | ||||
2962 | 0 | 0 | $offs = $len; | ||||
2963 | } | ||||||
2964 | |||||||
2965 | # The case when we are not removing anything from the invocand matrix: If | ||||||
2966 | # the offset is identical to the number of columns in the invocand matrix, | ||||||
2967 | # just appending the replacement matrix to the invocand matrix. | ||||||
2968 | |||||||
2969 | 22 | 100 | 100 | 157 | if ($offs == $len) { | ||
100 | |||||||
2970 | 2 | 50 | 6 | unless ($repl -> is_empty()) { | |||
2971 | 0 | 0 | for my $i (0 .. $nrowx - 1) { | ||||
2972 | 0 | 0 | push @{ $y -> [$i] }, @{ $repl -> [$i] }; | ||||
0 | 0 | ||||||
0 | 0 | ||||||
2973 | } | ||||||
2974 | } | ||||||
2975 | } | ||||||
2976 | |||||||
2977 | # The case when we are removing everything from the invocand matrix: If the | ||||||
2978 | # offset is zero, and the length is identical to the number of columns in | ||||||
2979 | # the invocand matrix, replace the whole invocand matrix with the | ||||||
2980 | # replacement matrix. | ||||||
2981 | |||||||
2982 | elsif ($offs == 0 && $len == $ncolx) { | ||||||
2983 | 4 | 10 | @$z = @$y; | ||||
2984 | 4 | 8 | @$y = @$repl; | ||||
2985 | } | ||||||
2986 | |||||||
2987 | # The case when we are removing parts of the invocand matrix. | ||||||
2988 | |||||||
2989 | else { | ||||||
2990 | 16 | 100 | 51 | if ($repl -> is_empty()) { | |||
2991 | 14 | 40 | for my $i (0 .. $nrowx - 1) { | ||||
2992 | 47 | 60 | @{ $z -> [$i] } = splice @{ $y -> [$i] }, $offs, $len; | ||||
47 | 120 | ||||||
47 | 84 | ||||||
2993 | } | ||||||
2994 | } else { | ||||||
2995 | 2 | 6 | for my $i (0 .. $nrowx - 1) { | ||||
2996 | 4 | 6 | @{ $z -> [$i] } = splice @{ $y -> [$i] }, $offs, $len, @{ $repl -> [$i] }; | ||||
4 | 9 | ||||||
4 | 7 | ||||||
4 | 10 | ||||||
2997 | } | ||||||
2998 | } | ||||||
2999 | } | ||||||
3000 | |||||||
3001 | 22 | 100 | 126 | return wantarray ? ($y, $z) : $y; | |||
3002 | } | ||||||
3003 | |||||||
3004 | =pod | ||||||
3005 | |||||||
3006 | =item swaprc() | ||||||
3007 | |||||||
3008 | Swap rows and columns. This method does nothing but shuffle elements around. For | ||||||
3009 | real numbers, swaprc() is identical to the transpose() method. | ||||||
3010 | |||||||
3011 | A subclass implementing a matrix of complex numbers should provide a transpose() | ||||||
3012 | method that also takes the complex conjugate of each elements. The swaprc() | ||||||
3013 | method, on the other hand, should only shuffle elements around. | ||||||
3014 | |||||||
3015 | =cut | ||||||
3016 | |||||||
3017 | sub swaprc { | ||||||
3018 | 5 | 5 | 1 | 47 | my $x = shift; | ||
3019 | 5 | 9 | my $class = ref $x; | ||||
3020 | |||||||
3021 | 5 | 10 | my $y = bless [], $class; | ||||
3022 | 5 | 14 | my $ncolx = $x -> ncol(); | ||||
3023 | 5 | 100 | 14 | return $y if $ncolx == 0; | |||
3024 | |||||||
3025 | 4 | 12 | for my $j (0 .. $ncolx - 1) { | ||||
3026 | 9 | 30 | push @$y, [ map $_->[$j], @$x ]; | ||||
3027 | } | ||||||
3028 | 4 | 12 | return $y; | ||||
3029 | } | ||||||
3030 | |||||||
3031 | =pod | ||||||
3032 | |||||||
3033 | =item flipud() | ||||||
3034 | |||||||
3035 | Flip upside-down, i.e., flip along dimension 1. | ||||||
3036 | |||||||
3037 | $y = $x -> flipud(); | ||||||
3038 | |||||||
3039 | =cut | ||||||
3040 | |||||||
3041 | sub flipud { | ||||||
3042 | 2 | 50 | 2 | 1 | 29 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
3043 | 2 | 50 | 6 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
3044 | 2 | 3 | my $x = shift; | ||||
3045 | 2 | 5 | my $class = ref $x; | ||||
3046 | |||||||
3047 | 2 | 41 | my $y = [ reverse map [ @$_ ], @$x ]; | ||||
3048 | 2 | 7 | bless $y, $class;; | ||||
3049 | } | ||||||
3050 | |||||||
3051 | =pod | ||||||
3052 | |||||||
3053 | =item fliplr() | ||||||
3054 | |||||||
3055 | Flip left-to-right, i.e., flip along dimension 2. | ||||||
3056 | |||||||
3057 | $y = $x -> fliplr(); | ||||||
3058 | |||||||
3059 | =cut | ||||||
3060 | |||||||
3061 | sub fliplr { | ||||||
3062 | 25 | 50 | 25 | 1 | 69 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
3063 | 25 | 50 | 53 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
3064 | 25 | 36 | my $x = shift; | ||||
3065 | 25 | 51 | my $class = ref $x; | ||||
3066 | |||||||
3067 | 25 | 167 | my $y = [ map [ reverse @$_ ], @$x ]; | ||||
3068 | 25 | 85 | bless $y, $class; | ||||
3069 | } | ||||||
3070 | |||||||
3071 | =pod | ||||||
3072 | |||||||
3073 | =item flip() | ||||||
3074 | |||||||
3075 | Flip along various dimensions of a matrix. If the dimension argument is not | ||||||
3076 | given, the first non-singleton dimension is used. | ||||||
3077 | |||||||
3078 | $y = $x -> flip($dim); | ||||||
3079 | $y = $x -> flip(); | ||||||
3080 | |||||||
3081 | See also C |
||||||
3082 | |||||||
3083 | =cut | ||||||
3084 | |||||||
3085 | sub flip { | ||||||
3086 | 12 | 50 | 12 | 1 | 78 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
3087 | 12 | 50 | 25 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
3088 | 12 | 17 | my $x = shift; | ||||
3089 | 12 | 20 | 62 | $x -> apply(sub { reverse @_ }, @_); | |||
20 | 39 | ||||||
3090 | } | ||||||
3091 | |||||||
3092 | =pod | ||||||
3093 | |||||||
3094 | =item rot90() | ||||||
3095 | |||||||
3096 | Rotate 90 degrees counterclockwise. | ||||||
3097 | |||||||
3098 | $y = $x -> rot90(); # rotate 90 degrees counterclockwise | ||||||
3099 | $y = $x -> rot90($n); # rotate 90*$n degrees counterclockwise | ||||||
3100 | |||||||
3101 | =cut | ||||||
3102 | |||||||
3103 | sub rot90 { | ||||||
3104 | 12 | 50 | 12 | 1 | 65 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
3105 | 12 | 50 | 27 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
3106 | 12 | 23 | my $x = shift; | ||||
3107 | 12 | 19 | my $class = ref $x; | ||||
3108 | |||||||
3109 | 12 | 21 | my $n = 1; | ||||
3110 | 12 | 100 | 24 | if (@_) { | |||
3111 | 10 | 17 | $n = shift; | ||||
3112 | 10 | 100 | 23 | if (ref $n) { | |||
3113 | 2 | 100 | 66 | 22 | $n = $class -> new($n) | ||
3114 | unless defined(blessed($n)) && $n -> isa($class); | ||||||
3115 | 2 | 50 | 8 | croak "Argument must be a scalar" unless $n -> is_scalar(); | |||
3116 | 2 | 5 | $n = $n -> [0][0]; | ||||
3117 | } | ||||||
3118 | 10 | 50 | 27 | croak "Argument must be an integer" unless $n == int $n; | |||
3119 | } | ||||||
3120 | |||||||
3121 | 12 | 22 | my $y = []; | ||||
3122 | |||||||
3123 | # Rotate 0 degrees, i.e., clone. | ||||||
3124 | |||||||
3125 | 12 | 22 | $n %= 4; | ||||
3126 | 12 | 100 | 49 | if ($n == 0) { | |||
100 | |||||||
100 | |||||||
50 | |||||||
3127 | 1 | 4 | $y = [ map [ @$_ ], @$x ]; | ||||
3128 | } | ||||||
3129 | |||||||
3130 | # Rotate 90 degrees. | ||||||
3131 | |||||||
3132 | elsif ($n == 1) { | ||||||
3133 | 5 | 12 | my ($nrowx, $ncolx) = $x -> size(); | ||||
3134 | 5 | 10 | my $jmax = $ncolx - 1; | ||||
3135 | 5 | 10 | for my $i (0 .. $nrowx - 1) { | ||||
3136 | 8 | 12 | for my $j (0 .. $ncolx - 1) { | ||||
3137 | 24 | 50 | $y -> [$jmax - $j][$i] = $x -> [$i][$j]; | ||||
3138 | } | ||||||
3139 | } | ||||||
3140 | } | ||||||
3141 | |||||||
3142 | # Rotate 180 degrees. | ||||||
3143 | |||||||
3144 | elsif ($n == 2) { | ||||||
3145 | 3 | 59 | $y = [ map [ reverse @$_ ], reverse @$x ]; | ||||
3146 | } | ||||||
3147 | |||||||
3148 | # Rotate 270 degrees. | ||||||
3149 | |||||||
3150 | elsif ($n == 3) { | ||||||
3151 | 3 | 10 | my ($nrowx, $ncolx) = $x -> size(); | ||||
3152 | 3 | 6 | my $imax = $nrowx - 1; | ||||
3153 | 3 | 8 | for my $i (0 .. $nrowx - 1) { | ||||
3154 | 4 | 10 | for my $j (0 .. $ncolx - 1) { | ||||
3155 | 12 | 25 | $y -> [$j][$imax - $i] = $x -> [$i][$j]; | ||||
3156 | } | ||||||
3157 | } | ||||||
3158 | } | ||||||
3159 | |||||||
3160 | 12 | 36 | bless $y, $class; | ||||
3161 | } | ||||||
3162 | |||||||
3163 | =pod | ||||||
3164 | |||||||
3165 | =item rot180() | ||||||
3166 | |||||||
3167 | Rotate 180 degrees. | ||||||
3168 | |||||||
3169 | $y = $x -> rot180(); | ||||||
3170 | |||||||
3171 | =cut | ||||||
3172 | |||||||
3173 | sub rot180 { | ||||||
3174 | 2 | 50 | 2 | 1 | 27 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
3175 | 2 | 50 | 5 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
3176 | 2 | 3 | my $x = shift; | ||||
3177 | 2 | 6 | $x -> rot90(2); | ||||
3178 | } | ||||||
3179 | |||||||
3180 | =pod | ||||||
3181 | |||||||
3182 | =item rot270() | ||||||
3183 | |||||||
3184 | Rotate 270 degrees counterclockwise, i.e., 90 degrees clockwise. | ||||||
3185 | |||||||
3186 | $y = $x -> rot270(); | ||||||
3187 | |||||||
3188 | =cut | ||||||
3189 | |||||||
3190 | sub rot270 { | ||||||
3191 | 2 | 50 | 2 | 1 | 36 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
3192 | 2 | 50 | 8 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
3193 | 2 | 3 | my $x = shift; | ||||
3194 | 2 | 7 | $x -> rot90(3); | ||||
3195 | } | ||||||
3196 | |||||||
3197 | =pod | ||||||
3198 | |||||||
3199 | =item repelm() | ||||||
3200 | |||||||
3201 | Repeat elements. | ||||||
3202 | |||||||
3203 | $x -> repelm($y); | ||||||
3204 | |||||||
3205 | Repeats each element in $x the number of times specified in $y. | ||||||
3206 | |||||||
3207 | If $x is the matrix | ||||||
3208 | |||||||
3209 | [ 4 5 6 ] | ||||||
3210 | [ 7 8 9 ] | ||||||
3211 | |||||||
3212 | and $y is | ||||||
3213 | |||||||
3214 | [ 3 2 ] | ||||||
3215 | |||||||
3216 | the returned matrix is | ||||||
3217 | |||||||
3218 | [ 4 4 5 5 6 6 ] | ||||||
3219 | [ 4 4 5 5 6 6 ] | ||||||
3220 | [ 4 4 5 5 6 6 ] | ||||||
3221 | [ 7 7 8 8 9 9 ] | ||||||
3222 | [ 7 7 8 8 9 9 ] | ||||||
3223 | [ 7 7 8 8 9 9 ] | ||||||
3224 | |||||||
3225 | =cut | ||||||
3226 | |||||||
3227 | sub repelm { | ||||||
3228 | 5 | 50 | 5 | 1 | 43 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
3229 | 5 | 50 | 11 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
3230 | 5 | 7 | my $x = shift; | ||||
3231 | 5 | 7 | my $class = ref $x; | ||||
3232 | |||||||
3233 | 5 | 9 | my $y = shift; | ||||
3234 | 5 | 50 | 33 | 37 | $y = __PACKAGE__ -> new($y) | ||
3235 | unless defined(blessed($y)) && $y -> isa(__PACKAGE__); | ||||||
3236 | 5 | 50 | 15 | croak "Input argument must contain two elements" | |||
3237 | unless $y -> nelm() == 2; | ||||||
3238 | |||||||
3239 | 5 | 11 | my ($nrowx, $ncolx) = $x -> size(); | ||||
3240 | |||||||
3241 | 5 | 11 | $y = $y -> to_col(); | ||||
3242 | 5 | 10 | my $nrowrep = $y -> [0][0]; | ||||
3243 | 5 | 6 | my $ncolrep = $y -> [1][0]; | ||||
3244 | |||||||
3245 | 5 | 8 | my $z = []; | ||||
3246 | 5 | 11 | for my $ix (0 .. $nrowx - 1) { | ||||
3247 | 8 | 15 | for my $jx (0 .. $ncolx - 1) { | ||||
3248 | 24 | 32 | for my $iy (0 .. $nrowrep - 1) { | ||||
3249 | 30 | 49 | for my $jy (0 .. $ncolrep - 1) { | ||||
3250 | 36 | 49 | my $iz = $ix * $nrowrep + $iy; | ||||
3251 | 36 | 40 | my $jz = $jx * $ncolrep + $jy; | ||||
3252 | 36 | 58 | $z -> [$iz][$jz] = $x -> [$ix][$jx]; | ||||
3253 | } | ||||||
3254 | } | ||||||
3255 | } | ||||||
3256 | } | ||||||
3257 | |||||||
3258 | 5 | 19 | bless $z, $class; | ||||
3259 | } | ||||||
3260 | |||||||
3261 | =pod | ||||||
3262 | |||||||
3263 | =item repmat() | ||||||
3264 | |||||||
3265 | Repeat elements. | ||||||
3266 | |||||||
3267 | $x -> repmat($y); | ||||||
3268 | |||||||
3269 | Repeats the matrix $x the number of times specified in $y. | ||||||
3270 | |||||||
3271 | If $x is the matrix | ||||||
3272 | |||||||
3273 | [ 4 5 6 ] | ||||||
3274 | [ 7 8 9 ] | ||||||
3275 | |||||||
3276 | and $y is | ||||||
3277 | |||||||
3278 | [ 3 2 ] | ||||||
3279 | |||||||
3280 | the returned matrix is | ||||||
3281 | |||||||
3282 | [ 4 5 6 4 5 6 ] | ||||||
3283 | [ 7 8 9 7 8 9 ] | ||||||
3284 | [ 4 5 6 4 5 6 ] | ||||||
3285 | [ 7 8 9 7 8 9 ] | ||||||
3286 | [ 4 5 6 4 5 6 ] | ||||||
3287 | [ 7 8 9 7 8 9 ] | ||||||
3288 | |||||||
3289 | =cut | ||||||
3290 | |||||||
3291 | sub repmat { | ||||||
3292 | 5 | 50 | 5 | 1 | 40 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
3293 | 5 | 50 | 11 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
3294 | 5 | 8 | my $x = shift; | ||||
3295 | 5 | 8 | my $class = ref $x; | ||||
3296 | |||||||
3297 | 5 | 8 | my $y = shift; | ||||
3298 | 5 | 50 | 33 | 38 | $y = __PACKAGE__ -> new($y) | ||
3299 | unless defined(blessed($y)) && $y -> isa(__PACKAGE__); | ||||||
3300 | 5 | 50 | 17 | croak "Input argument must contain two elements" | |||
3301 | unless $y -> nelm() == 2; | ||||||
3302 | |||||||
3303 | 5 | 12 | my ($nrowx, $ncolx) = $x -> size(); | ||||
3304 | |||||||
3305 | 5 | 13 | $y = $y -> to_col(); | ||||
3306 | 5 | 7 | my $nrowrep = $y -> [0][0]; | ||||
3307 | 5 | 8 | my $ncolrep = $y -> [1][0]; | ||||
3308 | |||||||
3309 | 5 | 9 | my $z = []; | ||||
3310 | 5 | 10 | for my $ix (0 .. $nrowx - 1) { | ||||
3311 | 8 | 11 | for my $jx (0 .. $ncolx - 1) { | ||||
3312 | 24 | 41 | for my $iy (0 .. $nrowrep - 1) { | ||||
3313 | 30 | 41 | for my $jy (0 .. $ncolrep - 1) { | ||||
3314 | 36 | 47 | my $iz = $iy * $nrowx + $ix; | ||||
3315 | 36 | 43 | my $jz = $jy * $ncolx + $jx; | ||||
3316 | 36 | 59 | $z -> [$iz][$jz] = $x -> [$ix][$jx]; | ||||
3317 | } | ||||||
3318 | } | ||||||
3319 | } | ||||||
3320 | } | ||||||
3321 | |||||||
3322 | 5 | 20 | bless $z, $class; | ||||
3323 | } | ||||||
3324 | |||||||
3325 | =pod | ||||||
3326 | |||||||
3327 | =item reshape() | ||||||
3328 | |||||||
3329 | Returns a reshaped copy of a matrix. The reshaping is done by creating a new | ||||||
3330 | matrix and looping over the elements in column major order. The new matrix must | ||||||
3331 | have the same number of elements as the invocand matrix. The following returns | ||||||
3332 | an C<$m>-by-C<$n> matrix, | ||||||
3333 | |||||||
3334 | $y = $x -> reshape($m, $n); | ||||||
3335 | |||||||
3336 | The code | ||||||
3337 | |||||||
3338 | $x = Math::Matrix -> new([[1, 3, 5, 7], [2, 4, 6, 8]]); | ||||||
3339 | $y = $x -> reshape(4, 2); | ||||||
3340 | |||||||
3341 | creates the matrix $x | ||||||
3342 | |||||||
3343 | [ 1 3 5 7 ] | ||||||
3344 | [ 2 4 6 8 ] | ||||||
3345 | |||||||
3346 | and returns a reshaped copy $y | ||||||
3347 | |||||||
3348 | [ 1 5 ] | ||||||
3349 | [ 2 6 ] | ||||||
3350 | [ 3 7 ] | ||||||
3351 | [ 4 8 ] | ||||||
3352 | |||||||
3353 | =cut | ||||||
3354 | |||||||
3355 | sub reshape { | ||||||
3356 | 30 | 50 | 30 | 1 | 176 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 3; | |
3357 | 30 | 50 | 62 | croak "Too many arguments for ", (caller(0))[3] if @_ > 3; | |||
3358 | 30 | 48 | my $x = shift; | ||||
3359 | 30 | 54 | my $class = ref $x; | ||||
3360 | |||||||
3361 | 30 | 85 | my ($nrowx, $ncolx) = $x -> size(); | ||||
3362 | 30 | 50 | my $nelmx = $nrowx * $ncolx; | ||||
3363 | |||||||
3364 | 30 | 54 | my ($nrowy, $ncoly) = @_; | ||||
3365 | 30 | 40 | my $nelmy = $nrowy * $ncoly; | ||||
3366 | |||||||
3367 | 30 | 50 | 61 | croak "when reshaping, the number of elements can not change in ", | |||
3368 | (caller(0))[3] unless $nelmx == $nelmy; | ||||||
3369 | |||||||
3370 | 30 | 49 | my $y = []; | ||||
3371 | |||||||
3372 | # No reshaping; just clone. | ||||||
3373 | |||||||
3374 | 30 | 100 | 66 | 126 | if ($nrowx == $nrowy && $ncolx == $ncoly) { | ||
100 | |||||||
100 | |||||||
3375 | 5 | 22 | $y = [ map [ @$_ ], @$x ]; | ||||
3376 | } | ||||||
3377 | |||||||
3378 | elsif ($nrowx == 1) { | ||||||
3379 | |||||||
3380 | # Reshape from a row vector to a column vector. | ||||||
3381 | |||||||
3382 | 10 | 100 | 29 | if ($ncoly == 1) { | |||
3383 | 4 | 12 | $y = [ map [ $_ ], @{ $x -> [0] } ]; | ||||
4 | 24 | ||||||
3384 | } | ||||||
3385 | |||||||
3386 | # Reshape from a row vector to a matrix. | ||||||
3387 | |||||||
3388 | else { | ||||||
3389 | 6 | 11 | my $k = 0; | ||||
3390 | 6 | 21 | for my $j (0 .. $ncoly - 1) { | ||||
3391 | 15 | 30 | for my $i (0 .. $nrowy - 1) { | ||||
3392 | 33 | 68 | $y -> [$i][$j] = $x -> [0][$k++]; | ||||
3393 | } | ||||||
3394 | } | ||||||
3395 | } | ||||||
3396 | } | ||||||
3397 | |||||||
3398 | elsif ($ncolx == 1) { | ||||||
3399 | |||||||
3400 | # Reshape from a column vector to a row vector. | ||||||
3401 | |||||||
3402 | 6 | 100 | 22 | if ($nrowy == 1) { | |||
3403 | 3 | 10 | $y = [[ map { @$_ } @$x ]]; | ||||
18 | 33 | ||||||
3404 | } | ||||||
3405 | |||||||
3406 | # Reshape from a column vector to a matrix. | ||||||
3407 | |||||||
3408 | else { | ||||||
3409 | 3 | 9 | my $k = 0; | ||||
3410 | 3 | 12 | for my $j (0 .. $ncoly - 1) { | ||||
3411 | 9 | 19 | for my $i (0 .. $nrowy - 1) { | ||||
3412 | 18 | 37 | $y -> [$i][$j] = $x -> [$k++][0]; | ||||
3413 | } | ||||||
3414 | } | ||||||
3415 | } | ||||||
3416 | } | ||||||
3417 | |||||||
3418 | # The invocand is a matrix. This code works in all cases, but is somewhat | ||||||
3419 | # slower than the specialized code above. | ||||||
3420 | |||||||
3421 | else { | ||||||
3422 | 9 | 24 | for my $k (0 .. $nelmx - 1) { | ||||
3423 | 54 | 73 | my $ix = $k % $nrowx; | ||||
3424 | 54 | 80 | my $jx = ($k - $ix) / $nrowx; | ||||
3425 | 54 | 76 | my $iy = $k % $nrowy; | ||||
3426 | 54 | 84 | my $jy = ($k - $iy) / $nrowy; | ||||
3427 | 54 | 105 | $y -> [$iy][$jy] = $x -> [$ix][$jx]; | ||||
3428 | } | ||||||
3429 | } | ||||||
3430 | |||||||
3431 | 30 | 101 | bless $y, $class; | ||||
3432 | } | ||||||
3433 | |||||||
3434 | =pod | ||||||
3435 | |||||||
3436 | =item to_row() | ||||||
3437 | |||||||
3438 | Reshape to a row. | ||||||
3439 | |||||||
3440 | $x -> to_row(); | ||||||
3441 | |||||||
3442 | This method reshapes the matrix into a single row. It is essentially the same | ||||||
3443 | as, but faster than, | ||||||
3444 | |||||||
3445 | $x -> reshape(1, $x -> nelm()); | ||||||
3446 | |||||||
3447 | =cut | ||||||
3448 | |||||||
3449 | sub to_row { | ||||||
3450 | 30 | 50 | 30 | 1 | 108 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
3451 | 30 | 50 | 95 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
3452 | 30 | 50 | my $x = shift; | ||||
3453 | 30 | 113 | my $class = ref $x; | ||||
3454 | |||||||
3455 | 30 | 65 | my $y = bless [], $class; | ||||
3456 | |||||||
3457 | 30 | 76 | my $ncolx = $x -> ncol(); | ||||
3458 | 30 | 100 | 87 | return $y if $ncolx == 0; | |||
3459 | |||||||
3460 | 25 | 68 | for my $j (0 .. $ncolx - 1) { | ||||
3461 | 61 | 99 | push @{ $y -> [0] }, map $_->[$j], @$x; | ||||
61 | 193 | ||||||
3462 | } | ||||||
3463 | 25 | 118 | return $y; | ||||
3464 | } | ||||||
3465 | |||||||
3466 | =pod | ||||||
3467 | |||||||
3468 | =item to_col() | ||||||
3469 | |||||||
3470 | Reshape to a column. | ||||||
3471 | |||||||
3472 | $y = $x -> to_col(); | ||||||
3473 | |||||||
3474 | This method reshapes the matrix into a single column. It is essentially the same | ||||||
3475 | as, but faster than, | ||||||
3476 | |||||||
3477 | $x -> reshape($x -> nelm(), 1); | ||||||
3478 | |||||||
3479 | =cut | ||||||
3480 | |||||||
3481 | sub to_col { | ||||||
3482 | 19 | 50 | 19 | 1 | 72 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
3483 | 19 | 50 | 65 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
3484 | 19 | 27 | my $x = shift; | ||||
3485 | |||||||
3486 | 19 | 39 | my $class = ref $x; | ||||
3487 | |||||||
3488 | 19 | 38 | my $y = bless [], $class; | ||||
3489 | |||||||
3490 | 19 | 47 | my $ncolx = $x -> ncol(); | ||||
3491 | 19 | 100 | 49 | return $y if $ncolx == 0; | |||
3492 | |||||||
3493 | 18 | 48 | for my $j (0 .. $ncolx - 1) { | ||||
3494 | 43 | 144 | push @$y, map [ $_->[$j] ], @$x; | ||||
3495 | } | ||||||
3496 | 18 | 39 | return $y; | ||||
3497 | } | ||||||
3498 | |||||||
3499 | =pod | ||||||
3500 | |||||||
3501 | =item to_permmat() | ||||||
3502 | |||||||
3503 | Permutation vector to permutation matrix. Converts a vector of zero-based | ||||||
3504 | permutation indices to a permutation matrix. | ||||||
3505 | |||||||
3506 | $P = $v -> to_permmat(); | ||||||
3507 | |||||||
3508 | For example | ||||||
3509 | |||||||
3510 | $v = Math::Matrix -> new([[0, 3, 1, 4, 2]]); | ||||||
3511 | $m = $v -> to_permmat(); | ||||||
3512 | |||||||
3513 | gives the permutation matrix C<$m> | ||||||
3514 | |||||||
3515 | [ 1 0 0 0 0 ] | ||||||
3516 | [ 0 0 0 1 0 ] | ||||||
3517 | [ 0 1 0 0 0 ] | ||||||
3518 | [ 0 0 0 0 1 ] | ||||||
3519 | [ 0 0 1 0 0 ] | ||||||
3520 | |||||||
3521 | =cut | ||||||
3522 | |||||||
3523 | sub to_permmat { | ||||||
3524 | 4 | 50 | 4 | 1 | 22 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
3525 | 4 | 50 | 24 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
3526 | 4 | 6 | my $v = shift; | ||||
3527 | 4 | 8 | my $class = ref $v; | ||||
3528 | |||||||
3529 | 4 | 10 | my $n = $v -> nelm(); | ||||
3530 | 4 | 13 | my $P = $class -> zeros($n, $n); # initialize output | ||||
3531 | 4 | 100 | 11 | return $P if $n == 0; # if emtpy $v | |||
3532 | |||||||
3533 | 3 | 50 | 8 | croak "Invocand must be a vector" unless $v -> is_vector(); | |||
3534 | 3 | 8 | $v = $v -> to_col(); | ||||
3535 | |||||||
3536 | 3 | 7 | for my $i (0 .. $n - 1) { | ||||
3537 | 9 | 13 | my $j = $v -> [$i][0]; | ||||
3538 | 9 | 50 | 33 | 27 | croak "index out of range" unless 0 <= $j && $j < $n; | ||
3539 | 9 | 15 | $P -> [$i][$j] = 1; | ||||
3540 | } | ||||||
3541 | |||||||
3542 | 3 | 16 | return $P; | ||||
3543 | } | ||||||
3544 | |||||||
3545 | =pod | ||||||
3546 | |||||||
3547 | =item to_permvec() | ||||||
3548 | |||||||
3549 | Permutation matrix to permutation vector. Converts a permutation matrix to a | ||||||
3550 | vector of zero-based permutation indices. | ||||||
3551 | |||||||
3552 | $v = $P -> to_permvec(); | ||||||
3553 | |||||||
3554 | $v = Math::Matrix -> new([[0, 3, 1, 4, 2]]); | ||||||
3555 | $m = $v -> to_permmat(); | ||||||
3556 | |||||||
3557 | Gives the permutation matrix C<$m> | ||||||
3558 | |||||||
3559 | [ 1 0 0 0 0 ] | ||||||
3560 | [ 0 0 0 1 0 ] | ||||||
3561 | [ 0 1 0 0 0 ] | ||||||
3562 | [ 0 0 0 0 1 ] | ||||||
3563 | [ 0 0 1 0 0 ] | ||||||
3564 | |||||||
3565 | See also C |
||||||
3566 | |||||||
3567 | =cut | ||||||
3568 | |||||||
3569 | sub to_permvec { | ||||||
3570 | 4 | 50 | 4 | 1 | 40 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
3571 | 4 | 50 | 10 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
3572 | 4 | 7 | my $P = shift; | ||||
3573 | 4 | 7 | my $class = ref $P; | ||||
3574 | |||||||
3575 | 4 | 50 | 11 | croak "Invocand matrix must be square" unless $P -> is_square(); | |||
3576 | 4 | 14 | my $n = $P -> nrow(); | ||||
3577 | |||||||
3578 | 4 | 12 | my $v = $class -> zeros($n, 1); # initialize output | ||||
3579 | |||||||
3580 | 4 | 11 | my $seen = [ (0) x $n ]; # keep track of the ones | ||||
3581 | |||||||
3582 | 4 | 12 | for my $i (0 .. $n - 1) { | ||||
3583 | 9 | 10 | my $k; | ||||
3584 | 9 | 15 | for my $j (0 .. $n - 1) { | ||||
3585 | 27 | 100 | 51 | next if $P -> [$i][$j] == 0; | |||
3586 | 9 | 50 | 19 | if ($P -> [$i][$j] == 1) { | |||
3587 | 9 | 50 | 14 | croak "invalid permutation matrix; more than one row has", | |||
3588 | " an element with value 1 in column $j" if $seen->[$j]++; | ||||||
3589 | 9 | 13 | $k = $j; | ||||
3590 | 9 | 14 | next; | ||||
3591 | } | ||||||
3592 | 0 | 0 | croak "invalid permutation matrix; element ($i,$j)", | ||||
3593 | " is neither 0 nor 1"; | ||||||
3594 | } | ||||||
3595 | 9 | 50 | 17 | croak "invalid permutation matrix; row $i has no element with value 1" | |||
3596 | unless defined $k; | ||||||
3597 | 9 | 13 | $v->[$i][0] = $k; | ||||
3598 | } | ||||||
3599 | |||||||
3600 | 4 | 13 | return $v; | ||||
3601 | } | ||||||
3602 | |||||||
3603 | =pod | ||||||
3604 | |||||||
3605 | =item triu() | ||||||
3606 | |||||||
3607 | Upper triangular part. Extract the upper triangular part of a matrix and set all | ||||||
3608 | other elements to zero. | ||||||
3609 | |||||||
3610 | $y = $x -> triu(); | ||||||
3611 | $y = $x -> triu($n); | ||||||
3612 | |||||||
3613 | The optional second argument specifies how many diagonals above or below the | ||||||
3614 | main diagonal should also be set to zero. The default value of C<$n> is zero | ||||||
3615 | which includes the main diagonal. | ||||||
3616 | |||||||
3617 | =cut | ||||||
3618 | |||||||
3619 | sub triu { | ||||||
3620 | 12 | 50 | 12 | 1 | 94 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
3621 | 12 | 50 | 26 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
3622 | 12 | 17 | my $x = shift; | ||||
3623 | 12 | 21 | my $class = ref $x; | ||||
3624 | |||||||
3625 | 12 | 16 | my $n = 0; | ||||
3626 | 12 | 100 | 23 | if (@_) { | |||
3627 | 10 | 14 | $n = shift; | ||||
3628 | 10 | 50 | 22 | if (ref $n) { | |||
3629 | 0 | 0 | 0 | 0 | $n = $class -> new($n) | ||
3630 | unless defined(blessed($n)) && $n -> isa($class); | ||||||
3631 | 0 | 0 | 0 | croak "Argument must be a scalar" unless $n -> is_scalar(); | |||
3632 | 0 | 0 | $n = $n -> [0][0]; | ||||
3633 | } | ||||||
3634 | 10 | 50 | 23 | croak "Argument must be an integer" unless $n == int $n; | |||
3635 | } | ||||||
3636 | |||||||
3637 | 12 | 30 | my ($nrowx, $ncolx) = $x -> size(); | ||||
3638 | |||||||
3639 | 12 | 19 | my $y = []; | ||||
3640 | 12 | 35 | for my $i (0 .. $nrowx - 1) { | ||||
3641 | 30 | 49 | for my $j (0 .. $ncolx - 1) { | ||||
3642 | 72 | 100 | 221 | $y -> [$i][$j] = $j - $i >= $n ? $x -> [$i][$j] : 0; | |||
3643 | } | ||||||
3644 | } | ||||||
3645 | |||||||
3646 | 12 | 36 | bless $y, $class; | ||||
3647 | } | ||||||
3648 | |||||||
3649 | =pod | ||||||
3650 | |||||||
3651 | =item tril() | ||||||
3652 | |||||||
3653 | Lower triangular part. Extract the lower triangular part of a matrix and set all | ||||||
3654 | other elements to zero. | ||||||
3655 | |||||||
3656 | $y = $x -> tril(); | ||||||
3657 | $y = $x -> tril($n); | ||||||
3658 | |||||||
3659 | The optional second argument specifies how many diagonals above or below the | ||||||
3660 | main diagonal should also be set to zero. The default value of C<$n> is zero | ||||||
3661 | which includes the main diagonal. | ||||||
3662 | |||||||
3663 | =cut | ||||||
3664 | |||||||
3665 | sub tril { | ||||||
3666 | 12 | 50 | 12 | 1 | 87 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
3667 | 12 | 50 | 26 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
3668 | 12 | 20 | my $x = shift; | ||||
3669 | 12 | 16 | my $class = ref $x; | ||||
3670 | |||||||
3671 | 12 | 21 | my $n = 0; | ||||
3672 | 12 | 100 | 24 | if (@_) { | |||
3673 | 10 | 14 | $n = shift; | ||||
3674 | 10 | 50 | 21 | if (ref $n) { | |||
3675 | 0 | 0 | 0 | 0 | $n = $class -> new($n) | ||
3676 | unless defined(blessed($n)) && $n -> isa($class); | ||||||
3677 | 0 | 0 | 0 | croak "Argument must be a scalar" unless $n -> is_scalar(); | |||
3678 | 0 | 0 | $n = $n -> [0][0]; | ||||
3679 | } | ||||||
3680 | 10 | 50 | 23 | croak "Argument must be an integer" unless $n == int $n; | |||
3681 | } | ||||||
3682 | |||||||
3683 | 12 | 28 | my ($nrowx, $ncolx) = $x -> size(); | ||||
3684 | |||||||
3685 | 12 | 18 | my $y = []; | ||||
3686 | 12 | 24 | for my $i (0 .. $nrowx - 1) { | ||||
3687 | 30 | 51 | for my $j (0 .. $ncolx - 1) { | ||||
3688 | 72 | 100 | 148 | $y -> [$i][$j] = $j - $i <= $n ? $x -> [$i][$j] : 0; | |||
3689 | } | ||||||
3690 | } | ||||||
3691 | |||||||
3692 | 12 | 30 | bless $y, $class; | ||||
3693 | } | ||||||
3694 | |||||||
3695 | =pod | ||||||
3696 | |||||||
3697 | =item slice() | ||||||
3698 | |||||||
3699 | Extract columns: | ||||||
3700 | |||||||
3701 | a->slice(1,3,5); | ||||||
3702 | |||||||
3703 | =cut | ||||||
3704 | |||||||
3705 | sub slice { | ||||||
3706 | 16 | 16 | 1 | 106 | my $self = shift; | ||
3707 | 16 | 35 | my $class = ref($self); | ||||
3708 | 16 | 27 | my $result = []; | ||||
3709 | |||||||
3710 | 16 | 91 | for my $i (0 .. $#$self) { | ||||
3711 | 39 | 63 | push @$result, [ @{$self->[$i]}[@_] ]; | ||||
39 | 105 | ||||||
3712 | } | ||||||
3713 | |||||||
3714 | 16 | 57 | bless $result, $class; | ||||
3715 | } | ||||||
3716 | |||||||
3717 | =pod | ||||||
3718 | |||||||
3719 | =item diagonal_vector() | ||||||
3720 | |||||||
3721 | Extract the diagonal as an array: | ||||||
3722 | |||||||
3723 | $diag = $a->diagonal_vector; | ||||||
3724 | |||||||
3725 | =cut | ||||||
3726 | |||||||
3727 | sub diagonal_vector { | ||||||
3728 | 1 | 1 | 1 | 2156 | my $self = shift; | ||
3729 | 1 | 3 | my @diag; | ||||
3730 | 1 | 2 | my $idx = 0; | ||||
3731 | 1 | 3 | my($m, $n) = $self->size(); | ||||
3732 | |||||||
3733 | 1 | 50 | 4 | croak "Not a square matrix" if $m != $n; | |||
3734 | |||||||
3735 | 1 | 3 | foreach my $r (@{$self}) { | ||||
1 | 2 | ||||||
3736 | 4 | 9 | push @diag, $r->[$idx++]; | ||||
3737 | } | ||||||
3738 | 1 | 4 | return \@diag; | ||||
3739 | } | ||||||
3740 | |||||||
3741 | =pod | ||||||
3742 | |||||||
3743 | =item tridiagonal_vector() | ||||||
3744 | |||||||
3745 | Extract the diagonals that make up a tridiagonal matrix: | ||||||
3746 | |||||||
3747 | ($main_d, $upper_d, $lower_d) = $a->tridiagonal_vector; | ||||||
3748 | |||||||
3749 | =cut | ||||||
3750 | |||||||
3751 | sub tridiagonal_vector { | ||||||
3752 | 1 | 1 | 1 | 1457 | my $self = shift; | ||
3753 | 1 | 4 | my(@main_d, @up_d, @low_d); | ||||
3754 | 1 | 3 | my($m, $n) = $self->size(); | ||||
3755 | 1 | 3 | my $idx = 0; | ||||
3756 | |||||||
3757 | 1 | 50 | 4 | croak "Not a square matrix" if $m != $n; | |||
3758 | |||||||
3759 | 1 | 3 | foreach my $r (@{$self}) { | ||||
1 | 3 | ||||||
3760 | 4 | 100 | 8 | push @low_d, $r->[$idx - 1] if ($idx > 0); | |||
3761 | 4 | 8 | push @main_d, $r->[$idx++]; | ||||
3762 | 4 | 100 | 11 | push @up_d, $r->[$idx] if ($idx < $m); | |||
3763 | } | ||||||
3764 | 1 | 5 | return ([@main_d],[@up_d],[@low_d]); | ||||
3765 | } | ||||||
3766 | |||||||
3767 | =pod | ||||||
3768 | |||||||
3769 | =back | ||||||
3770 | |||||||
3771 | =head2 Mathematical functions | ||||||
3772 | |||||||
3773 | =head3 Addition | ||||||
3774 | |||||||
3775 | =over 4 | ||||||
3776 | |||||||
3777 | =item add() | ||||||
3778 | |||||||
3779 | Addition. If one operands is a scalar, it is treated like a constant matrix with | ||||||
3780 | the same size as the other operand. Otherwise ordinary matrix addition is | ||||||
3781 | performed. | ||||||
3782 | |||||||
3783 | $z = $x -> add($y); | ||||||
3784 | |||||||
3785 | See also C |
||||||
3786 | |||||||
3787 | =cut | ||||||
3788 | |||||||
3789 | sub add { | ||||||
3790 | 8 | 50 | 8 | 1 | 52 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
3791 | 8 | 50 | 17 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
3792 | 8 | 15 | my $x = shift; | ||||
3793 | 8 | 11 | my $class = ref $x; | ||||
3794 | |||||||
3795 | 8 | 28 | my $y = shift; | ||||
3796 | 8 | 100 | 66 | 58 | $y = $class -> new($y) unless defined(blessed($y)) && $y -> isa($class); | ||
3797 | |||||||
3798 | 8 | 100 | 100 | 22 | $x -> is_scalar() || $y -> is_scalar() ? $x -> sadd($y) : $x -> madd($y); | ||
3799 | } | ||||||
3800 | |||||||
3801 | =pod | ||||||
3802 | |||||||
3803 | =item madd() | ||||||
3804 | |||||||
3805 | Matrix addition. Add two matrices of the same dimensions. An error is thrown if | ||||||
3806 | the matrices don't have the same size. | ||||||
3807 | |||||||
3808 | $z = $x -> madd($y); | ||||||
3809 | |||||||
3810 | See also C |
||||||
3811 | |||||||
3812 | =cut | ||||||
3813 | |||||||
3814 | sub madd { | ||||||
3815 | 5 | 50 | 5 | 1 | 46 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
3816 | 5 | 50 | 17 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
3817 | 5 | 9 | my $x = shift; | ||||
3818 | 5 | 10 | my $class = ref $x; | ||||
3819 | |||||||
3820 | 5 | 7 | my $y = shift; | ||||
3821 | 5 | 50 | 33 | 57 | $y = $class -> new($y) unless defined(blessed($y)) && $y -> isa($class); | ||
3822 | |||||||
3823 | 5 | 20 | my ($nrowx, $ncolx) = $x -> size(); | ||||
3824 | 5 | 11 | my ($nrowy, $ncoly) = $y -> size(); | ||||
3825 | |||||||
3826 | 5 | 50 | 33 | 25 | croak "Can't add $nrowx-by-$ncolx matrix to $nrowy-by-$ncoly matrix" | ||
3827 | unless $nrowx == $nrowy && $ncolx == $ncoly; | ||||||
3828 | |||||||
3829 | 5 | 10 | my $z = []; | ||||
3830 | 5 | 17 | for my $i (0 .. $nrowx - 1) { | ||||
3831 | 7 | 14 | for my $j (0 .. $ncolx - 1) { | ||||
3832 | 21 | 44 | $z->[$i][$j] = $x->[$i][$j] + $y->[$i][$j]; | ||||
3833 | } | ||||||
3834 | } | ||||||
3835 | |||||||
3836 | 5 | 19 | bless $z, $class; | ||||
3837 | } | ||||||
3838 | |||||||
3839 | =pod | ||||||
3840 | |||||||
3841 | =item sadd() | ||||||
3842 | |||||||
3843 | Scalar (element by element) addition with scalar expansion. This method places | ||||||
3844 | no requirements on the size of the input matrices. | ||||||
3845 | |||||||
3846 | $z = $x -> sadd($y); | ||||||
3847 | |||||||
3848 | See also C |
||||||
3849 | |||||||
3850 | =cut | ||||||
3851 | |||||||
3852 | sub sadd { | ||||||
3853 | 9 | 50 | 9 | 1 | 49 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
3854 | 9 | 50 | 20 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
3855 | 9 | 11 | my $x = shift; | ||||
3856 | |||||||
3857 | 9 | 33 | 38 | my $sub = sub { $_[0] + $_[1] }; | |||
33 | 67 | ||||||
3858 | 9 | 29 | $x -> sapply($sub, @_); | ||||
3859 | } | ||||||
3860 | |||||||
3861 | =pod | ||||||
3862 | |||||||
3863 | =back | ||||||
3864 | |||||||
3865 | =head3 Subtraction | ||||||
3866 | |||||||
3867 | =over 4 | ||||||
3868 | |||||||
3869 | =item sub() | ||||||
3870 | |||||||
3871 | Subtraction. If one operands is a scalar, it is treated as a constant matrix | ||||||
3872 | with the same size as the other operand. Otherwise, ordinarly matrix subtraction | ||||||
3873 | is performed. | ||||||
3874 | |||||||
3875 | $z = $x -> sub($y); | ||||||
3876 | |||||||
3877 | See also C |
||||||
3878 | |||||||
3879 | =cut | ||||||
3880 | |||||||
3881 | sub sub { | ||||||
3882 | 9 | 50 | 9 | 1 | 60 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
3883 | 9 | 50 | 23 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
3884 | 9 | 26 | my $x = shift; | ||||
3885 | 9 | 34 | my $class = ref $x; | ||||
3886 | |||||||
3887 | 9 | 15 | my $y = shift; | ||||
3888 | 9 | 100 | 66 | 75 | $y = $class -> new($y) unless defined(blessed($y)) && $y -> isa($class); | ||
3889 | |||||||
3890 | 9 | 100 | 100 | 29 | $x -> is_scalar() || $y -> is_scalar() ? $x -> ssub($y) : $x -> msub($y); | ||
3891 | } | ||||||
3892 | |||||||
3893 | =pod | ||||||
3894 | |||||||
3895 | =item msub() | ||||||
3896 | |||||||
3897 | Matrix subtraction. Subtract two matrices of the same size. An error is thrown | ||||||
3898 | if the matrices don't have the same size. | ||||||
3899 | |||||||
3900 | $z = $x -> msub($y); | ||||||
3901 | |||||||
3902 | See also C |
||||||
3903 | |||||||
3904 | =cut | ||||||
3905 | |||||||
3906 | sub msub { | ||||||
3907 | 6 | 50 | 6 | 1 | 36 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
3908 | 6 | 50 | 25 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
3909 | 6 | 14 | my $x = shift; | ||||
3910 | 6 | 51 | my $class = ref $x; | ||||
3911 | |||||||
3912 | 6 | 13 | my $y = shift; | ||||
3913 | 6 | 50 | 33 | 54 | $y = $class -> new($y) unless defined(blessed($y)) && $y -> isa($class); | ||
3914 | |||||||
3915 | 6 | 32 | my ($nrowx, $ncolx) = $x -> size(); | ||||
3916 | 6 | 19 | my ($nrowy, $ncoly) = $y -> size(); | ||||
3917 | |||||||
3918 | 6 | 50 | 33 | 34 | croak "Can't subtract $nrowy-by-$ncoly matrix from $nrowx-by-$ncolx matrix" | ||
3919 | unless $nrowx == $nrowy && $ncolx == $ncoly; | ||||||
3920 | |||||||
3921 | 6 | 11 | my $z = []; | ||||
3922 | 6 | 20 | for my $i (0 .. $nrowx - 1) { | ||||
3923 | 8 | 19 | for my $j (0 .. $ncolx - 1) { | ||||
3924 | 24 | 54 | $z->[$i][$j] = $x->[$i][$j] - $y->[$i][$j]; | ||||
3925 | } | ||||||
3926 | } | ||||||
3927 | |||||||
3928 | 6 | 20 | bless $z, $class; | ||||
3929 | } | ||||||
3930 | |||||||
3931 | =pod | ||||||
3932 | |||||||
3933 | =item ssub() | ||||||
3934 | |||||||
3935 | Scalar (element by element) subtraction with scalar expansion. This method | ||||||
3936 | places no requirements on the size of the input matrices. | ||||||
3937 | |||||||
3938 | $z = $x -> ssub($y); | ||||||
3939 | |||||||
3940 | See also C |
||||||
3941 | |||||||
3942 | =cut | ||||||
3943 | |||||||
3944 | sub ssub { | ||||||
3945 | 9 | 50 | 9 | 1 | 67 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
3946 | 9 | 50 | 23 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
3947 | 9 | 16 | my $x = shift; | ||||
3948 | |||||||
3949 | 9 | 33 | 37 | my $sub = sub { $_[0] - $_[1] }; | |||
33 | 69 | ||||||
3950 | 9 | 30 | $x -> sapply($sub, @_); | ||||
3951 | } | ||||||
3952 | |||||||
3953 | =pod | ||||||
3954 | |||||||
3955 | =item subtract() | ||||||
3956 | |||||||
3957 | This is an alias for C |
||||||
3958 | |||||||
3959 | =cut | ||||||
3960 | |||||||
3961 | sub subtract { | ||||||
3962 | 1 | 1 | 1 | 11 | my $x = shift; | ||
3963 | 1 | 4 | $x -> sub(@_); | ||||
3964 | } | ||||||
3965 | |||||||
3966 | =pod | ||||||
3967 | |||||||
3968 | =back | ||||||
3969 | |||||||
3970 | =head3 Negation | ||||||
3971 | |||||||
3972 | =over 4 | ||||||
3973 | |||||||
3974 | =item neg() | ||||||
3975 | |||||||
3976 | Negation. Negate a matrix. | ||||||
3977 | |||||||
3978 | $y = $x -> neg(); | ||||||
3979 | |||||||
3980 | It is effectively equivalent to | ||||||
3981 | |||||||
3982 | $y = $x -> map(sub { -$_ }); | ||||||
3983 | |||||||
3984 | =cut | ||||||
3985 | |||||||
3986 | sub neg { | ||||||
3987 | 4 | 50 | 4 | 1 | 39 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
3988 | 4 | 50 | 12 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
3989 | 4 | 7 | my $x = shift; | ||||
3990 | 4 | 83 | bless [ map [ map -$_, @$_ ], @$x ], ref $x; | ||||
3991 | } | ||||||
3992 | |||||||
3993 | =pod | ||||||
3994 | |||||||
3995 | =item negative() | ||||||
3996 | |||||||
3997 | This is an alias for C |
||||||
3998 | |||||||
3999 | =cut | ||||||
4000 | |||||||
4001 | sub negative { | ||||||
4002 | 0 | 0 | 1 | 0 | my $x = shift; | ||
4003 | 0 | 0 | $x -> neg(@_); | ||||
4004 | } | ||||||
4005 | |||||||
4006 | =pod | ||||||
4007 | |||||||
4008 | =back | ||||||
4009 | |||||||
4010 | =head3 Multiplication | ||||||
4011 | |||||||
4012 | =over 4 | ||||||
4013 | |||||||
4014 | =item mul() | ||||||
4015 | |||||||
4016 | Multiplication. If one operands is a scalar, it is treated as a constant matrix | ||||||
4017 | with the same size as the other operand. Otherwise, ordinary matrix | ||||||
4018 | multiplication is performed. | ||||||
4019 | |||||||
4020 | $z = $x -> mul($y); | ||||||
4021 | |||||||
4022 | =cut | ||||||
4023 | |||||||
4024 | sub mul { | ||||||
4025 | 27 | 50 | 27 | 1 | 84 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
4026 | 27 | 50 | 56 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
4027 | 27 | 43 | my $x = shift; | ||||
4028 | 27 | 42 | my $class = ref $x; | ||||
4029 | |||||||
4030 | 27 | 40 | my $y = shift; | ||||
4031 | 27 | 100 | 66 | 160 | $y = $class -> new($y) unless defined(blessed($y)) && $y -> isa($class); | ||
4032 | |||||||
4033 | 27 | 100 | 100 | 66 | $x -> is_scalar() || $y -> is_scalar() ? $x -> smul($y) : $x -> mmul($y); | ||
4034 | } | ||||||
4035 | |||||||
4036 | =pod | ||||||
4037 | |||||||
4038 | =item mmul() | ||||||
4039 | |||||||
4040 | Matrix multiplication. An error is thrown if the sizes don't match; the number | ||||||
4041 | of columns in the first operand must be equal to the number of rows in the | ||||||
4042 | second operand. | ||||||
4043 | |||||||
4044 | $z = $x -> mmul($y); | ||||||
4045 | |||||||
4046 | =cut | ||||||
4047 | |||||||
4048 | sub mmul { | ||||||
4049 | 34 | 50 | 34 | 1 | 107 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
4050 | 34 | 50 | 78 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
4051 | 34 | 57 | my $x = shift; | ||||
4052 | 34 | 64 | my $class = ref $x; | ||||
4053 | |||||||
4054 | 34 | 56 | my $y = shift; | ||||
4055 | 34 | 50 | 33 | 228 | $y = $class -> new($y) unless defined(blessed($y)) && $y -> isa($class); | ||
4056 | |||||||
4057 | 34 | 110 | my $mx = $x -> nrow(); | ||||
4058 | 34 | 85 | my $nx = $x -> ncol(); | ||||
4059 | |||||||
4060 | 34 | 72 | my $my = $y -> nrow(); | ||||
4061 | 34 | 67 | my $ny = $y -> ncol(); | ||||
4062 | |||||||
4063 | 34 | 50 | 77 | croak "Can't multiply $mx-by-$nx matrix with $my-by-$ny matrix" | |||
4064 | unless $nx == $my; | ||||||
4065 | |||||||
4066 | 34 | 63 | my $z = []; | ||||
4067 | 34 | 55 | my $l = $nx - 1; # "inner length" | ||||
4068 | 34 | 118 | for my $i (0 .. $mx - 1) { | ||||
4069 | 74 | 132 | for my $j (0 .. $ny - 1) { | ||||
4070 | 192 | 621 | $z -> [$i][$j] = _sum(map $x -> [$i][$_] * $y -> [$_][$j], 0 .. $l); | ||||
4071 | } | ||||||
4072 | } | ||||||
4073 | |||||||
4074 | 34 | 170 | bless $z, $class; | ||||
4075 | } | ||||||
4076 | |||||||
4077 | =pod | ||||||
4078 | |||||||
4079 | =item smul() | ||||||
4080 | |||||||
4081 | Scalar (element by element) multiplication with scalar expansion. This method | ||||||
4082 | places no requirements on the size of the input matrices. | ||||||
4083 | |||||||
4084 | $z = $x -> smul($y); | ||||||
4085 | |||||||
4086 | =cut | ||||||
4087 | |||||||
4088 | sub smul { | ||||||
4089 | 12 | 50 | 12 | 1 | 112 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
4090 | 12 | 50 | 30 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
4091 | 12 | 19 | my $x = shift; | ||||
4092 | |||||||
4093 | 12 | 36 | 50 | my $sub = sub { $_[0] * $_[1] }; | |||
36 | 79 | ||||||
4094 | 12 | 46 | $x -> sapply($sub, @_); | ||||
4095 | } | ||||||
4096 | |||||||
4097 | =pod | ||||||
4098 | |||||||
4099 | =item mmuladd() | ||||||
4100 | |||||||
4101 | Matrix fused multiply and add. If C<$x> is a C<$p>-by-C<$q> matrix, then C<$y> | ||||||
4102 | must be a C<$q>-by-C<$r> matrix and C<$z> must be a C<$p>-by-C<$r> matrix. An | ||||||
4103 | error is thrown if the sizes don't match. | ||||||
4104 | |||||||
4105 | $w = $x -> mmuladd($y, $z); | ||||||
4106 | |||||||
4107 | The fused multiply and add is equivalent to, but computed with higher accuracy | ||||||
4108 | than | ||||||
4109 | |||||||
4110 | $w = $x -> mmul($y) -> madd($z); | ||||||
4111 | |||||||
4112 | This method can be used to improve the solution of linear systems. | ||||||
4113 | |||||||
4114 | =cut | ||||||
4115 | |||||||
4116 | sub mmuladd { | ||||||
4117 | 2 | 50 | 2 | 1 | 24 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 3; | |
4118 | 2 | 50 | 6 | croak "Too many arguments for ", (caller(0))[3] if @_ > 3; | |||
4119 | 2 | 3 | my $x = shift; | ||||
4120 | 2 | 5 | my $class = ref $x; | ||||
4121 | |||||||
4122 | 2 | 7 | my ($mx, $nx) = $x -> size(); | ||||
4123 | |||||||
4124 | 2 | 4 | my $y = shift; | ||||
4125 | 2 | 50 | 33 | 23 | $y = $class -> new($y) unless defined(blessed($y)) && $y -> isa($class); | ||
4126 | 2 | 5 | my ($my, $ny) = $y -> size(); | ||||
4127 | |||||||
4128 | 2 | 50 | 6 | croak "Can't multiply $mx-by-$nx matrix with $my-by-$ny matrix" | |||
4129 | unless $nx == $my; | ||||||
4130 | |||||||
4131 | 2 | 5 | my $z = shift; | ||||
4132 | 2 | 50 | 33 | 13 | $z = $class -> new($z) unless defined(blessed($z)) && $z -> isa($class); | ||
4133 | 2 | 5 | my ($mz, $nz) = $z -> size(); | ||||
4134 | |||||||
4135 | 2 | 50 | 33 | 8 | croak "Can't add $mz-by-$nz matrix to $mx-by-$ny matrix" | ||
4136 | unless $mz == $mx && $nz == $ny; | ||||||
4137 | |||||||
4138 | 2 | 3 | my $w = []; | ||||
4139 | 2 | 4 | my $l = $nx - 1; # "inner length" | ||||
4140 | 2 | 6 | for my $i (0 .. $mx - 1) { | ||||
4141 | 6 | 9 | for my $j (0 .. $ny - 1) { | ||||
4142 | 12 | 44 | $w -> [$i][$j] | ||||
4143 | = _sum(map($x -> [$i][$_] * $y -> [$_][$j], 0 .. $l), | ||||||
4144 | $z -> [$i][$j]); | ||||||
4145 | } | ||||||
4146 | } | ||||||
4147 | |||||||
4148 | 2 | 7 | bless $w, $class; | ||||
4149 | } | ||||||
4150 | |||||||
4151 | =pod | ||||||
4152 | |||||||
4153 | =item kron() | ||||||
4154 | |||||||
4155 | Kronecker tensor product. | ||||||
4156 | |||||||
4157 | $A -> kronprod($B); | ||||||
4158 | |||||||
4159 | If C<$A> is an C<$m>-by-C<$n> matrix and C<$B> is a C<$p>-by-C<$q> matrix, then | ||||||
4160 | C<< $A -> kron($B) >> is an C<$m>*C<$p>-by-C<$n>*C<$q> matrix formed by taking | ||||||
4161 | all possible products between the elements of C<$A> and the elements of C<$B>. | ||||||
4162 | |||||||
4163 | =cut | ||||||
4164 | |||||||
4165 | sub kron { | ||||||
4166 | 4 | 50 | 4 | 1 | 43 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
4167 | 4 | 50 | 12 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
4168 | 4 | 6 | my $x = shift; | ||||
4169 | 4 | 7 | my $class = ref $x; | ||||
4170 | |||||||
4171 | 4 | 6 | my $y = shift; | ||||
4172 | 4 | 50 | 33 | 32 | $y = $class -> new($y) unless defined(blessed($y)) && $y -> isa($class); | ||
4173 | |||||||
4174 | 4 | 15 | my ($nrowx, $ncolx) = $x -> size(); | ||||
4175 | 4 | 9 | my ($nrowy, $ncoly) = $y -> size(); | ||||
4176 | |||||||
4177 | 4 | 8 | my $z = bless [], $class; | ||||
4178 | |||||||
4179 | 4 | 11 | for my $ix (0 .. $nrowx - 1) { | ||||
4180 | 4 | 8 | for my $jx (0 .. $ncolx - 1) { | ||||
4181 | 8 | 14 | for my $iy (0 .. $nrowy - 1) { | ||||
4182 | 8 | 13 | for my $jy (0 .. $ncoly - 1) { | ||||
4183 | 16 | 20 | my $iz = $ix * $nrowx + $iy; | ||||
4184 | 16 | 21 | my $jz = $jx * $ncolx + $jy; | ||||
4185 | 16 | 29 | $z -> [$iz][$jz] = $x -> [$ix][$jx] * $y -> [$iy][$jy]; | ||||
4186 | } | ||||||
4187 | } | ||||||
4188 | } | ||||||
4189 | } | ||||||
4190 | |||||||
4191 | 4 | 11 | return $z; | ||||
4192 | } | ||||||
4193 | |||||||
4194 | =pod | ||||||
4195 | |||||||
4196 | =item multiply() | ||||||
4197 | |||||||
4198 | This is an alias for C |
||||||
4199 | |||||||
4200 | =cut | ||||||
4201 | |||||||
4202 | sub multiply { | ||||||
4203 | 8 | 8 | 1 | 45 | my $x = shift; | ||
4204 | 8 | 29 | $x -> mmul(@_); | ||||
4205 | } | ||||||
4206 | |||||||
4207 | =pod | ||||||
4208 | |||||||
4209 | =item multiply_scalar() | ||||||
4210 | |||||||
4211 | Multiplies a matrix and a scalar resulting in a matrix of the same dimensions | ||||||
4212 | with each element scaled with the scalar. | ||||||
4213 | |||||||
4214 | $a->multiply_scalar(2); scale matrix by factor 2 | ||||||
4215 | |||||||
4216 | =cut | ||||||
4217 | |||||||
4218 | sub multiply_scalar { | ||||||
4219 | 7 | 7 | 1 | 28 | my $self = shift; | ||
4220 | 7 | 14 | my $factor = shift; | ||||
4221 | 7 | 17 | my $result = $self->new(); | ||||
4222 | |||||||
4223 | 7 | 11 | my $last = $#{$self->[0]}; | ||||
7 | 15 | ||||||
4224 | 7 | 47 | for my $i (0 .. $#{$self}) { | ||||
7 | 22 | ||||||
4225 | 13 | 58 | for my $j (0 .. $last) { | ||||
4226 | 33 | 62 | $result->[$i][$j] = $factor * $self->[$i][$j]; | ||||
4227 | } | ||||||
4228 | } | ||||||
4229 | 7 | 31 | $result; | ||||
4230 | } | ||||||
4231 | |||||||
4232 | =pod | ||||||
4233 | |||||||
4234 | =back | ||||||
4235 | |||||||
4236 | =head3 Powers | ||||||
4237 | |||||||
4238 | =over 4 | ||||||
4239 | |||||||
4240 | =item pow() | ||||||
4241 | |||||||
4242 | Power function. | ||||||
4243 | |||||||
4244 | This is an alias for C |
||||||
4245 | |||||||
4246 | See also C |
||||||
4247 | |||||||
4248 | =cut | ||||||
4249 | |||||||
4250 | sub pow { | ||||||
4251 | 7 | 7 | 1 | 26 | my $x = shift; | ||
4252 | 7 | 16 | $x -> mpow(@_); | ||||
4253 | } | ||||||
4254 | |||||||
4255 | =pod | ||||||
4256 | |||||||
4257 | =item mpow() | ||||||
4258 | |||||||
4259 | Matrix power. The second operand must be a non-negative integer. | ||||||
4260 | |||||||
4261 | $y = $x -> mpow($n); | ||||||
4262 | |||||||
4263 | The following example | ||||||
4264 | |||||||
4265 | $x = Math::Matrix -> new([[0, -2],[1, 4]]); | ||||||
4266 | $y = 4; | ||||||
4267 | $z = $x -> pow($y); | ||||||
4268 | |||||||
4269 | returns the matrix | ||||||
4270 | |||||||
4271 | [ -28 -96 ] | ||||||
4272 | [ 48 164 ] | ||||||
4273 | |||||||
4274 | See also C |
||||||
4275 | |||||||
4276 | =cut | ||||||
4277 | |||||||
4278 | sub mpow { | ||||||
4279 | 13 | 50 | 13 | 1 | 59 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
4280 | 13 | 50 | 427 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
4281 | 13 | 22 | my $x = shift; | ||||
4282 | 13 | 23 | my $class = ref $x; | ||||
4283 | |||||||
4284 | 13 | 50 | 32 | croak "Invocand matrix must be square in ", (caller(0))[3] | |||
4285 | unless $x -> is_square(); | ||||||
4286 | |||||||
4287 | 13 | 20 | my $n = shift; | ||||
4288 | 13 | 50 | 26 | croak "Exponent can not be undefined" unless defined $n; | |||
4289 | 13 | 100 | 54 | if (ref $n) { | |||
4290 | 11 | 50 | 33 | 79 | $n = $class -> new($n) unless defined(blessed($n)) && $n -> isa($class); | ||
4291 | 11 | 50 | 30 | croak "Exponent must be a scalar in ", (caller(0))[3] | |||
4292 | unless $n -> is_scalar(); | ||||||
4293 | 11 | 21 | $n = $n -> [0][0]; | ||||
4294 | } | ||||||
4295 | 13 | 50 | 29 | croak "Exponent must be an integer" unless $n == int $n; | |||
4296 | |||||||
4297 | 13 | 100 | 29 | return $class -> new([]) if $x -> is_empty(); | |||
4298 | |||||||
4299 | 10 | 22 | my ($nrowx, $ncolx) = $x -> size(); | ||||
4300 | 10 | 100 | 26 | return $class -> id($nrowx, $ncolx) if $n == 0; | |||
4301 | 8 | 100 | 21 | return $x -> clone() if $n == 1; | |||
4302 | |||||||
4303 | 6 | 12 | my $neg = $n < 0; | ||||
4304 | 6 | 100 | 14 | $n = -$n if $neg; | |||
4305 | |||||||
4306 | 6 | 17 | my $y = $class -> id($nrowx, $ncolx); | ||||
4307 | 6 | 11 | my $tmp = $x; | ||||
4308 | 6 | 11 | while (1) { | ||||
4309 | 15 | 27 | my $rem = $n % 2; | ||||
4310 | 15 | 100 | 42 | $y *= $tmp if $rem; | |||
4311 | 15 | 29 | $n = ($n - $rem) / 2; | ||||
4312 | 15 | 100 | 33 | last if $n == 0; | |||
4313 | 9 | 19 | $tmp = $tmp * $tmp; | ||||
4314 | } | ||||||
4315 | |||||||
4316 | 6 | 100 | 20 | $y = $y -> minv() if $neg; | |||
4317 | |||||||
4318 | 6 | 38 | return $y; | ||||
4319 | } | ||||||
4320 | |||||||
4321 | =pod | ||||||
4322 | |||||||
4323 | =item spow() | ||||||
4324 | |||||||
4325 | Scalar (element by element) power function. This method doesn't require the | ||||||
4326 | matrices to have the same size. | ||||||
4327 | |||||||
4328 | $z = $x -> spow($y); | ||||||
4329 | |||||||
4330 | See also C |
||||||
4331 | |||||||
4332 | =cut | ||||||
4333 | |||||||
4334 | sub spow { | ||||||
4335 | 4 | 50 | 4 | 1 | 42 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
4336 | 4 | 50 | 11 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
4337 | 4 | 7 | my $x = shift; | ||||
4338 | |||||||
4339 | 4 | 14 | 17 | my $sub = sub { $_[0] ** $_[1] }; | |||
14 | 36 | ||||||
4340 | 4 | 13 | $x -> sapply($sub, @_); | ||||
4341 | } | ||||||
4342 | |||||||
4343 | =pod | ||||||
4344 | |||||||
4345 | =back | ||||||
4346 | |||||||
4347 | =head3 Inversion | ||||||
4348 | |||||||
4349 | =over 4 | ||||||
4350 | |||||||
4351 | =item inv() | ||||||
4352 | |||||||
4353 | This is an alias for C |
||||||
4354 | |||||||
4355 | =cut | ||||||
4356 | |||||||
4357 | sub inv { | ||||||
4358 | 1 | 1 | 1 | 8 | my $x = shift; | ||
4359 | 1 | 4 | $x -> minv(); | ||||
4360 | } | ||||||
4361 | |||||||
4362 | =pod | ||||||
4363 | |||||||
4364 | =item invert() | ||||||
4365 | |||||||
4366 | Invert a Matrix using C |
||||||
4367 | |||||||
4368 | =cut | ||||||
4369 | |||||||
4370 | sub invert { | ||||||
4371 | 1 | 1 | 1 | 3 | my $M = shift; | ||
4372 | 1 | 6 | my ($m, $n) = $M->size; | ||||
4373 | 1 | 50 | 5 | croak "Can't invert $m-by-$n matrix; matrix must be square" | |||
4374 | if $m != $n; | ||||||
4375 | 1 | 3 | my $I = $M->new_identity($n); | ||||
4376 | 1 | 14 | ($M->concat($I))->solve; | ||||
4377 | } | ||||||
4378 | |||||||
4379 | =pod | ||||||
4380 | |||||||
4381 | =item minv() | ||||||
4382 | |||||||
4383 | Matrix inverse. Invert a matrix. | ||||||
4384 | |||||||
4385 | $y = $x -> inv(); | ||||||
4386 | |||||||
4387 | See the section L for a list of | ||||||
4388 | additional parameters that can be used for trying to obtain a better solution | ||||||
4389 | through iteration. | ||||||
4390 | |||||||
4391 | =cut | ||||||
4392 | |||||||
4393 | sub minv { | ||||||
4394 | 4 | 50 | 4 | 1 | 40 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
4395 | #croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | ||||||
4396 | 4 | 8 | my $x = shift; | ||||
4397 | 4 | 9 | my $class = ref $x; | ||||
4398 | |||||||
4399 | 4 | 14 | my $n = $x -> nrow(); | ||||
4400 | 4 | 14 | return $class -> id($n) -> mldiv($x, @_); | ||||
4401 | } | ||||||
4402 | |||||||
4403 | =pod | ||||||
4404 | |||||||
4405 | =item sinv() | ||||||
4406 | |||||||
4407 | Scalar (element by element) inverse. Invert each element in a matrix. | ||||||
4408 | |||||||
4409 | $y = $x -> sinv(); | ||||||
4410 | |||||||
4411 | =cut | ||||||
4412 | |||||||
4413 | sub sinv { | ||||||
4414 | 2 | 50 | 2 | 1 | 34 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
4415 | 2 | 50 | 8 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
4416 | 2 | 4 | my $x = shift; | ||||
4417 | |||||||
4418 | 2 | 51 | bless [ map [ map 1/$_, @$_ ], @$x ], ref $x; | ||||
4419 | } | ||||||
4420 | |||||||
4421 | =pod | ||||||
4422 | |||||||
4423 | =item mldiv() | ||||||
4424 | |||||||
4425 | Matrix left division. Returns the solution x of the linear system of equations | ||||||
4426 | A*x = y, by computing A^(-1)*y. | ||||||
4427 | |||||||
4428 | $x = $y -> mldiv($A); | ||||||
4429 | |||||||
4430 | This method also handles overdetermined and underdetermined systems. There are | ||||||
4431 | three cases | ||||||
4432 | |||||||
4433 | =over 4 | ||||||
4434 | |||||||
4435 | =item * | ||||||
4436 | |||||||
4437 | If A is a square matrix, then | ||||||
4438 | |||||||
4439 | x = A\y = inv(A)*y | ||||||
4440 | |||||||
4441 | so that A*x = y to within round-off accuracy. | ||||||
4442 | |||||||
4443 | =item * | ||||||
4444 | |||||||
4445 | If A is an M-by-N matrix where M > N, then A\y is computed as | ||||||
4446 | |||||||
4447 | A\y = (A'*A)\(A'*y) = inv(A'*A)*(A'*y) | ||||||
4448 | |||||||
4449 | where A' denotes the transpose of A. The returned matrix is the least squares | ||||||
4450 | solution to the linear system of equations A*x = y, if it exists. The matrix | ||||||
4451 | A'*A must be non-singular. | ||||||
4452 | |||||||
4453 | =item * | ||||||
4454 | |||||||
4455 | If A is an where M < N, then A\y is computed as | ||||||
4456 | |||||||
4457 | A\y = A'*((A*A')\y) | ||||||
4458 | |||||||
4459 | This solution is not unique. The matrix A*A' must be non-singular. | ||||||
4460 | |||||||
4461 | =back | ||||||
4462 | |||||||
4463 | See the section L for a list of | ||||||
4464 | additional parameters that can be used for trying to obtain a better solution | ||||||
4465 | through iteration. | ||||||
4466 | |||||||
4467 | =cut | ||||||
4468 | |||||||
4469 | sub mldiv { | ||||||
4470 | 12 | 50 | 12 | 1 | 61 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
4471 | #croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | ||||||
4472 | 12 | 22 | my $y = shift; | ||||
4473 | 12 | 24 | my $class = ref $y; | ||||
4474 | |||||||
4475 | 12 | 19 | my $A = shift; | ||||
4476 | 12 | 50 | 33 | 107 | $A = $class -> new($A) unless defined(blessed($A)) && $A -> isa($class); | ||
4477 | |||||||
4478 | 12 | 45 | my ($m, $n) = $A -> size(); | ||||
4479 | |||||||
4480 | 12 | 100 | 47 | if ($m > $n) { | |||
100 | |||||||
4481 | |||||||
4482 | # If A is an M-by-N matrix where M > N, i.e., an overdetermined system, | ||||||
4483 | # compute (A'*A)\(A'*y) by doing a one level deep recursion. | ||||||
4484 | |||||||
4485 | 1 | 5 | my $At = $A -> transpose(); | ||||
4486 | 1 | 4 | return $At -> mmul($y) -> mldiv($At -> mmul($A), @_); | ||||
4487 | |||||||
4488 | } elsif ($m < $n) { | ||||||
4489 | |||||||
4490 | # If A is an M-by-N matrix where M < N, i.e., and underdetermined | ||||||
4491 | # system, compute A'*((A*A')\y) by doing a one level deep recursion. | ||||||
4492 | # This solution is not unique. | ||||||
4493 | |||||||
4494 | 1 | 9 | my $At = $A -> transpose(); | ||||
4495 | 1 | 4 | return $At -> mldiv($At -> mmul($A), @_); | ||||
4496 | } | ||||||
4497 | |||||||
4498 | # If extra arguments are given ... | ||||||
4499 | |||||||
4500 | 10 | 50 | 29 | if (@_) { | |||
4501 | |||||||
4502 | 0 | 0 | require Config; | ||||
4503 | 0 | 0 | my $max_iter = 20; | ||||
4504 | my $rel_tol = ($Config::Config{uselongdouble} || | ||||||
4505 | 0 | 0 | 0 | 0 | $Config::Config{usequadmath}) ? 1e-19 : 1e-9; | ||
4506 | 0 | 0 | my $abs_tol = 0; | ||||
4507 | 0 | 0 | my $debug; | ||||
4508 | |||||||
4509 | 0 | 0 | while (@_) { | ||||
4510 | 0 | 0 | my $param = shift; | ||||
4511 | 0 | 0 | 0 | croak "parameter name can not be undefined" unless defined $param; | |||
4512 | |||||||
4513 | 0 | 0 | 0 | croak "missing value for parameter '$param'" unless @_; | |||
4514 | 0 | 0 | my $value = shift; | ||||
4515 | |||||||
4516 | 0 | 0 | 0 | if ($param eq 'MaxIter') { | |||
4517 | 0 | 0 | 0 | croak "value for parameter 'MaxIter' can not be undefined" | |||
4518 | unless defined $value; | ||||||
4519 | 0 | 0 | 0 | 0 | croak "value for parameter 'MaxIter' must be a positive integer" | ||
4520 | unless $value > 0 && $value == int $value; | ||||||
4521 | 0 | 0 | $max_iter = $value; | ||||
4522 | 0 | 0 | next; | ||||
4523 | } | ||||||
4524 | |||||||
4525 | 0 | 0 | 0 | if ($param eq 'RelTol') { | |||
4526 | 0 | 0 | 0 | croak "value for parameter 'RelTol' can not be undefined" | |||
4527 | unless defined $value; | ||||||
4528 | 0 | 0 | 0 | croak "value for parameter 'RelTol' must be non-negative" | |||
4529 | unless $value >= 0; | ||||||
4530 | 0 | 0 | $rel_tol = $value; | ||||
4531 | 0 | 0 | next; | ||||
4532 | } | ||||||
4533 | |||||||
4534 | 0 | 0 | 0 | if ($param eq 'AbsTol') { | |||
4535 | 0 | 0 | 0 | croak "value for parameter 'AbsTol' can not be undefined" | |||
4536 | unless defined $value; | ||||||
4537 | 0 | 0 | 0 | croak "value for parameter 'AbsTol' must be non-negative" | |||
4538 | unless $value >= 0; | ||||||
4539 | 0 | 0 | $abs_tol = $value; | ||||
4540 | 0 | 0 | next; | ||||
4541 | } | ||||||
4542 | |||||||
4543 | 0 | 0 | 0 | if ($param eq 'Debug') { | |||
4544 | 0 | 0 | $debug = $value; | ||||
4545 | 0 | 0 | next; | ||||
4546 | } | ||||||
4547 | |||||||
4548 | 0 | 0 | croak "unknown parameter '$param'"; | ||||
4549 | } | ||||||
4550 | |||||||
4551 | 0 | 0 | 0 | if ($debug) { | |||
4552 | 0 | 0 | printf "\n"; | ||||
4553 | 0 | 0 | printf "max_iter = %24d\n", $max_iter; | ||||
4554 | 0 | 0 | printf "rel_tol = %24.15e\n", $rel_tol; | ||||
4555 | 0 | 0 | printf "abs_tol = %24.15e\n", $abs_tol; | ||||
4556 | } | ||||||
4557 | |||||||
4558 | 0 | 0 | my $y_norm = _hypot(map { @$_ } @$y); | ||||
0 | 0 | ||||||
4559 | |||||||
4560 | 0 | 0 | my $x = $y -> mldiv($A); | ||||
4561 | |||||||
4562 | 0 | 0 | my $x_best; | ||||
4563 | my $iter_best; | ||||||
4564 | 0 | 0 | my $abs_err_best; | ||||
4565 | 0 | 0 | my $rel_err_best; | ||||
4566 | |||||||
4567 | 0 | 0 | for (my $iter = 1 ; ; $iter++) { | ||||
4568 | |||||||
4569 | # Compute the residuals. | ||||||
4570 | |||||||
4571 | 0 | 0 | my $r = $A -> mmuladd($x, -$y); | ||||
4572 | |||||||
4573 | # Compute the errors. | ||||||
4574 | |||||||
4575 | 0 | 0 | my $r_norm = _hypot(map @$_, @$r); | ||||
4576 | 0 | 0 | my $abs_err = $r_norm; | ||||
4577 | 0 | 0 | 0 | my $rel_err = $y_norm == 0 ? $r_norm : $r_norm / $y_norm; | |||
4578 | |||||||
4579 | 0 | 0 | 0 | if ($debug) { | |||
4580 | 0 | 0 | printf "\n"; | ||||
4581 | 0 | 0 | printf "iter = %24d\n", $iter; | ||||
4582 | 0 | 0 | printf "r_norm = %24.15e\n", $r_norm; | ||||
4583 | 0 | 0 | printf "y_norm = %24.15e\n", $y_norm; | ||||
4584 | 0 | 0 | printf "abs_err = %24.15e\n", $abs_err; | ||||
4585 | 0 | 0 | printf "rel_err = %24.15e\n", $rel_err; | ||||
4586 | } | ||||||
4587 | |||||||
4588 | # See if this is the first round or we have an new all-time best. | ||||||
4589 | |||||||
4590 | 0 | 0 | 0 | 0 | if ($iter == 1 || | ||
0 | |||||||
4591 | $abs_err < $abs_err_best || | ||||||
4592 | $rel_err < $rel_err_best) | ||||||
4593 | { | ||||||
4594 | 0 | 0 | $x_best = $x; | ||||
4595 | 0 | 0 | $iter_best = $iter; | ||||
4596 | 0 | 0 | $abs_err_best = $abs_err; | ||||
4597 | 0 | 0 | $rel_err_best = $rel_err; | ||||
4598 | } | ||||||
4599 | |||||||
4600 | 0 | 0 | 0 | 0 | if ($abs_err_best <= $abs_tol || $rel_err_best <= $rel_tol) { | ||
4601 | 0 | 0 | last; | ||||
4602 | } else { | ||||||
4603 | |||||||
4604 | # If we still haven't got the desired result, but have reached | ||||||
4605 | # the maximum number of iterations, display a warning. | ||||||
4606 | |||||||
4607 | 0 | 0 | 0 | if ($iter == $max_iter) { | |||
4608 | 0 | 0 | carp "mldiv() stopped because the maximum number of", | ||||
4609 | " iterations (max. iter = $max_iter) was reached without", | ||||||
4610 | " converging to any of the desired tolerances (", | ||||||
4611 | "rel_tol = ", $rel_tol, ", ", | ||||||
4612 | "abs_tol = ", $abs_tol, ").", | ||||||
4613 | " The best iterate (iter. = ", $iter_best, ") has", | ||||||
4614 | " a relative residual of ", $rel_err_best, " and", | ||||||
4615 | " an absolute residual of ", $abs_err_best, "."; | ||||||
4616 | 0 | 0 | last; | ||||
4617 | } | ||||||
4618 | } | ||||||
4619 | |||||||
4620 | # Compute delta $x. | ||||||
4621 | |||||||
4622 | 0 | 0 | my $d = $r -> mldiv($A); | ||||
4623 | |||||||
4624 | # Compute the improved solution $x. | ||||||
4625 | |||||||
4626 | 0 | 0 | $x -= $d; | ||||
4627 | } | ||||||
4628 | |||||||
4629 | 0 | 0 | 0 | return $x_best, $rel_err_best, $abs_err_best, $iter_best if wantarray; | |||
4630 | 0 | 0 | return $x_best; | ||||
4631 | } | ||||||
4632 | |||||||
4633 | # If A is an M-by-M, compute A\y directly. | ||||||
4634 | |||||||
4635 | 10 | 50 | 35 | croak "mldiv(): sizes don't match" unless $y -> nrow() == $n; | |||
4636 | |||||||
4637 | # Create the augmented matrix. | ||||||
4638 | |||||||
4639 | 10 | 36 | my $x = $A -> catcol($y); | ||||
4640 | |||||||
4641 | # Perform forward elimination. | ||||||
4642 | |||||||
4643 | 10 | 20 | my ($rowperm, $colperm); | ||||
4644 | 10 | 19 | eval { ($x, $rowperm, $colperm) = $x -> felim_fp() }; | ||||
10 | 46 | ||||||
4645 | 10 | 50 | 89 | croak "mldiv(): matrix is singular or close to singular" if $@; | |||
4646 | |||||||
4647 | # Perform backward substitution. | ||||||
4648 | |||||||
4649 | 10 | 21 | eval { $x = $x -> bsubs() }; | ||||
10 | 30 | ||||||
4650 | 10 | 50 | 29 | croak "mldiv(): matrix is singular or close to singular" if $@; | |||
4651 | |||||||
4652 | # Remove left half to keep only the augmented matrix. | ||||||
4653 | |||||||
4654 | 10 | 40 | $x = $x -> splicecol(0, $n); | ||||
4655 | |||||||
4656 | # Reordering the rows is only necessary when full (complete) pivoting is | ||||||
4657 | # used above. If partial pivoting is used, this reordeing could be skipped, | ||||||
4658 | # but it executes so fast that it causes no harm to do it anyway. | ||||||
4659 | |||||||
4660 | 10 | 39 | @$x[ @$colperm ] = @$x; | ||||
4661 | |||||||
4662 | 10 | 49 | return $x; | ||||
4663 | } | ||||||
4664 | |||||||
4665 | =pod | ||||||
4666 | |||||||
4667 | =item sldiv() | ||||||
4668 | |||||||
4669 | Scalar (left) division. | ||||||
4670 | |||||||
4671 | $x -> sldiv($y); | ||||||
4672 | |||||||
4673 | For scalars, there is no difference between left and right division, so this is | ||||||
4674 | just an alias for C |
||||||
4675 | |||||||
4676 | =cut | ||||||
4677 | |||||||
4678 | sub sldiv { | ||||||
4679 | 2 | 2 | 1 | 9 | my $x = shift; | ||
4680 | 2 | 6 | $x -> sdiv(@_) | ||||
4681 | } | ||||||
4682 | |||||||
4683 | =pod | ||||||
4684 | |||||||
4685 | =item mrdiv() | ||||||
4686 | |||||||
4687 | Matrix right division. Returns the solution x of the linear system of equations | ||||||
4688 | x*A = y, by computing x = y/A = y*inv(A) = (A'\y')', where A' and y' denote the | ||||||
4689 | transpose of A and y, respectively, and \ is matrix left division (see | ||||||
4690 | C |
||||||
4691 | |||||||
4692 | $x = $y -> mrdiv($A); | ||||||
4693 | |||||||
4694 | See the section L for a list of | ||||||
4695 | additional parameters that can be used for trying to obtain a better solution | ||||||
4696 | through iteration. | ||||||
4697 | |||||||
4698 | =cut | ||||||
4699 | |||||||
4700 | sub mrdiv { | ||||||
4701 | 1 | 50 | 1 | 1 | 20 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
4702 | #croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | ||||||
4703 | 1 | 2 | my $y = shift; | ||||
4704 | 1 | 2 | my $class = ref $y; | ||||
4705 | |||||||
4706 | 1 | 3 | my $A = shift; | ||||
4707 | 1 | 50 | 33 | 14 | $A = $class -> new($A) unless defined(blessed($A)) && $A -> isa($class); | ||
4708 | |||||||
4709 | 1 | 8 | $y -> transpose() -> mldiv($A -> transpose(), @_) -> transpose(); | ||||
4710 | } | ||||||
4711 | |||||||
4712 | =pod | ||||||
4713 | |||||||
4714 | =item srdiv() | ||||||
4715 | |||||||
4716 | Scalar (right) division. | ||||||
4717 | |||||||
4718 | $x -> srdiv($y); | ||||||
4719 | |||||||
4720 | For scalars, there is no difference between left and right division, so this is | ||||||
4721 | just an alias for C |
||||||
4722 | |||||||
4723 | =cut | ||||||
4724 | |||||||
4725 | sub srdiv { | ||||||
4726 | 2 | 2 | 1 | 12 | my $x = shift; | ||
4727 | 2 | 6 | $x -> sdiv(@_) | ||||
4728 | } | ||||||
4729 | |||||||
4730 | =pod | ||||||
4731 | |||||||
4732 | =item sdiv() | ||||||
4733 | |||||||
4734 | Scalar division. Performs scalar (element by element) division. | ||||||
4735 | |||||||
4736 | $x -> sdiv($y); | ||||||
4737 | |||||||
4738 | =cut | ||||||
4739 | |||||||
4740 | sub sdiv { | ||||||
4741 | 6 | 50 | 6 | 1 | 32 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
4742 | 6 | 50 | 14 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
4743 | 6 | 9 | my $x = shift; | ||||
4744 | |||||||
4745 | 6 | 126 | 23 | my $sub = sub { $_[0] / $_[1] }; | |||
126 | 250 | ||||||
4746 | 6 | 17 | $x -> sapply($sub, @_); | ||||
4747 | } | ||||||
4748 | |||||||
4749 | =pod | ||||||
4750 | |||||||
4751 | =item mpinv() | ||||||
4752 | |||||||
4753 | Matrix pseudo-inverse, C<(A'*A)^(-1)*A'>, where "C<'>" is the transpose | ||||||
4754 | operator. | ||||||
4755 | |||||||
4756 | See the section L for a list of | ||||||
4757 | additional parameters that can be used for trying to obtain a better solution | ||||||
4758 | through iteration. | ||||||
4759 | |||||||
4760 | =cut | ||||||
4761 | |||||||
4762 | sub mpinv { | ||||||
4763 | 2 | 2 | 1 | 21 | my $A = shift; | ||
4764 | |||||||
4765 | 2 | 6 | my $At = $A -> transpose(); | ||||
4766 | 2 | 8 | return $At -> mldiv($At -> mmul($A), @_); | ||||
4767 | } | ||||||
4768 | |||||||
4769 | =pod | ||||||
4770 | |||||||
4771 | =item pinv() | ||||||
4772 | |||||||
4773 | This is an alias for C |
||||||
4774 | |||||||
4775 | =cut | ||||||
4776 | |||||||
4777 | sub pinv { | ||||||
4778 | 1 | 1 | 1 | 7 | my $x = shift; | ||
4779 | 1 | 4 | $x -> mpinv(); | ||||
4780 | } | ||||||
4781 | |||||||
4782 | =pod | ||||||
4783 | |||||||
4784 | =item pinvert() | ||||||
4785 | |||||||
4786 | This is an alias for C |
||||||
4787 | |||||||
4788 | =cut | ||||||
4789 | |||||||
4790 | sub pinvert { | ||||||
4791 | 0 | 0 | 1 | 0 | my $x = shift; | ||
4792 | 0 | 0 | $x -> mpinv(); | ||||
4793 | } | ||||||
4794 | |||||||
4795 | =pod | ||||||
4796 | |||||||
4797 | =item solve() | ||||||
4798 | |||||||
4799 | Solves a equation system given by the matrix. The number of colums must be | ||||||
4800 | greater than the number of rows. If variables are dependent from each other, | ||||||
4801 | the second and all further of the dependent coefficients are 0. This means the | ||||||
4802 | method can handle such systems. The method returns a matrix containing the | ||||||
4803 | solutions in its columns or B |
||||||
4804 | |||||||
4805 | =cut | ||||||
4806 | |||||||
4807 | sub solve { | ||||||
4808 | 3 | 3 | 1 | 22 | my $self = shift; | ||
4809 | 3 | 7 | my $class = ref($self); | ||||
4810 | |||||||
4811 | 3 | 6 | my $m = $self->clone(); | ||||
4812 | 3 | 5 | my $mr = $#{$m}; | ||||
3 | 7 | ||||||
4813 | 3 | 6 | my $mc = $#{$m->[0]}; | ||||
3 | 14 | ||||||
4814 | 3 | 7 | my $f; | ||||
4815 | my $try; | ||||||
4816 | |||||||
4817 | 3 | 50 | 9 | return undef if $mc <= $mr; | |||
4818 | 3 | 8 | ROW: for(my $i = 0; $i <= $mr; $i++) { | ||||
4819 | 9 | 12 | $try=$i; | ||||
4820 | # make diagonal element nonzero if possible | ||||||
4821 | 9 | 25 | while (abs($m->[$i]->[$i]) < $eps) { | ||||
4822 | 0 | 0 | 0 | last ROW if $try++ > $mr; | |||
4823 | 0 | 0 | my $row = splice(@{$m},$i,1); | ||||
0 | 0 | ||||||
4824 | 0 | 0 | push(@{$m}, $row); | ||||
0 | 0 | ||||||
4825 | } | ||||||
4826 | |||||||
4827 | # normalize row | ||||||
4828 | 9 | 12 | $f = $m->[$i]->[$i]; | ||||
4829 | 9 | 21 | for (my $k = 0; $k <= $mc; $k++) { | ||||
4830 | 42 | 83 | $m->[$i]->[$k] /= $f; | ||||
4831 | } | ||||||
4832 | # subtract multiple of designated row from other rows | ||||||
4833 | 9 | 20 | for (my $j = 0; $j <= $mr; $j++) { | ||||
4834 | 27 | 100 | 62 | next if $i == $j; | |||
4835 | 18 | 25 | $f = $m->[$j]->[$i]; | ||||
4836 | 18 | 34 | for (my $k = 0; $k <= $mc; $k++) { | ||||
4837 | 84 | 168 | $m->[$j]->[$k] -= $m->[$i]->[$k] * $f; | ||||
4838 | } | ||||||
4839 | } | ||||||
4840 | } | ||||||
4841 | |||||||
4842 | # Answer is in augmented column | ||||||
4843 | 3 | 10 | $class -> new([ @{ $m -> transpose }[$mr+1 .. $mc] ]) -> transpose; | ||||
3 | 21 | ||||||
4844 | } | ||||||
4845 | |||||||
4846 | =pod | ||||||
4847 | |||||||
4848 | =back | ||||||
4849 | |||||||
4850 | =head3 Factorisation | ||||||
4851 | |||||||
4852 | =over 4 | ||||||
4853 | |||||||
4854 | =item chol() | ||||||
4855 | |||||||
4856 | Cholesky decomposition. | ||||||
4857 | |||||||
4858 | $L = $A -> chol(); | ||||||
4859 | |||||||
4860 | Every symmetric, positive definite matrix A can be decomposed into a product of | ||||||
4861 | a unique lower triangular matrix L and its transpose, so that A = L*L', where L' | ||||||
4862 | denotes the transpose of L. L is called the Cholesky factor of A. | ||||||
4863 | |||||||
4864 | =cut | ||||||
4865 | |||||||
4866 | sub chol { | ||||||
4867 | 2 | 2 | 1 | 23 | my $x = shift; | ||
4868 | 2 | 4 | my $class = ref $x; | ||||
4869 | |||||||
4870 | 2 | 50 | 6 | croak "Input matrix must be a symmetric" unless $x -> is_symmetric(); | |||
4871 | |||||||
4872 | 2 | 13 | my $y = [ map [ (0) x @$x ], @$x ]; # matrix of zeros | ||||
4873 | 2 | 6 | for my $i (0 .. $#$x) { | ||||
4874 | 7 | 24 | for my $j (0 .. $i) { | ||||
4875 | 16 | 25 | my $z = $x->[$i][$j]; | ||||
4876 | 16 | 38 | $z -= $y->[$i][$_] * $y->[$j][$_] for 0 .. $j; | ||||
4877 | 16 | 100 | 25 | if ($i == $j) { | |||
4878 | 7 | 50 | 14 | croak "Matrix is not positive definite" if $z < 0; | |||
4879 | 7 | 16 | $y->[$i][$j] = sqrt($z); | ||||
4880 | } else { | ||||||
4881 | 9 | 50 | 17 | croak "Matrix is not positive definite" if $y->[$j][$j] == 0; | |||
4882 | 9 | 15 | $y->[$i][$j] = $z / $y->[$j][$j]; | ||||
4883 | } | ||||||
4884 | } | ||||||
4885 | } | ||||||
4886 | 2 | 7 | bless $y, $class; | ||||
4887 | } | ||||||
4888 | |||||||
4889 | =pod | ||||||
4890 | |||||||
4891 | =back | ||||||
4892 | |||||||
4893 | =head3 Miscellaneous matrix functions | ||||||
4894 | |||||||
4895 | =over 4 | ||||||
4896 | |||||||
4897 | =item transpose() | ||||||
4898 | |||||||
4899 | Returns the transposed matrix. This is the matrix where colums and rows of the | ||||||
4900 | argument matrix are swapped. | ||||||
4901 | |||||||
4902 | A subclass implementing matrices of complex numbers should provide a | ||||||
4903 | C |
||||||
4904 | |||||||
4905 | =cut | ||||||
4906 | |||||||
4907 | sub transpose { | ||||||
4908 | 34 | 34 | 1 | 226 | my $x = shift; | ||
4909 | 34 | 62 | my $class = ref $x; | ||||
4910 | |||||||
4911 | 34 | 63 | my $y = bless [], $class; | ||||
4912 | 34 | 92 | my $ncolx = $x -> ncol(); | ||||
4913 | 34 | 100 | 106 | return $y if $ncolx == 0; | |||
4914 | |||||||
4915 | 30 | 76 | for my $j (0 .. $ncolx - 1) { | ||||
4916 | 88 | 281 | push @$y, [ map $_->[$j], @$x ]; | ||||
4917 | } | ||||||
4918 | 30 | 104 | return $y; | ||||
4919 | } | ||||||
4920 | |||||||
4921 | =pod | ||||||
4922 | |||||||
4923 | =item minormatrix() | ||||||
4924 | |||||||
4925 | Minor matrix. The (i,j) minor matrix of a matrix is identical to the original | ||||||
4926 | matrix except that row i and column j has been removed. | ||||||
4927 | |||||||
4928 | $y = $x -> minormatrix($i, $j); | ||||||
4929 | |||||||
4930 | See also C |
||||||
4931 | |||||||
4932 | =cut | ||||||
4933 | |||||||
4934 | sub minormatrix { | ||||||
4935 | 37 | 50 | 37 | 1 | 96 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 3; | |
4936 | 37 | 50 | 70 | croak "Too many arguments for ", (caller(0))[3] if @_ > 3; | |||
4937 | 37 | 43 | my $x = shift; | ||||
4938 | 37 | 70 | my $class = ref $x; | ||||
4939 | |||||||
4940 | 37 | 65 | my ($m, $n) = $x -> size(); | ||||
4941 | |||||||
4942 | 37 | 53 | my $i = shift; | ||||
4943 | 37 | 50 | 33 | 138 | croak "Row index value $i outside of $m-by-$n matrix" | ||
4944 | unless 0 <= $i && $i < $m; | ||||||
4945 | |||||||
4946 | 37 | 52 | my $j = shift; | ||||
4947 | 37 | 50 | 33 | 118 | croak "Column index value $j outside of $m-by-$n matrix" | ||
4948 | unless 0 <= $j && $j < $n; | ||||||
4949 | |||||||
4950 | # We could just use the following, which is simpler, but also slower: | ||||||
4951 | # | ||||||
4952 | # $x -> delrow($i) -> delcol($j); | ||||||
4953 | |||||||
4954 | 37 | 88 | my @rowidx = 0 .. $m - 1; | ||||
4955 | 37 | 62 | splice @rowidx, $i, 1; | ||||
4956 | |||||||
4957 | 37 | 66 | my @colidx = 0 .. $n - 1; | ||||
4958 | 37 | 61 | splice @colidx, $j, 1; | ||||
4959 | |||||||
4960 | 37 | 53 | bless [ map [ @{$_}[@colidx] ], @{$x}[@rowidx] ], $class; | ||||
74 | 245 | ||||||
37 | 73 | ||||||
4961 | } | ||||||
4962 | |||||||
4963 | =pod | ||||||
4964 | |||||||
4965 | =item minor() | ||||||
4966 | |||||||
4967 | Minor. The (i,j) minor of a matrix is the determinant of the (i,j) minor matrix. | ||||||
4968 | |||||||
4969 | $y = $x -> minor($i, $j); | ||||||
4970 | |||||||
4971 | See also C |
||||||
4972 | |||||||
4973 | =cut | ||||||
4974 | |||||||
4975 | sub minor { | ||||||
4976 | 36 | 50 | 36 | 1 | 4417 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 3; | |
4977 | 36 | 50 | 77 | croak "Too many arguments for ", (caller(0))[3] if @_ > 3; | |||
4978 | 36 | 48 | my $x = shift; | ||||
4979 | |||||||
4980 | 36 | 50 | 93 | croak "Matrix must be square" unless $x -> is_square(); | |||
4981 | |||||||
4982 | 36 | 79 | $x -> minormatrix(@_) -> determinant(); | ||||
4983 | } | ||||||
4984 | |||||||
4985 | =pod | ||||||
4986 | |||||||
4987 | =item cofactormatrix() | ||||||
4988 | |||||||
4989 | Cofactor matrix. Element (i,j) in the cofactor matrix is the (i,j) cofactor, | ||||||
4990 | which is (-1)^(i+j) multiplied by the determinant of the (i,j) minor matrix. | ||||||
4991 | |||||||
4992 | $y = $x -> cofactormatrix(); | ||||||
4993 | |||||||
4994 | =cut | ||||||
4995 | |||||||
4996 | sub cofactormatrix { | ||||||
4997 | 4 | 50 | 4 | 1 | 32 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
4998 | 4 | 50 | 12 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
4999 | 4 | 8 | my $x = shift; | ||||
5000 | |||||||
5001 | 4 | 14 | my ($m, $n) = $x -> size(); | ||||
5002 | 4 | 50 | 12 | croak "matrix must be square" unless $m == $n; | |||
5003 | |||||||
5004 | 4 | 8 | my $y = []; | ||||
5005 | 4 | 12 | for my $i (0 .. $m - 1) { | ||||
5006 | 6 | 12 | for my $j (0 .. $n - 1) { | ||||
5007 | 18 | 62 | $y -> [$i][$j] = (-1) ** ($i + $j) * $x -> minor($i, $j); | ||||
5008 | } | ||||||
5009 | } | ||||||
5010 | |||||||
5011 | 4 | 16 | bless $y; | ||||
5012 | } | ||||||
5013 | |||||||
5014 | =pod | ||||||
5015 | |||||||
5016 | =item cofactor() | ||||||
5017 | |||||||
5018 | Cofactor. The (i,j) cofactor of a matrix is (-1)**(i+j) times the (i,j) minor of | ||||||
5019 | the matrix. | ||||||
5020 | |||||||
5021 | $y = $x -> cofactor($i, $j); | ||||||
5022 | |||||||
5023 | =cut | ||||||
5024 | |||||||
5025 | sub cofactor { | ||||||
5026 | 9 | 50 | 9 | 1 | 4100 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 3; | |
5027 | 9 | 50 | 21 | croak "Too many arguments for ", (caller(0))[3] if @_ > 3; | |||
5028 | 9 | 14 | my $x = shift; | ||||
5029 | |||||||
5030 | 9 | 24 | my ($m, $n) = $x -> size(); | ||||
5031 | 9 | 50 | 20 | croak "matrix must be square" unless $m == $n; | |||
5032 | |||||||
5033 | 9 | 15 | my ($i, $j) = @_; | ||||
5034 | 9 | 39 | (-1) ** ($i + $j) * $x -> minor($i, $j); | ||||
5035 | } | ||||||
5036 | |||||||
5037 | =pod | ||||||
5038 | |||||||
5039 | =item adjugate() | ||||||
5040 | |||||||
5041 | Adjugate of a matrix. The adjugate, also called classical adjoint or adjunct, of | ||||||
5042 | a square matrix is the transpose of the cofactor matrix. | ||||||
5043 | |||||||
5044 | $y = $x -> adjugate(); | ||||||
5045 | |||||||
5046 | =cut | ||||||
5047 | |||||||
5048 | sub adjugate { | ||||||
5049 | 2 | 50 | 2 | 1 | 29 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5050 | 2 | 50 | 5 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
5051 | 2 | 5 | my $x = shift; | ||||
5052 | |||||||
5053 | 2 | 7 | $x -> cofactormatrix() -> transpose(); | ||||
5054 | } | ||||||
5055 | |||||||
5056 | =pod | ||||||
5057 | |||||||
5058 | =item det() | ||||||
5059 | |||||||
5060 | Determinant. Returns the determinant of a matrix. The matrix must be square. | ||||||
5061 | |||||||
5062 | $y = $x -> det(); | ||||||
5063 | |||||||
5064 | The matrix is computed by forward elimination, which might cause round-off | ||||||
5065 | errors. So for example, the determinant might be a non-integer even for an | ||||||
5066 | integer matrix. | ||||||
5067 | |||||||
5068 | =cut | ||||||
5069 | |||||||
5070 | sub det { | ||||||
5071 | 59 | 50 | 59 | 1 | 169 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5072 | 59 | 50 | 112 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
5073 | 59 | 95 | my $x = shift; | ||||
5074 | 59 | 96 | my $class = ref $x; | ||||
5075 | |||||||
5076 | 59 | 111 | my ($nrowx, $ncolx) = $x -> size(); | ||||
5077 | 59 | 50 | 121 | croak "matrix must be square" unless $nrowx == $ncolx; | |||
5078 | |||||||
5079 | # Create the augmented matrix. | ||||||
5080 | |||||||
5081 | 59 | 133 | $x = $x -> catcol($class -> id($nrowx)); | ||||
5082 | |||||||
5083 | # Perform forward elimination. | ||||||
5084 | |||||||
5085 | 59 | 168 | my ($iperm, $jperm, $iswap, $jswap); | ||||
5086 | 59 | 87 | eval { ($x, $iperm, $jperm, $iswap, $jswap) = $x -> felim_fp() }; | ||||
59 | 139 | ||||||
5087 | |||||||
5088 | # Compute the product of the elements on the diagonal. | ||||||
5089 | |||||||
5090 | 59 | 200 | my $det = 1; | ||||
5091 | 59 | 144 | for (my $i = 0 ; $i < $nrowx ; ++$i) { | ||||
5092 | 140 | 100 | 332 | last if ($det *= $x -> [$i][$i]) == 0; | |||
5093 | } | ||||||
5094 | |||||||
5095 | # Adjust the sign according to the number of inversions. | ||||||
5096 | |||||||
5097 | 59 | 100 | 150 | $det = ($iswap + $jswap) % 2 ? -$det : $det; | |||
5098 | |||||||
5099 | 59 | 249 | return $det; | ||||
5100 | } | ||||||
5101 | |||||||
5102 | =pod | ||||||
5103 | |||||||
5104 | =item determinant() | ||||||
5105 | |||||||
5106 | This is an alias for C |
||||||
5107 | |||||||
5108 | =cut | ||||||
5109 | |||||||
5110 | sub determinant { | ||||||
5111 | 56 | 56 | 1 | 104 | my $x = shift; | ||
5112 | 56 | 148 | $x -> det(@_); | ||||
5113 | } | ||||||
5114 | |||||||
5115 | =pod | ||||||
5116 | |||||||
5117 | =item detr() | ||||||
5118 | |||||||
5119 | Determinant. Returns the determinant of a matrix. The matrix must be square. | ||||||
5120 | |||||||
5121 | $y = $x -> determinant(); | ||||||
5122 | |||||||
5123 | The determinant is computed by recursion, so it is generally much slower than | ||||||
5124 | C |
||||||
5125 | |||||||
5126 | =cut | ||||||
5127 | |||||||
5128 | sub detr { | ||||||
5129 | 3 | 3 | 1 | 16 | my $x = shift; | ||
5130 | 3 | 7 | my $class = ref($x); | ||||
5131 | 3 | 7 | my $imax = $#$x; | ||||
5132 | 3 | 5 | my $jmax = $#{$x->[0]}; | ||||
3 | 6 | ||||||
5133 | |||||||
5134 | 3 | 50 | 11 | return undef unless $imax == $jmax; # input must be a square matrix | |||
5135 | |||||||
5136 | # Matrix is 3 × 3 | ||||||
5137 | |||||||
5138 | return | ||||||
5139 | 3 | 100 | 19 | $x -> [0][0] * ($x -> [1][1] * $x -> [2][2] - $x -> [1][2] * $x -> [2][1]) | |||
5140 | - $x -> [0][1] * ($x -> [1][0] * $x -> [2][2] - $x -> [1][2] * $x -> [2][0]) | ||||||
5141 | + $x -> [0][2] * ($x -> [1][0] * $x -> [2][1] - $x -> [1][1] * $x -> [2][0]) | ||||||
5142 | if $imax == 2; | ||||||
5143 | |||||||
5144 | # Matrix is 2 × 2 | ||||||
5145 | |||||||
5146 | 2 | 50 | 5 | return $x -> [0][0] * $x -> [1][1] - $x -> [1][0] * $x -> [0][1] | |||
5147 | if $imax == 1; | ||||||
5148 | |||||||
5149 | # Matrix is 1 × 1 | ||||||
5150 | |||||||
5151 | 2 | 100 | 6 | return $x -> [0][0] if $imax == 0; | |||
5152 | |||||||
5153 | # Matrix is N × N for N > 3. | ||||||
5154 | |||||||
5155 | 1 | 2 | my $det = 0; | ||||
5156 | |||||||
5157 | # Create a matrix with column 0 removed. We only need to do this once. | ||||||
5158 | 1 | 6 | my $x0 = bless [ map [ @{$_}[1 .. $jmax] ], @$x ], $class; | ||||
5 | 16 | ||||||
5159 | |||||||
5160 | 1 | 4 | for my $i (0 .. $imax) { | ||||
5161 | |||||||
5162 | # Create a matrix with row $i and column 0 removed. | ||||||
5163 | 5 | 13 | my $x1 = bless [ map [ @$_ ], @{$x0}[ 0 .. $i-1, $i+1 .. $imax ] ], $class; | ||||
5 | 25 | ||||||
5164 | |||||||
5165 | 5 | 12 | my $term = $x1 -> determinant(); | ||||
5166 | 5 | 100 | 22 | $term *= $i % 2 ? -$x->[$i][0] : $x->[$i][0]; | |||
5167 | |||||||
5168 | 5 | 17 | $det += $term; | ||||
5169 | } | ||||||
5170 | |||||||
5171 | 1 | 14 | return $det; | ||||
5172 | } | ||||||
5173 | |||||||
5174 | =pod | ||||||
5175 | |||||||
5176 | =back | ||||||
5177 | |||||||
5178 | =head3 Elementwise mathematical functions | ||||||
5179 | |||||||
5180 | These method work on each element of a matrix. | ||||||
5181 | |||||||
5182 | =over 4 | ||||||
5183 | |||||||
5184 | =item int() | ||||||
5185 | |||||||
5186 | Truncate to integer. Truncates each element to an integer. | ||||||
5187 | |||||||
5188 | $y = $x -> int(); | ||||||
5189 | |||||||
5190 | This function is effectivly the same as | ||||||
5191 | |||||||
5192 | $y = $x -> map(sub { int }); | ||||||
5193 | |||||||
5194 | =cut | ||||||
5195 | |||||||
5196 | sub int { | ||||||
5197 | 4 | 50 | 4 | 1 | 28 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5198 | 4 | 50 | 10 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
5199 | 4 | 6 | my $x = shift; | ||||
5200 | |||||||
5201 | 4 | 61 | bless [ map [ map int($_), @$_ ], @$x ], ref $x; | ||||
5202 | } | ||||||
5203 | |||||||
5204 | =pod | ||||||
5205 | |||||||
5206 | =item floor() | ||||||
5207 | |||||||
5208 | Round to negative infinity. Rounds each element to negative infinity. | ||||||
5209 | |||||||
5210 | $y = $x -> floor(); | ||||||
5211 | |||||||
5212 | =cut | ||||||
5213 | |||||||
5214 | sub floor { | ||||||
5215 | 2 | 50 | 2 | 1 | 27 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5216 | 2 | 50 | 6 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
5217 | 2 | 4 | my $x = shift; | ||||
5218 | |||||||
5219 | 2 | 46 | bless [ map { [ | ||||
5220 | map { | ||||||
5221 | 6 | 11 | my $ix = CORE::int($_); | ||||
24 | 36 | ||||||
5222 | 24 | 100 | 49 | ($ix <= $_) ? $ix : $ix - 1; | |||
5223 | } @$_ | ||||||
5224 | ] } @$x ], ref $x; | ||||||
5225 | } | ||||||
5226 | |||||||
5227 | =pod | ||||||
5228 | |||||||
5229 | =item ceil() | ||||||
5230 | |||||||
5231 | Round to positive infinity. Rounds each element to positive infinity. | ||||||
5232 | |||||||
5233 | $y = $x -> int(); | ||||||
5234 | |||||||
5235 | =cut | ||||||
5236 | |||||||
5237 | sub ceil { | ||||||
5238 | 2 | 50 | 2 | 1 | 27 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5239 | 2 | 50 | 6 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
5240 | 2 | 5 | my $x = shift; | ||||
5241 | |||||||
5242 | 2 | 42 | bless [ map { [ | ||||
5243 | map { | ||||||
5244 | 6 | 11 | my $ix = CORE::int($_); | ||||
24 | 34 | ||||||
5245 | 24 | 100 | 49 | ($ix >= $_) ? $ix : $ix + 1; | |||
5246 | } @$_ | ||||||
5247 | ] } @$x ], ref $x; | ||||||
5248 | } | ||||||
5249 | |||||||
5250 | =pod | ||||||
5251 | |||||||
5252 | =item abs() | ||||||
5253 | |||||||
5254 | Absolute value. The absolute value of each element. | ||||||
5255 | |||||||
5256 | $y = $x -> abs(); | ||||||
5257 | |||||||
5258 | This is effectivly the same as | ||||||
5259 | |||||||
5260 | $y = $x -> map(sub { abs }); | ||||||
5261 | |||||||
5262 | =cut | ||||||
5263 | |||||||
5264 | sub abs { | ||||||
5265 | 3 | 50 | 3 | 1 | 37 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5266 | 3 | 50 | 10 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
5267 | 3 | 4 | my $x = shift; | ||||
5268 | |||||||
5269 | 3 | 78 | bless [ map [ map abs($_), @$_ ], @$x ], ref $x; | ||||
5270 | } | ||||||
5271 | |||||||
5272 | =pod | ||||||
5273 | |||||||
5274 | =item sign() | ||||||
5275 | |||||||
5276 | Sign function. Apply the sign function to each element. | ||||||
5277 | |||||||
5278 | $y = $x -> sign(); | ||||||
5279 | |||||||
5280 | This is effectivly the same as | ||||||
5281 | |||||||
5282 | $y = $x -> map(sub { $_ <=> 0 }); | ||||||
5283 | |||||||
5284 | =cut | ||||||
5285 | |||||||
5286 | sub sign { | ||||||
5287 | 2 | 50 | 2 | 1 | 12 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5288 | 2 | 50 | 6 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
5289 | 2 | 3 | my $x = shift; | ||||
5290 | |||||||
5291 | 2 | 7 | bless [ map [ map { $_ <=> 0 } @$_ ], @$x ], ref $x; | ||||
24 | 41 | ||||||
5292 | } | ||||||
5293 | |||||||
5294 | =pod | ||||||
5295 | |||||||
5296 | =back | ||||||
5297 | |||||||
5298 | =head3 Columnwise or rowwise mathematical functions | ||||||
5299 | |||||||
5300 | These method work along each column or row of a matrix. Some of these methods | ||||||
5301 | return a matrix with the same size as the invocand matrix. Other methods | ||||||
5302 | collapse the dimension, so that, e.g., if the method is applied to the first | ||||||
5303 | dimension a I -by-I |
||||||
5304 | the second dimension, it becomes a I -by-1 matrix. Others, like C |
||||||
5305 | reduces the length along the dimension by one, so a I -by-I |
||||||
5306 | a (I -1)-by-I -by-(I |
||||||
5307 | |||||||
5308 | =over 4 | ||||||
5309 | |||||||
5310 | =item sum() | ||||||
5311 | |||||||
5312 | Sum of elements along various dimensions of a matrix. If the dimension argument | ||||||
5313 | is not given, the first non-singleton dimension is used. | ||||||
5314 | |||||||
5315 | $y = $x -> sum($dim); | ||||||
5316 | $y = $x -> sum(); | ||||||
5317 | |||||||
5318 | =cut | ||||||
5319 | |||||||
5320 | sub sum { | ||||||
5321 | 12 | 50 | 12 | 1 | 80 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5322 | 12 | 50 | 25 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5323 | 12 | 20 | my $x = shift; | ||||
5324 | 12 | 37 | $x -> apply(\&_sum, @_); | ||||
5325 | } | ||||||
5326 | |||||||
5327 | =pod | ||||||
5328 | |||||||
5329 | =item prod() | ||||||
5330 | |||||||
5331 | Product of elements along various dimensions of a matrix. If the dimension | ||||||
5332 | argument is not given, the first non-singleton dimension is used. | ||||||
5333 | |||||||
5334 | $y = $x -> prod($dim); | ||||||
5335 | $y = $x -> prod(); | ||||||
5336 | |||||||
5337 | =cut | ||||||
5338 | |||||||
5339 | sub prod { | ||||||
5340 | 12 | 50 | 12 | 1 | 79 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5341 | 12 | 50 | 25 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5342 | 12 | 16 | my $x = shift; | ||||
5343 | 12 | 38 | $x -> apply(\&_prod, @_); | ||||
5344 | } | ||||||
5345 | |||||||
5346 | =pod | ||||||
5347 | |||||||
5348 | =item mean() | ||||||
5349 | |||||||
5350 | Mean of elements along various dimensions of a matrix. If the dimension argument | ||||||
5351 | is not given, the first non-singleton dimension is used. | ||||||
5352 | |||||||
5353 | $y = $x -> mean($dim); | ||||||
5354 | $y = $x -> mean(); | ||||||
5355 | |||||||
5356 | =cut | ||||||
5357 | |||||||
5358 | sub mean { | ||||||
5359 | 12 | 50 | 12 | 1 | 96 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5360 | 12 | 50 | 28 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5361 | 12 | 19 | my $x = shift; | ||||
5362 | 12 | 44 | $x -> apply(\&_mean, @_); | ||||
5363 | } | ||||||
5364 | |||||||
5365 | =pod | ||||||
5366 | |||||||
5367 | =item hypot() | ||||||
5368 | |||||||
5369 | Hypotenuse. Computes the square root of the sum of the square of each element | ||||||
5370 | along various dimensions of a matrix. If the dimension argument is not given, | ||||||
5371 | the first non-singleton dimension is used. | ||||||
5372 | |||||||
5373 | $y = $x -> hypot($dim); | ||||||
5374 | $y = $x -> hypot(); | ||||||
5375 | |||||||
5376 | For example, | ||||||
5377 | |||||||
5378 | $x = Math::Matrix -> new([[3, 4], | ||||||
5379 | [5, 12]]); | ||||||
5380 | $y = $x -> hypot(2); | ||||||
5381 | |||||||
5382 | returns the 2-by-1 matrix | ||||||
5383 | |||||||
5384 | [ 5 ] | ||||||
5385 | [ 13 ] | ||||||
5386 | |||||||
5387 | =cut | ||||||
5388 | |||||||
5389 | sub hypot { | ||||||
5390 | 12 | 50 | 12 | 1 | 74 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5391 | 12 | 50 | 28 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5392 | 12 | 19 | my $x = shift; | ||||
5393 | 12 | 39 | $x -> apply(\&_hypot, @_); | ||||
5394 | } | ||||||
5395 | |||||||
5396 | =pod | ||||||
5397 | |||||||
5398 | =item min() | ||||||
5399 | |||||||
5400 | Minimum of elements along various dimensions of a matrix. If the dimension | ||||||
5401 | argument is not given, the first non-singleton dimension is used. | ||||||
5402 | |||||||
5403 | $y = $x -> min($dim); | ||||||
5404 | $y = $x -> min(); | ||||||
5405 | |||||||
5406 | =cut | ||||||
5407 | |||||||
5408 | sub min { | ||||||
5409 | 12 | 50 | 12 | 1 | 74 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5410 | 12 | 50 | 25 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5411 | 12 | 14 | my $x = shift; | ||||
5412 | 12 | 34 | $x -> apply(\&_min, @_); | ||||
5413 | } | ||||||
5414 | |||||||
5415 | =pod | ||||||
5416 | |||||||
5417 | =item max() | ||||||
5418 | |||||||
5419 | Maximum of elements along various dimensions of a matrix. If the dimension | ||||||
5420 | argument is not given, the first non-singleton dimension is used. | ||||||
5421 | |||||||
5422 | $y = $x -> max($dim); | ||||||
5423 | $y = $x -> max(); | ||||||
5424 | |||||||
5425 | =cut | ||||||
5426 | |||||||
5427 | sub max { | ||||||
5428 | 12 | 50 | 12 | 1 | 79 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5429 | 12 | 50 | 26 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5430 | 12 | 15 | my $x = shift; | ||||
5431 | 12 | 36 | $x -> apply(\&_max, @_); | ||||
5432 | } | ||||||
5433 | |||||||
5434 | =pod | ||||||
5435 | |||||||
5436 | =item median() | ||||||
5437 | |||||||
5438 | Median of elements along various dimensions of a matrix. If the dimension | ||||||
5439 | argument is not given, the first non-singleton dimension is used. | ||||||
5440 | |||||||
5441 | $y = $x -> median($dim); | ||||||
5442 | $y = $x -> median(); | ||||||
5443 | |||||||
5444 | =cut | ||||||
5445 | |||||||
5446 | sub median { | ||||||
5447 | 12 | 50 | 12 | 1 | 67 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5448 | 12 | 50 | 22 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5449 | 12 | 14 | my $x = shift; | ||||
5450 | 12 | 31 | $x -> apply(\&_median, @_); | ||||
5451 | } | ||||||
5452 | |||||||
5453 | =pod | ||||||
5454 | |||||||
5455 | =item cumsum() | ||||||
5456 | |||||||
5457 | Returns the cumulative sum along various dimensions of a matrix. If the | ||||||
5458 | dimension argument is not given, the first non-singleton dimension is used. | ||||||
5459 | |||||||
5460 | $y = $x -> cumsum($dim); | ||||||
5461 | $y = $x -> cumsum(); | ||||||
5462 | |||||||
5463 | =cut | ||||||
5464 | |||||||
5465 | sub cumsum { | ||||||
5466 | 12 | 50 | 12 | 1 | 80 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5467 | 12 | 50 | 24 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5468 | 12 | 19 | my $x = shift; | ||||
5469 | 12 | 39 | $x -> apply(\&_cumsum, @_); | ||||
5470 | } | ||||||
5471 | |||||||
5472 | =pod | ||||||
5473 | |||||||
5474 | =item cumprod() | ||||||
5475 | |||||||
5476 | Returns the cumulative product along various dimensions of a matrix. If the | ||||||
5477 | dimension argument is not given, the first non-singleton dimension is used. | ||||||
5478 | |||||||
5479 | $y = $x -> cumprod($dim); | ||||||
5480 | $y = $x -> cumprod(); | ||||||
5481 | |||||||
5482 | =cut | ||||||
5483 | |||||||
5484 | sub cumprod { | ||||||
5485 | 12 | 50 | 12 | 1 | 80 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5486 | 12 | 50 | 22 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5487 | 12 | 18 | my $x = shift; | ||||
5488 | 12 | 37 | $x -> apply(\&_cumprod, @_); | ||||
5489 | } | ||||||
5490 | |||||||
5491 | =pod | ||||||
5492 | |||||||
5493 | =item cummean() | ||||||
5494 | |||||||
5495 | Returns the cumulative mean along various dimensions of a matrix. If the | ||||||
5496 | dimension argument is not given, the first non-singleton dimension is used. | ||||||
5497 | |||||||
5498 | $y = $x -> cummean($dim); | ||||||
5499 | $y = $x -> cummean(); | ||||||
5500 | |||||||
5501 | =cut | ||||||
5502 | |||||||
5503 | sub cummean { | ||||||
5504 | 12 | 50 | 12 | 1 | 81 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5505 | 12 | 50 | 27 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5506 | 12 | 22 | my $x = shift; | ||||
5507 | 12 | 44 | $x -> apply(\&_cummean, @_); | ||||
5508 | } | ||||||
5509 | |||||||
5510 | =pod | ||||||
5511 | |||||||
5512 | =item diff() | ||||||
5513 | |||||||
5514 | Returns the differences between adjacent elements. If the dimension argument is | ||||||
5515 | not given, the first non-singleton dimension is used. | ||||||
5516 | |||||||
5517 | $y = $x -> diff($dim); | ||||||
5518 | $y = $x -> diff(); | ||||||
5519 | |||||||
5520 | =cut | ||||||
5521 | |||||||
5522 | sub diff { | ||||||
5523 | 12 | 50 | 12 | 1 | 86 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5524 | 12 | 50 | 25 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5525 | 12 | 17 | my $x = shift; | ||||
5526 | 12 | 37 | $x -> apply(\&_diff, @_); | ||||
5527 | } | ||||||
5528 | |||||||
5529 | =pod | ||||||
5530 | |||||||
5531 | =item vecnorm() | ||||||
5532 | |||||||
5533 | Return the C<$p>-norm of the elements of C<$x>. If the dimension argument is not | ||||||
5534 | given, the first non-singleton dimension is used. | ||||||
5535 | |||||||
5536 | $y = $x -> vecnorm($p, $dim); | ||||||
5537 | $y = $x -> vecnorm($p); | ||||||
5538 | $y = $x -> vecnorm(); | ||||||
5539 | |||||||
5540 | The C<$p>-norm of a vector is defined as the C<$p>th root of the sum of the | ||||||
5541 | absolute values fo the elements raised to the C<$p>th power. | ||||||
5542 | |||||||
5543 | =cut | ||||||
5544 | |||||||
5545 | sub vecnorm { | ||||||
5546 | 34 | 50 | 34 | 1 | 248 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
5547 | 34 | 50 | 71 | croak "Too many arguments for ", (caller(0))[3] if @_ > 3; | |||
5548 | 34 | 47 | my $x = shift; | ||||
5549 | 34 | 58 | my $class = ref $x; | ||||
5550 | |||||||
5551 | 34 | 44 | my $p = 2; | ||||
5552 | 34 | 100 | 63 | if (@_) { | |||
5553 | 28 | 41 | $p = shift; | ||||
5554 | 28 | 50 | 51 | croak 'When the \$p argument is given, it can not be undefined' | |||
5555 | unless defined $p; | ||||||
5556 | 28 | 50 | 51 | if (ref $p) { | |||
5557 | 0 | 0 | 0 | 0 | $p = $class -> new($p) | ||
5558 | unless defined(blessed($p)) && $p -> isa($class); | ||||||
5559 | 0 | 0 | 0 | croak 'The $p argument must be a scalar' unless $p -> is_scalar(); | |||
5560 | 0 | 0 | $p = $p -> [0][0]; | ||||
5561 | } | ||||||
5562 | } | ||||||
5563 | |||||||
5564 | 34 | 46 | 131 | my $sub = sub { _vecnorm($p, @_) }; | |||
46 | 98 | ||||||
5565 | 34 | 83 | $x -> apply($sub, @_); | ||||
5566 | } | ||||||
5567 | |||||||
5568 | =pod | ||||||
5569 | |||||||
5570 | =item apply() | ||||||
5571 | |||||||
5572 | Applies a subroutine to each row or column of a matrix. If the dimension | ||||||
5573 | argument is not given, the first non-singleton dimension is used. | ||||||
5574 | |||||||
5575 | $y = $x -> apply($sub, $dim); | ||||||
5576 | $y = $x -> apply($sub); | ||||||
5577 | |||||||
5578 | The subroutine is passed a list with all elements in a single column or row. | ||||||
5579 | |||||||
5580 | =cut | ||||||
5581 | |||||||
5582 | sub apply { | ||||||
5583 | 226 | 226 | 1 | 336 | my $x = shift; | ||
5584 | 226 | 368 | my $class = ref $x; | ||||
5585 | |||||||
5586 | 226 | 291 | my $sub = shift; | ||||
5587 | |||||||
5588 | # Get the size of the input $x. | ||||||
5589 | |||||||
5590 | 226 | 519 | my ($nrowx, $ncolx) = $x -> size(); | ||||
5591 | |||||||
5592 | # Get the dimension along which to apply the subroutine. | ||||||
5593 | |||||||
5594 | 226 | 339 | my $dim; | ||||
5595 | 226 | 100 | 414 | if (@_) { | |||
5596 | 144 | 221 | $dim = shift; | ||||
5597 | 144 | 50 | 305 | croak "Dimension can not be undefined" unless defined $dim; | |||
5598 | 144 | 50 | 285 | if (ref $dim) { | |||
5599 | 0 | 0 | 0 | 0 | $dim = $class -> new($dim) | ||
5600 | unless defined(blessed($dim)) && $dim -> isa($class); | ||||||
5601 | 0 | 0 | 0 | croak "Dimension must be a scalar" unless $dim -> is_scalar(); | |||
5602 | 0 | 0 | $dim = $dim -> [0][0]; | ||||
5603 | 0 | 0 | 0 | 0 | croak "Dimension must be a positive integer" | ||
5604 | unless $dim > 0 && $dim == CORE::int($dim); | ||||||
5605 | } | ||||||
5606 | 144 | 50 | 66 | 459 | croak "Dimension must be 1 or 2" unless $dim == 1 || $dim == 2; | ||
5607 | } else { | ||||||
5608 | 82 | 100 | 177 | $dim = $nrowx > 1 ? 1 : 2; | |||
5609 | } | ||||||
5610 | |||||||
5611 | # Initialise output. | ||||||
5612 | |||||||
5613 | 226 | 354 | my $y = []; | ||||
5614 | |||||||
5615 | # Work along the first dimension, i.e., each column. | ||||||
5616 | |||||||
5617 | 226 | 359 | my ($nrowy, $ncoly); | ||||
5618 | 226 | 100 | 520 | if ($dim == 1) { | |||
50 | |||||||
5619 | 114 | 161 | $nrowy = 0; | ||||
5620 | 114 | 242 | for my $j (0 .. $ncolx - 1) { | ||||
5621 | 289 | 895 | my @col = $sub -> (map $_ -> [$j], @$x); | ||||
5622 | 289 | 100 | 511 | if ($j == 0) { | |||
5623 | 98 | 171 | $nrowy = @col; | ||||
5624 | } else { | ||||||
5625 | 191 | 50 | 358 | croak "The number of elements in each column must be the same" | |||
5626 | unless $nrowy == @col; | ||||||
5627 | } | ||||||
5628 | 289 | 1007 | $y -> [$_][$j] = $col[$_] for 0 .. $#col; | ||||
5629 | } | ||||||
5630 | 114 | 100 | 292 | $y = [] if $nrowy == 0; | |||
5631 | } | ||||||
5632 | |||||||
5633 | # Work along the second dimension, i.e., each row. | ||||||
5634 | |||||||
5635 | elsif ($dim == 2) { | ||||||
5636 | 112 | 163 | $ncoly = 0; | ||||
5637 | 112 | 244 | for my $i (0 .. $nrowx - 1) { | ||||
5638 | 169 | 223 | my @row = $sub -> (@{ $x -> [$i] }); | ||||
169 | 350 | ||||||
5639 | 169 | 100 | 332 | if ($i == 0) { | |||
5640 | 76 | 122 | $ncoly = @row; | ||||
5641 | } else { | ||||||
5642 | 93 | 50 | 191 | croak "The number of elements in each row must be the same" | |||
5643 | unless $ncoly == @row; | ||||||
5644 | } | ||||||
5645 | 169 | 396 | $y -> [$i] = [ @row ]; | ||||
5646 | } | ||||||
5647 | 112 | 100 | 257 | $y = [] if $ncoly == 0; | |||
5648 | } | ||||||
5649 | |||||||
5650 | 226 | 781 | bless $y, $class; | ||||
5651 | } | ||||||
5652 | |||||||
5653 | =pod | ||||||
5654 | |||||||
5655 | =back | ||||||
5656 | |||||||
5657 | =head2 Comparison | ||||||
5658 | |||||||
5659 | =head3 Matrix comparison | ||||||
5660 | |||||||
5661 | Methods matrix comparison. These methods return a scalar value. | ||||||
5662 | |||||||
5663 | =over 4 | ||||||
5664 | |||||||
5665 | =item meq() | ||||||
5666 | |||||||
5667 | Matrix equal to. Returns 1 if two matrices are identical and 0 otherwise. | ||||||
5668 | |||||||
5669 | $bool = $x -> meq($y); | ||||||
5670 | |||||||
5671 | =cut | ||||||
5672 | |||||||
5673 | sub meq { | ||||||
5674 | 7 | 50 | 7 | 1 | 28 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
5675 | 7 | 50 | 20 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5676 | 7 | 9 | my $x = shift; | ||||
5677 | 7 | 9 | my $class = ref $x; | ||||
5678 | |||||||
5679 | 7 | 7 | my $y = shift; | ||||
5680 | 7 | 100 | 66 | 42 | $y = $class -> new($y) | ||
5681 | unless defined(blessed($y)) && $y -> isa($class); | ||||||
5682 | |||||||
5683 | 7 | 18 | my ($nrowx, $ncolx) = $x -> size(); | ||||
5684 | 7 | 11 | my ($nrowy, $ncoly) = $y -> size(); | ||||
5685 | |||||||
5686 | # Quick exit if the sizes don't match. | ||||||
5687 | |||||||
5688 | 7 | 100 | 66 | 34 | return 0 unless $nrowx == $nrowy && $ncolx == $ncoly; | ||
5689 | |||||||
5690 | # Compare the elements. | ||||||
5691 | |||||||
5692 | 6 | 12 | for my $i (0 .. $nrowx - 1) { | ||||
5693 | 5 | 9 | for my $j (0 .. $ncolx - 1) { | ||||
5694 | 20 | 100 | 48 | return 0 if $x->[$i][$j] != $y->[$i][$j]; | |||
5695 | } | ||||||
5696 | } | ||||||
5697 | 4 | 8 | return 1; | ||||
5698 | } | ||||||
5699 | |||||||
5700 | =pod | ||||||
5701 | |||||||
5702 | =item mne() | ||||||
5703 | |||||||
5704 | Matrix not equal to. Returns 1 if two matrices are different and 0 otherwise. | ||||||
5705 | |||||||
5706 | $bool = $x -> mne($y); | ||||||
5707 | |||||||
5708 | =cut | ||||||
5709 | |||||||
5710 | sub mne { | ||||||
5711 | 7 | 50 | 7 | 1 | 9673 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
5712 | 7 | 50 | 15 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5713 | 7 | 9 | my $x = shift; | ||||
5714 | 7 | 13 | my $class = ref $x; | ||||
5715 | |||||||
5716 | 7 | 8 | my $y = shift; | ||||
5717 | 7 | 100 | 66 | 40 | $y = $class -> new($y) | ||
5718 | unless defined(blessed($y)) && $y -> isa($class); | ||||||
5719 | |||||||
5720 | 7 | 16 | my ($nrowx, $ncolx) = $x -> size(); | ||||
5721 | 7 | 8 | my ($nrowy, $ncoly) = $y -> size(); | ||||
5722 | |||||||
5723 | # Quick exit if the sizes don't match. | ||||||
5724 | |||||||
5725 | 7 | 100 | 66 | 22 | return 1 unless $nrowx == $nrowy && $ncolx == $ncoly; | ||
5726 | |||||||
5727 | # Compare the elements. | ||||||
5728 | |||||||
5729 | 6 | 11 | for my $i (0 .. $nrowx - 1) { | ||||
5730 | 5 | 8 | for my $j (0 .. $ncolx - 1) { | ||||
5731 | 20 | 100 | 36 | return 1 if $x->[$i][$j] != $y->[$i][$j]; | |||
5732 | } | ||||||
5733 | } | ||||||
5734 | 4 | 10 | return 0; | ||||
5735 | } | ||||||
5736 | |||||||
5737 | =pod | ||||||
5738 | |||||||
5739 | =item equal() | ||||||
5740 | |||||||
5741 | Decide if two matrices are equal. The criterion is, that each pair of elements | ||||||
5742 | differs less than $Math::Matrix::eps. | ||||||
5743 | |||||||
5744 | $bool = $x -> equal($y); | ||||||
5745 | |||||||
5746 | =cut | ||||||
5747 | |||||||
5748 | sub equal { | ||||||
5749 | 5 | 5 | 1 | 25 | my $A = shift; | ||
5750 | 5 | 8 | my $B = shift; | ||||
5751 | |||||||
5752 | 5 | 15 | my $jmax = $#{$A->[0]}; | ||||
5 | 10 | ||||||
5753 | 5 | 7 | for my $i (0 .. $#{$A}) { | ||||
5 | 10 | ||||||
5754 | 15 | 20 | for my $j (0 .. $jmax) { | ||||
5755 | 45 | 50 | 94 | return 0 if CORE::abs($A->[$i][$j] - $B->[$i][$j]) >= $eps; | |||
5756 | } | ||||||
5757 | } | ||||||
5758 | 5 | 20 | return 1; | ||||
5759 | } | ||||||
5760 | |||||||
5761 | =pod | ||||||
5762 | |||||||
5763 | =back | ||||||
5764 | |||||||
5765 | =head3 Scalar comparison | ||||||
5766 | |||||||
5767 | Each of these methods performs scalar (element by element) comparison and | ||||||
5768 | returns a matrix of ones and zeros. Scalar expansion is performed if necessary. | ||||||
5769 | |||||||
5770 | =over 4 | ||||||
5771 | |||||||
5772 | =item seq() | ||||||
5773 | |||||||
5774 | Scalar equality. Performs scalar (element by element) comparison of two | ||||||
5775 | matrices. | ||||||
5776 | |||||||
5777 | $bool = $x -> seq($y); | ||||||
5778 | |||||||
5779 | =cut | ||||||
5780 | |||||||
5781 | sub seq { | ||||||
5782 | 1 | 50 | 1 | 1 | 19 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
5783 | 1 | 50 | 4 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5784 | 1 | 2 | my $x = shift; | ||||
5785 | 1 | 2 | my $class = ref $x; | ||||
5786 | |||||||
5787 | 1 | 2 | my $y = shift; | ||||
5788 | 1 | 50 | 33 | 14 | $y = $class -> new($y) | ||
5789 | unless defined(blessed($y)) && $y -> isa($class); | ||||||
5790 | |||||||
5791 | 1 | 100 | 9 | 9 | $x -> sapply(sub { $_[0] == $_[1] ? 1 : 0 }, $y); | ||
9 | 20 | ||||||
5792 | } | ||||||
5793 | |||||||
5794 | =pod | ||||||
5795 | |||||||
5796 | =item sne() | ||||||
5797 | |||||||
5798 | Scalar (element by element) not equal to. Performs scalar (element by element) | ||||||
5799 | comparison of two matrices. | ||||||
5800 | |||||||
5801 | $bool = $x -> sne($y); | ||||||
5802 | |||||||
5803 | =cut | ||||||
5804 | |||||||
5805 | sub sne { | ||||||
5806 | 1 | 50 | 1 | 1 | 7 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
5807 | 1 | 50 | 3 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5808 | 1 | 2 | my $x = shift; | ||||
5809 | 1 | 3 | my $class = ref $x; | ||||
5810 | |||||||
5811 | 1 | 2 | my $y = shift; | ||||
5812 | 1 | 50 | 33 | 9 | $y = $class -> new($y) | ||
5813 | unless defined(blessed($y)) && $y -> isa($class); | ||||||
5814 | |||||||
5815 | 1 | 100 | 9 | 6 | $x -> sapply(sub { $_[0] != $_[1] ? 1 : 0 }, $y); | ||
9 | 22 | ||||||
5816 | } | ||||||
5817 | |||||||
5818 | =pod | ||||||
5819 | |||||||
5820 | =item slt() | ||||||
5821 | |||||||
5822 | Scalar (element by element) less than. Performs scalar (element by element) | ||||||
5823 | comparison of two matrices. | ||||||
5824 | |||||||
5825 | $bool = $x -> slt($y); | ||||||
5826 | |||||||
5827 | =cut | ||||||
5828 | |||||||
5829 | sub slt { | ||||||
5830 | 1 | 50 | 1 | 1 | 8 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
5831 | 1 | 50 | 3 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5832 | 1 | 2 | my $x = shift; | ||||
5833 | 1 | 2 | my $class = ref $x; | ||||
5834 | |||||||
5835 | 1 | 2 | my $y = shift; | ||||
5836 | 1 | 50 | 33 | 9 | $y = $class -> new($y) | ||
5837 | unless defined(blessed($y)) && $y -> isa($class); | ||||||
5838 | |||||||
5839 | 1 | 100 | 9 | 7 | $x -> sapply(sub { $_[0] < $_[1] ? 1 : 0 }, $y); | ||
9 | 23 | ||||||
5840 | } | ||||||
5841 | |||||||
5842 | =pod | ||||||
5843 | |||||||
5844 | =item sle() | ||||||
5845 | |||||||
5846 | Scalar (element by element) less than or equal to. Performs scalar | ||||||
5847 | (element by element) comparison of two matrices. | ||||||
5848 | |||||||
5849 | $bool = $x -> sle($y); | ||||||
5850 | |||||||
5851 | =cut | ||||||
5852 | |||||||
5853 | sub sle { | ||||||
5854 | 1 | 50 | 1 | 1 | 8 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
5855 | 1 | 50 | 4 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5856 | 1 | 2 | my $x = shift; | ||||
5857 | 1 | 3 | my $class = ref $x; | ||||
5858 | |||||||
5859 | 1 | 2 | my $y = shift; | ||||
5860 | 1 | 50 | 33 | 10 | $y = $class -> new($y) | ||
5861 | unless defined(blessed($y)) && $y -> isa($class); | ||||||
5862 | |||||||
5863 | 1 | 100 | 9 | 6 | $x -> sapply(sub { $_[0] <= $_[1] ? 1 : 0 }, $y); | ||
9 | 21 | ||||||
5864 | } | ||||||
5865 | |||||||
5866 | =pod | ||||||
5867 | |||||||
5868 | =item sgt() | ||||||
5869 | |||||||
5870 | Scalar (element by element) greater than. Performs scalar (element by element) | ||||||
5871 | comparison of two matrices. | ||||||
5872 | |||||||
5873 | $bool = $x -> sgt($y); | ||||||
5874 | |||||||
5875 | =cut | ||||||
5876 | |||||||
5877 | sub sgt { | ||||||
5878 | 1 | 50 | 1 | 1 | 7 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
5879 | 1 | 50 | 4 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5880 | 1 | 2 | my $x = shift; | ||||
5881 | 1 | 2 | my $class = ref $x; | ||||
5882 | |||||||
5883 | 1 | 2 | my $y = shift; | ||||
5884 | 1 | 50 | 33 | 10 | $y = $class -> new($y) | ||
5885 | unless defined(blessed($y)) && $y -> isa($class); | ||||||
5886 | |||||||
5887 | 1 | 100 | 9 | 7 | $x -> sapply(sub { $_[0] > $_[1] ? 1 : 0 }, $y); | ||
9 | 20 | ||||||
5888 | } | ||||||
5889 | |||||||
5890 | =pod | ||||||
5891 | |||||||
5892 | =item sge() | ||||||
5893 | |||||||
5894 | Scalar (element by element) greater than or equal to. Performs scalar | ||||||
5895 | (element by element) comparison of two matrices. | ||||||
5896 | |||||||
5897 | $bool = $x -> sge($y); | ||||||
5898 | |||||||
5899 | =cut | ||||||
5900 | |||||||
5901 | sub sge { | ||||||
5902 | 1 | 50 | 1 | 1 | 8 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
5903 | 1 | 50 | 4 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5904 | 1 | 3 | my $x = shift; | ||||
5905 | 1 | 2 | my $class = ref $x; | ||||
5906 | |||||||
5907 | 1 | 2 | my $y = shift; | ||||
5908 | 1 | 50 | 33 | 10 | $y = $class -> new($y) | ||
5909 | unless defined(blessed($y)) && $y -> isa($class); | ||||||
5910 | |||||||
5911 | 1 | 100 | 9 | 5 | $x -> sapply(sub { $_[0] >= $_[1] ? 1 : 0 }, $y); | ||
9 | 21 | ||||||
5912 | } | ||||||
5913 | |||||||
5914 | =pod | ||||||
5915 | |||||||
5916 | =item scmp() | ||||||
5917 | |||||||
5918 | Scalar (element by element) comparison. Performs scalar (element by element) | ||||||
5919 | comparison of two matrices. Each element in the output matrix is either -1, 0, | ||||||
5920 | or 1 depending on whether the elements are less than, equal to, or greater than | ||||||
5921 | each other. | ||||||
5922 | |||||||
5923 | $bool = $x -> scmp($y); | ||||||
5924 | |||||||
5925 | =cut | ||||||
5926 | |||||||
5927 | sub scmp { | ||||||
5928 | 1 | 50 | 1 | 1 | 8 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
5929 | 1 | 50 | 3 | croak "Too many arguments for ", (caller(0))[3] if @_ > 2; | |||
5930 | 1 | 2 | my $x = shift; | ||||
5931 | 1 | 3 | my $class = ref $x; | ||||
5932 | |||||||
5933 | 1 | 2 | my $y = shift; | ||||
5934 | 1 | 50 | 33 | 9 | $y = $class -> new($y) | ||
5935 | unless defined(blessed($y)) && $y -> isa($class); | ||||||
5936 | |||||||
5937 | 1 | 9 | 5 | $x -> sapply(sub { $_[0] <=> $_[1] }, $y); | |||
9 | 17 | ||||||
5938 | } | ||||||
5939 | |||||||
5940 | =pod | ||||||
5941 | |||||||
5942 | =back | ||||||
5943 | |||||||
5944 | =head2 Vector functions | ||||||
5945 | |||||||
5946 | =over 4 | ||||||
5947 | |||||||
5948 | =item dot_product() | ||||||
5949 | |||||||
5950 | Compute the dot product of two vectors. The second operand does not have to be | ||||||
5951 | an object. | ||||||
5952 | |||||||
5953 | # $x and $y are both objects | ||||||
5954 | $x = Math::Matrix -> new([1, 2, 3]); | ||||||
5955 | $y = Math::Matrix -> new([4, 5, 6]); | ||||||
5956 | $p = $x -> dot_product($y); # $p = 32 | ||||||
5957 | |||||||
5958 | # Only $x is an object. | ||||||
5959 | $p = $x -> dot_product([4, 5, 6]); # $p = 32 | ||||||
5960 | |||||||
5961 | =cut | ||||||
5962 | |||||||
5963 | sub dot_product { | ||||||
5964 | 3 | 3 | 1 | 1349 | my $x = shift; | ||
5965 | 3 | 20 | my $class = ref $x; | ||||
5966 | |||||||
5967 | 3 | 7 | my $y = shift; | ||||
5968 | 3 | 100 | 66 | 29 | $y = $class -> new($y) | ||
5969 | unless defined(blessed($y)) && $y -> isa($class); | ||||||
5970 | |||||||
5971 | 3 | 50 | 14 | croak "First argument must be a vector" unless $x -> is_vector(); | |||
5972 | 3 | 100 | 8 | $x = $x -> to_row() unless $x -> is_row(); | |||
5973 | |||||||
5974 | 3 | 50 | 7 | croak "Second argument must be a vector" unless $x -> is_vector(); | |||
5975 | 3 | 50 | 7 | $y = $y -> to_col() unless $x -> is_col(); | |||
5976 | |||||||
5977 | 3 | 50 | 7 | croak "The two vectors must have the same length" | |||
5978 | unless $x -> nelm() == $y -> nelm(); | ||||||
5979 | |||||||
5980 | 3 | 12 | $x -> multiply($y) -> [0][0]; | ||||
5981 | } | ||||||
5982 | |||||||
5983 | =pod | ||||||
5984 | |||||||
5985 | =item outer_product() | ||||||
5986 | |||||||
5987 | Compute the outer product of two vectors. The second operand does not have to be | ||||||
5988 | an object. | ||||||
5989 | |||||||
5990 | # $x and $y are both objects | ||||||
5991 | $x = Math::Matrix -> new([1, 2, 3]); | ||||||
5992 | $y = Math::Matrix -> new([4, 5, 6, 7]); | ||||||
5993 | $p = $x -> outer_product($y); | ||||||
5994 | |||||||
5995 | # Only $x is an object. | ||||||
5996 | $p = $x -> outer_product([4, 5, 6, y]); | ||||||
5997 | |||||||
5998 | =cut | ||||||
5999 | |||||||
6000 | sub outer_product { | ||||||
6001 | 1 | 1 | 1 | 7 | my $x = shift; | ||
6002 | 1 | 14 | my $class = ref $x; | ||||
6003 | |||||||
6004 | 1 | 3 | my $y = shift; | ||||
6005 | 1 | 50 | 33 | 17 | $y = $class -> new($y) | ||
6006 | unless defined(blessed($y)) && $y -> isa($class); | ||||||
6007 | |||||||
6008 | 1 | 50 | 7 | croak "First argument must be a vector" unless $x -> is_vector(); | |||
6009 | 1 | 50 | 2 | $x = $x -> to_col() unless $x -> is_col(); | |||
6010 | |||||||
6011 | 1 | 50 | 4 | croak "Second argument must be a vector" unless $x -> is_vector(); | |||
6012 | 1 | 50 | 4 | $y = $y -> to_row() unless $x -> is_row(); | |||
6013 | |||||||
6014 | 1 | 4 | $x -> multiply($y); | ||||
6015 | } | ||||||
6016 | |||||||
6017 | =pod | ||||||
6018 | |||||||
6019 | =item absolute() | ||||||
6020 | |||||||
6021 | Compute the absolute value (i.e., length) of a vector. | ||||||
6022 | |||||||
6023 | $v = Math::Matrix -> new([3, 4]); | ||||||
6024 | $a = $v -> absolute(); # $v = 5 | ||||||
6025 | |||||||
6026 | =cut | ||||||
6027 | |||||||
6028 | sub absolute { | ||||||
6029 | 8 | 8 | 1 | 14 | my $x = shift; | ||
6030 | 8 | 50 | 45 | croak "Argument must be a vector" unless $x -> is_vector(); | |||
6031 | |||||||
6032 | 8 | 14 | _hypot(@{ $x -> to_row() -> [0] }); | ||||
8 | 21 | ||||||
6033 | } | ||||||
6034 | |||||||
6035 | =pod | ||||||
6036 | |||||||
6037 | =item normalize() | ||||||
6038 | |||||||
6039 | Normalize a vector, i.e., scale a vector so its length becomes 1. | ||||||
6040 | |||||||
6041 | $v = Math::Matrix -> new([3, 4]); | ||||||
6042 | $u = $v -> normalize(); # $u = [ 0.6, 0.8 ] | ||||||
6043 | |||||||
6044 | =cut | ||||||
6045 | |||||||
6046 | sub normalize { | ||||||
6047 | 2 | 2 | 1 | 4 | my $vector = shift; | ||
6048 | 2 | 18 | my $length = $vector->absolute(); | ||||
6049 | return undef | ||||||
6050 | 2 | 50 | 7 | unless $length; | |||
6051 | 2 | 9 | $vector->multiply_scalar(1 / $length); | ||||
6052 | } | ||||||
6053 | |||||||
6054 | =pod | ||||||
6055 | |||||||
6056 | =item cross_product() | ||||||
6057 | |||||||
6058 | Compute the cross-product of vectors. | ||||||
6059 | |||||||
6060 | $x = Math::Matrix -> new([1,3,2], | ||||||
6061 | [5,4,2]); | ||||||
6062 | $p = $x -> cross_product(); # $p = [ -2, 8, -11 ] | ||||||
6063 | |||||||
6064 | =cut | ||||||
6065 | |||||||
6066 | sub cross_product { | ||||||
6067 | 3 | 3 | 1 | 26 | my $vectors = shift; | ||
6068 | 3 | 8 | my $class = ref($vectors); | ||||
6069 | |||||||
6070 | 3 | 6 | my $dimensions = @{$vectors->[0]}; | ||||
3 | 36 | ||||||
6071 | return undef | ||||||
6072 | 3 | 50 | 12 | unless $dimensions == @$vectors + 1; | |||
6073 | |||||||
6074 | 3 | 14 | my @axis; | ||||
6075 | 3 | 10 | foreach my $column (0..$dimensions-1) { | ||||
6076 | 10 | 39 | my $tmp = $vectors->slice(0..$column-1, | ||||
6077 | $column+1..$dimensions-1); | ||||||
6078 | 10 | 25 | my $scalar = $tmp->determinant; | ||||
6079 | 10 | 100 | 24 | $scalar *= ($column % 2) ? -1 : 1; | |||
6080 | 10 | 28 | push @axis, $scalar; | ||||
6081 | } | ||||||
6082 | 3 | 11 | my $axis = $class->new(\@axis); | ||||
6083 | 3 | 100 | 12 | $axis = $axis->multiply_scalar(($dimensions % 2) ? 1 : -1); | |||
6084 | } | ||||||
6085 | |||||||
6086 | =pod | ||||||
6087 | |||||||
6088 | =back | ||||||
6089 | |||||||
6090 | =head2 Conversion | ||||||
6091 | |||||||
6092 | =over 4 | ||||||
6093 | |||||||
6094 | =item as_string() | ||||||
6095 | |||||||
6096 | Creates a string representation of the matrix and returns it. | ||||||
6097 | |||||||
6098 | $x = Math::Matrix -> new([1, 2], [3, 4]); | ||||||
6099 | $s = $x -> as_string(); | ||||||
6100 | |||||||
6101 | =cut | ||||||
6102 | |||||||
6103 | sub as_string { | ||||||
6104 | 12 | 12 | 1 | 225 | my $self = shift; | ||
6105 | 12 | 23 | my $out = ""; | ||||
6106 | 12 | 17 | for my $row (@{$self}) { | ||||
12 | 116 | ||||||
6107 | 23 | 30 | for my $col (@{$row}) { | ||||
23 | 35 | ||||||
6108 | 64 | 252 | $out = $out . sprintf "%10.5f ", $col; | ||||
6109 | } | ||||||
6110 | 23 | 42 | $out = $out . sprintf "\n"; | ||||
6111 | } | ||||||
6112 | 12 | 79 | $out; | ||||
6113 | } | ||||||
6114 | |||||||
6115 | =pod | ||||||
6116 | |||||||
6117 | =item as_array() | ||||||
6118 | |||||||
6119 | Returns the matrix as an unblessed Perl array, i.e., and ordinary, unblessed | ||||||
6120 | reference. | ||||||
6121 | |||||||
6122 | $y = $x -> as_array(); # ref($y) returns 'ARRAY' | ||||||
6123 | |||||||
6124 | =cut | ||||||
6125 | |||||||
6126 | sub as_array { | ||||||
6127 | 3 | 3 | 1 | 29 | my $x = shift; | ||
6128 | 3 | 56 | [ map [ @$_ ], @$x ]; | ||||
6129 | } | ||||||
6130 | |||||||
6131 | =pod | ||||||
6132 | |||||||
6133 | =back | ||||||
6134 | |||||||
6135 | =head2 Matrix utilities | ||||||
6136 | |||||||
6137 | =head3 Apply a subroutine to each element | ||||||
6138 | |||||||
6139 | =over 4 | ||||||
6140 | |||||||
6141 | =item map() | ||||||
6142 | |||||||
6143 | Call a subroutine for every element of a matrix, locally setting C<$_> to each | ||||||
6144 | element and passing the matrix row and column indices as input arguments. | ||||||
6145 | |||||||
6146 | # square each element | ||||||
6147 | $y = $x -> map(sub { $_ ** 2 }); | ||||||
6148 | |||||||
6149 | # set strictly lower triangular part to zero | ||||||
6150 | $y = $x -> map(sub { $_[0] > $_[1] ? 0 : $_ })' | ||||||
6151 | |||||||
6152 | =cut | ||||||
6153 | |||||||
6154 | sub map { | ||||||
6155 | 3 | 3 | 1 | 47 | my $x = shift; | ||
6156 | 3 | 6 | my $class = ref $x; | ||||
6157 | |||||||
6158 | 3 | 4 | my $sub = shift; | ||||
6159 | 3 | 50 | 8 | croak "The first input argument must be a code reference" | |||
6160 | unless ref($sub) eq 'CODE'; | ||||||
6161 | |||||||
6162 | 3 | 5 | my $y = []; | ||||
6163 | 3 | 9 | my ($nrow, $ncol) = $x -> size(); | ||||
6164 | 3 | 8 | for my $i (0 .. $nrow - 1) { | ||||
6165 | 5 | 14 | for my $j (0 .. $ncol - 1) { | ||||
6166 | 15 | 44 | local $_ = $x -> [$i][$j]; | ||||
6167 | 15 | 23 | $y -> [$i][$j] = $sub -> ($i, $j); | ||||
6168 | } | ||||||
6169 | } | ||||||
6170 | |||||||
6171 | 3 | 10 | bless $y, $class; | ||||
6172 | } | ||||||
6173 | |||||||
6174 | =pod | ||||||
6175 | |||||||
6176 | =item sapply() | ||||||
6177 | |||||||
6178 | Applies a subroutine to each element of a matrix, or each set of corresponding | ||||||
6179 | elements if multiple matrices are given, and returns the result. The first | ||||||
6180 | argument is the subroutine to apply. The following arguments, if any, are | ||||||
6181 | additional matrices on which to apply the subroutine. | ||||||
6182 | |||||||
6183 | $w = $x -> sapply($sub); # single operand | ||||||
6184 | $w = $x -> sapply($sub, $y); # two operands | ||||||
6185 | $w = $x -> sapply($sub, $y, $z); # three operands | ||||||
6186 | |||||||
6187 | Each matrix element, or corresponding set of elements, are passed to the | ||||||
6188 | subroutine as input arguments. | ||||||
6189 | |||||||
6190 | When used with a single operand, this method is similar to the C |
||||||
6191 | method, the syntax is different, since C |
||||||
6192 | operands. | ||||||
6193 | |||||||
6194 | See also C |
||||||
6195 | |||||||
6196 | =over 4 | ||||||
6197 | |||||||
6198 | =item * | ||||||
6199 | |||||||
6200 | The subroutine is run in scalar context. | ||||||
6201 | |||||||
6202 | =item * | ||||||
6203 | |||||||
6204 | No checks are done on the return value of the subroutine. | ||||||
6205 | |||||||
6206 | =item * | ||||||
6207 | |||||||
6208 | The number of rows in the output matrix equals the number of rows in the operand | ||||||
6209 | with the largest number of rows. Ditto for columns. So if C<$x> is 5-by-2 | ||||||
6210 | matrix, and C<$y> is a 3-by-4 matrix, the result is a 5-by-4 matrix. | ||||||
6211 | |||||||
6212 | =item * | ||||||
6213 | |||||||
6214 | For each operand that has a number of rows smaller than the maximum value, the | ||||||
6215 | rows are recyled. Ditto for columns. | ||||||
6216 | |||||||
6217 | =item * | ||||||
6218 | |||||||
6219 | Don't modify the variables $_[0], $_[1] etc. inside the subroutine. Otherwise, | ||||||
6220 | there is a risk of modifying the operand matrices. | ||||||
6221 | |||||||
6222 | =item * | ||||||
6223 | |||||||
6224 | If the matrix elements are objects that are not cloned when the "=" (assignment) | ||||||
6225 | operator is used, you might have to explicitly clone the objects used inside the | ||||||
6226 | subroutine. Otherwise, the elements in the output matrix might be references to | ||||||
6227 | objects in the operand matrices, rather than references to new objects. | ||||||
6228 | |||||||
6229 | =back | ||||||
6230 | |||||||
6231 | Some examples | ||||||
6232 | |||||||
6233 | =over 4 | ||||||
6234 | |||||||
6235 | =item One operand | ||||||
6236 | |||||||
6237 | With one operand, i.e., the invocand matrix, the subroutine is applied to each | ||||||
6238 | element of the invocand matrix. The returned matrix has the same size as the | ||||||
6239 | invocand. For example, multiplying the matrix C<$x> with the scalar C<$c> | ||||||
6240 | |||||||
6241 | $sub = sub { $c * $_[0] }; # subroutine to multiply by $c | ||||||
6242 | $z = $x -> sapply($sub); # multiply each element by $c | ||||||
6243 | |||||||
6244 | =item Two operands | ||||||
6245 | |||||||
6246 | When two operands are specfied, the subroutine is applied to each pair of | ||||||
6247 | corresponding elements in the two operands. For example, adding two matrices can | ||||||
6248 | be implemented as | ||||||
6249 | |||||||
6250 | $sub = sub { $_[0] * $_[1] }; | ||||||
6251 | $z = $x -> sapply($sub, $y); | ||||||
6252 | |||||||
6253 | Note that if the matrices have different sizes, the rows and/or columns of the | ||||||
6254 | smaller are recycled to match the size of the larger. If C<$x> is a | ||||||
6255 | C<$p>-by-C<$q> matrix and C<$y> is a C<$r>-by-C<$s> matrix, then C<$z> is a | ||||||
6256 | max(C<$p>,C<$r>)-by-max(C<$q>,C<$s>) matrix, and | ||||||
6257 | |||||||
6258 | $z -> [$i][$j] = $sub -> ($x -> [$i % $p][$j % $q], | ||||||
6259 | $y -> [$i % $r][$j % $s]); | ||||||
6260 | |||||||
6261 | Because of this recycling, multiplying the matrix C<$x> with the scalar C<$c> | ||||||
6262 | (see above) can also be implemented as | ||||||
6263 | |||||||
6264 | $sub = sub { $_[0] * $_[1] }; | ||||||
6265 | $z = $x -> sapply($sub, $c); | ||||||
6266 | |||||||
6267 | Generating a matrix with all combinations of C<$x**$y> for C<$x> being 4, 5, and | ||||||
6268 | 6 and C<$y> being 1, 2, 3, and 4 can be done with | ||||||
6269 | |||||||
6270 | $c = Math::Matrix -> new([[4], [5], [6]]); # 3-by-1 column | ||||||
6271 | $r = Math::Matrix -> new([[1, 2, 3, 4]]); # 1-by-4 row | ||||||
6272 | $x = $c -> sapply(sub { $_[0] ** $_[1] }, $r); # 3-by-4 matrix | ||||||
6273 | |||||||
6274 | =item Multiple operands | ||||||
6275 | |||||||
6276 | In general, the sapply() method can have any number of arguments. For example, | ||||||
6277 | to compute the sum of the four matrices C<$x>, C<$y>, C<$z>, and C<$w>, | ||||||
6278 | |||||||
6279 | $sub = sub { | ||||||
6280 | $sum = 0; | ||||||
6281 | for $val (@_) { | ||||||
6282 | $sum += $val; | ||||||
6283 | }; | ||||||
6284 | return $sum; | ||||||
6285 | }; | ||||||
6286 | $sum = $x -> sapply($sub, $y, $z, $w); | ||||||
6287 | |||||||
6288 | =back | ||||||
6289 | |||||||
6290 | =cut | ||||||
6291 | |||||||
6292 | sub sapply { | ||||||
6293 | 182 | 50 | 182 | 1 | 5624 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 2; | |
6294 | 182 | 409 | my $x = shift; | ||||
6295 | 182 | 319 | my $class = ref $x; | ||||
6296 | |||||||
6297 | # Get the subroutine to apply on all the elements. | ||||||
6298 | |||||||
6299 | 182 | 246 | my $sub = shift; | ||||
6300 | 182 | 50 | 468 | croak "input argument must be a reference to a subroutine" | |||
6301 | unless ref($sub) eq 'CODE'; | ||||||
6302 | |||||||
6303 | 182 | 384 | my $y = bless [], $class; | ||||
6304 | |||||||
6305 | # For speed, treat a single matrix operand as a special case. | ||||||
6306 | |||||||
6307 | 182 | 100 | 416 | if (@_ == 0) { | |||
6308 | 125 | 340 | my ($nrowx, $ncolx) = $x -> size(); | ||||
6309 | 125 | 100 | 461 | return $y if $nrowx * $ncolx == 0; # quick exit if $x is empty | |||
6310 | |||||||
6311 | 92 | 224 | for my $i (0 .. $nrowx - 1) { | ||||
6312 | 192 | 3536 | for my $j (0 .. $ncolx - 1) { | ||||
6313 | 483 | 12926 | $y -> [$i][$j] = $sub -> ($x -> [$i][$j]); | ||||
6314 | } | ||||||
6315 | } | ||||||
6316 | |||||||
6317 | 92 | 4254 | return $y; | ||||
6318 | } | ||||||
6319 | |||||||
6320 | # Create some auxiliary arrays. | ||||||
6321 | |||||||
6322 | 57 | 133 | my @args = ($x, @_); # all matrices | ||||
6323 | 57 | 91 | my @size = (); # size of each matrix | ||||
6324 | 57 | 84 | my @nelm = (); # number of elements in each matrix | ||||
6325 | |||||||
6326 | # Loop over the input arguments to perform some checks and get their | ||||||
6327 | # properties. Also get the size (number of rows and columns) of the output | ||||||
6328 | # matrix. | ||||||
6329 | |||||||
6330 | 57 | 82 | my $nrowy = 0; | ||||
6331 | 57 | 90 | my $ncoly = 0; | ||||
6332 | |||||||
6333 | 57 | 134 | for my $k (0 .. $#args) { | ||||
6334 | |||||||
6335 | # Make sure the k'th argument is a matrix object. | ||||||
6336 | |||||||
6337 | 117 | 100 | 66 | 690 | $args[$k] = $class -> new($args[$k]) | ||
6338 | unless defined(blessed($args[$k])) && $args[$k] -> isa($class); | ||||||
6339 | |||||||
6340 | # Get the number of rows, columns, and elements in the k'th argument, | ||||||
6341 | # and save this information for later. | ||||||
6342 | |||||||
6343 | 117 | 290 | my ($nrowk, $ncolk) = $args[$k] -> size(); | ||||
6344 | 117 | 229 | $size[$k] = [ $nrowk, $ncolk ]; | ||||
6345 | 117 | 196 | $nelm[$k] = $nrowk * $ncolk; | ||||
6346 | |||||||
6347 | # Update the size of the output matrix. | ||||||
6348 | |||||||
6349 | 117 | 100 | 244 | $nrowy = $nrowk if $nrowk > $nrowy; | |||
6350 | 117 | 100 | 256 | $ncoly = $ncolk if $ncolk > $ncoly; | |||
6351 | } | ||||||
6352 | |||||||
6353 | # We only accept empty matrices if all matrices are empty. | ||||||
6354 | |||||||
6355 | 57 | 123 | my $n_empty = grep { $_ == 0 } @nelm; | ||||
117 | 275 | ||||||
6356 | 57 | 100 | 167 | return $y if $n_empty == @args; # quick exit if all are empty | |||
6357 | |||||||
6358 | # At ths point, we know that not all matrices are empty, but some might be | ||||||
6359 | # empty. We only continue if none are empty. | ||||||
6360 | |||||||
6361 | 50 | 50 | 128 | croak "Either all or none of the matrices must be empty in ", (caller(0))[3] | |||
6362 | unless $n_empty == 0; | ||||||
6363 | |||||||
6364 | # Loop over the subscripts into the output matrix. | ||||||
6365 | |||||||
6366 | 50 | 121 | for my $i (0 .. $nrowy - 1) { | ||||
6367 | 108 | 407 | for my $j (0 .. $ncoly - 1) { | ||||
6368 | |||||||
6369 | # Initialize the argument list for the subroutine call that will | ||||||
6370 | # give the value for element ($i,$j) in the output matrix. | ||||||
6371 | |||||||
6372 | 359 | 1523 | my @elms = (); | ||||
6373 | |||||||
6374 | # Loop over the matrices. | ||||||
6375 | |||||||
6376 | 359 | 598 | for my $k (0 .. $#args) { | ||||
6377 | |||||||
6378 | # Get the number of rows and columns in the k'th matrix. | ||||||
6379 | |||||||
6380 | 727 | 922 | my $nrowk = $size[$k][0]; | ||||
6381 | 727 | 928 | my $ncolk = $size[$k][1]; | ||||
6382 | |||||||
6383 | # Compute the subscripts of the element to use in the k'th | ||||||
6384 | # matrix. | ||||||
6385 | |||||||
6386 | 727 | 926 | my $ik = $i % $nrowk; | ||||
6387 | 727 | 890 | my $jk = $j % $ncolk; | ||||
6388 | |||||||
6389 | # Get the element from the k'th matrix to use in this call. | ||||||
6390 | |||||||
6391 | 727 | 1156 | $elms[$k] = $args[$k][$ik][$jk]; | ||||
6392 | } | ||||||
6393 | |||||||
6394 | # Now we have the argument list for the subroutine call. | ||||||
6395 | |||||||
6396 | 359 | 563 | $y -> [$i][$j] = $sub -> (@elms); | ||||
6397 | } | ||||||
6398 | } | ||||||
6399 | |||||||
6400 | 50 | 581 | return $y; | ||||
6401 | } | ||||||
6402 | |||||||
6403 | =pod | ||||||
6404 | |||||||
6405 | =back | ||||||
6406 | |||||||
6407 | =head3 Forward elimination | ||||||
6408 | |||||||
6409 | These methods take a matrix as input, performs forward elimination, and returns | ||||||
6410 | a matrix where all elements below the main diagonal are zero. In list context, | ||||||
6411 | four additional arguments are returned: an array with the row permutations, an | ||||||
6412 | array with the column permutations, an integer with the number of row swaps and | ||||||
6413 | an integer with the number of column swaps performed during elimination. | ||||||
6414 | |||||||
6415 | The permutation vectors can be converted to permutation matrices with | ||||||
6416 | C |
||||||
6417 | |||||||
6418 | =over | ||||||
6419 | |||||||
6420 | =item felim_np() | ||||||
6421 | |||||||
6422 | Perform forward elimination with no pivoting. | ||||||
6423 | |||||||
6424 | $y = $x -> felim_np(); | ||||||
6425 | |||||||
6426 | Forward elimination without pivoting may fail even when the matrix is | ||||||
6427 | non-singular. | ||||||
6428 | |||||||
6429 | This method is provided mostly for illustration purposes. | ||||||
6430 | |||||||
6431 | =cut | ||||||
6432 | |||||||
6433 | sub felim_np { | ||||||
6434 | 1 | 50 | 1 | 1 | 20 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
6435 | 1 | 50 | 4 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
6436 | 1 | 2 | my $x = shift; | ||||
6437 | |||||||
6438 | 1 | 4 | $x = $x -> clone(); | ||||
6439 | 1 | 3 | my $nrow = $x -> nrow(); | ||||
6440 | 1 | 5 | my $ncol = $x -> ncol(); | ||||
6441 | |||||||
6442 | 1 | 3 | my $imax = $nrow - 1; | ||||
6443 | 1 | 2 | my $jmax = $ncol - 1; | ||||
6444 | |||||||
6445 | 1 | 2 | my $iperm = [ 0 .. $imax ]; # row permutation vector | ||||
6446 | 1 | 3 | my $jperm = [ 0 .. $imax ]; # column permutation vector | ||||
6447 | 1 | 2 | my $iswap = 0; # number of row swaps | ||||
6448 | 1 | 2 | my $jswap = 0; # number of column swaps | ||||
6449 | |||||||
6450 | 1 | 2 | my $debug = 0; | ||||
6451 | |||||||
6452 | 1 | 50 | 3 | printf "\nfelim_np(): before 0:\n\n%s\n", $x if $debug; | |||
6453 | |||||||
6454 | 1 | 66 | 7 | for (my $i = 0 ; $i <= $imax && $i <= $jmax ; ++$i) { | |||
6455 | |||||||
6456 | # The so far remaining unreduced submatrix starts at element ($i,$i). | ||||||
6457 | |||||||
6458 | # Skip this round, if all elements below (i,i) are zero. | ||||||
6459 | |||||||
6460 | 5 | 6 | my $saw_non_zero = 0; | ||||
6461 | 5 | 12 | for (my $u = $i + 1 ; $u <= $imax ; ++$u) { | ||||
6462 | 6 | 100 | 16 | if ($x->[$u][$i] != 0) { | |||
6463 | 4 | 5 | $saw_non_zero = 1; | ||||
6464 | 4 | 6 | last; | ||||
6465 | } | ||||||
6466 | } | ||||||
6467 | 5 | 100 | 12 | next unless $saw_non_zero; | |||
6468 | |||||||
6469 | # Since we don't use pivoting, element ($i,$i) must be non-zero. | ||||||
6470 | |||||||
6471 | 4 | 50 | 10 | if ($x->[$i][$i] == 0) { | |||
6472 | 0 | 0 | croak "No pivot element found for row $i"; | ||||
6473 | } | ||||||
6474 | |||||||
6475 | # Subtract row $i from each row $u below $i. | ||||||
6476 | |||||||
6477 | 4 | 8 | for (my $u = $i + 1 ; $u <= $imax ; ++$u) { | ||||
6478 | 10 | 27 | for (my $j = $jmax ; $j >= $i ; --$j) { | ||||
6479 | 40 | 82 | $x->[$u][$j] -= ($x->[$i][$j] * $x->[$u][$i]) / $x->[$i][$i]; | ||||
6480 | } | ||||||
6481 | |||||||
6482 | # In case of round-off errors. | ||||||
6483 | |||||||
6484 | 10 | 21 | $x->[$u][$i] *= 0; | ||||
6485 | } | ||||||
6486 | |||||||
6487 | 4 | 50 | 14 | printf "\nfelim_np(): after %u:\n\n%s\n\n", $i, $x if $debug; | |||
6488 | } | ||||||
6489 | |||||||
6490 | 1 | 50 | 3 | return $x, $iperm, $jperm, $iswap, $jswap if wantarray; | |||
6491 | 1 | 4 | return $x; | ||||
6492 | } | ||||||
6493 | |||||||
6494 | =pod | ||||||
6495 | |||||||
6496 | =item felim_tp() | ||||||
6497 | |||||||
6498 | Perform forward elimination with trivial pivoting, a variant of partial | ||||||
6499 | pivoting. | ||||||
6500 | |||||||
6501 | $y = $x -> felim_tp(); | ||||||
6502 | |||||||
6503 | If A is a p-by-q matrix, and the so far remaining unreduced submatrix starts at | ||||||
6504 | element (i,i), the pivot element is the first element in column i that is | ||||||
6505 | non-zero. | ||||||
6506 | |||||||
6507 | This method is provided mostly for illustration purposes. | ||||||
6508 | |||||||
6509 | =cut | ||||||
6510 | |||||||
6511 | sub felim_tp { | ||||||
6512 | 1 | 50 | 1 | 1 | 8 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
6513 | 1 | 50 | 3 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
6514 | 1 | 2 | my $x = shift; | ||||
6515 | |||||||
6516 | 1 | 50 | 5 | croak "felim_tp(): too many input arguments" if @_ > 0; | |||
6517 | |||||||
6518 | 1 | 2 | $x = $x -> clone(); | ||||
6519 | 1 | 3 | my $nrow = $x -> nrow(); | ||||
6520 | 1 | 2 | my $ncol = $x -> ncol(); | ||||
6521 | |||||||
6522 | 1 | 2 | my $imax = $nrow - 1; | ||||
6523 | 1 | 2 | my $jmax = $ncol - 1; | ||||
6524 | |||||||
6525 | 1 | 3 | my $iperm = [ 0 .. $imax ]; # row permutation vector | ||||
6526 | 1 | 2 | my $jperm = [ 0 .. $imax ]; # column permutation vector | ||||
6527 | 1 | 2 | my $iswap = 0; # number of row swaps | ||||
6528 | 1 | 2 | my $jswap = 0; # number of column swaps | ||||
6529 | |||||||
6530 | 1 | 2 | my $debug = 0; | ||||
6531 | |||||||
6532 | 1 | 50 | 3 | printf "\nfelim_tp(): before 0:\n\n%s\n", $x if $debug; | |||
6533 | |||||||
6534 | 1 | 66 | 7 | for (my $i = 0 ; $i <= $imax && $i <= $jmax ; ++$i) { | |||
6535 | |||||||
6536 | # The so far remaining unreduced submatrix starts at element ($i,$i). | ||||||
6537 | |||||||
6538 | # Skip this round, if all elements below (i,i) are zero. | ||||||
6539 | |||||||
6540 | 5 | 8 | my $saw_non_zero = 0; | ||||
6541 | 5 | 11 | for (my $u = $i + 1 ; $u <= $imax ; ++$u) { | ||||
6542 | 6 | 100 | 13 | if ($x->[$u][$i] != 0) { | |||
6543 | 4 | 5 | $saw_non_zero = 1; | ||||
6544 | 4 | 5 | last; | ||||
6545 | } | ||||||
6546 | } | ||||||
6547 | 5 | 100 | 10 | next unless $saw_non_zero; | |||
6548 | |||||||
6549 | # The pivot element is the first element in column $i (in the unreduced | ||||||
6550 | # submatrix) that is non-zero. | ||||||
6551 | |||||||
6552 | 4 | 6 | my $p; # index of pivot row | ||||
6553 | |||||||
6554 | 4 | 8 | for (my $u = $i ; $u <= $imax ; ++$u) { | ||||
6555 | 4 | 50 | 9 | if ($x->[$u][$i] != 0) { | |||
6556 | 4 | 5 | $p = $u; | ||||
6557 | 4 | 5 | last; | ||||
6558 | } | ||||||
6559 | } | ||||||
6560 | |||||||
6561 | 4 | 50 | 8 | printf "\nfelim_tp(): pivot element is (%u,%u)\n", $p, $i if $debug; | |||
6562 | |||||||
6563 | # Swap rows $i and $p. | ||||||
6564 | |||||||
6565 | 4 | 50 | 19 | if ($p != $i) { | |||
6566 | 0 | 0 | ($x->[$i], $x->[$p]) = ($x->[$p], $x->[$i]); | ||||
6567 | 0 | 0 | ($iperm->[$i], $iperm->[$p]) = ($iperm->[$p], $iperm->[$i]); | ||||
6568 | 0 | 0 | $iswap++; | ||||
6569 | } | ||||||
6570 | |||||||
6571 | # Subtract row $i from all following rows. | ||||||
6572 | |||||||
6573 | 4 | 11 | for (my $u = $i + 1 ; $u <= $imax ; ++$u) { | ||||
6574 | |||||||
6575 | 10 | 17 | for (my $j = $jmax ; $j >= $i ; --$j) { | ||||
6576 | 40 | 82 | $x->[$u][$j] -= ($x->[$i][$j] * $x->[$u][$i]) / $x->[$i][$i]; | ||||
6577 | } | ||||||
6578 | |||||||
6579 | # In case of round-off errors. | ||||||
6580 | |||||||
6581 | 10 | 20 | $x->[$u][$i] *= 0; | ||||
6582 | } | ||||||
6583 | |||||||
6584 | 4 | 50 | 15 | printf "\nfelim_tp(): after %u:\n\n%s\n\n", $i, $x if $debug; | |||
6585 | } | ||||||
6586 | |||||||
6587 | 1 | 50 | 3 | return $x, $iperm, $jperm, $iswap, $jswap if wantarray; | |||
6588 | 1 | 5 | return $x; | ||||
6589 | } | ||||||
6590 | |||||||
6591 | =pod | ||||||
6592 | |||||||
6593 | =item felim_pp() | ||||||
6594 | |||||||
6595 | Perform forward elimination with (unscaled) partial pivoting. | ||||||
6596 | |||||||
6597 | $y = $x -> felim_pp(); | ||||||
6598 | |||||||
6599 | If A is a p-by-q matrix, and the so far remaining unreduced submatrix starts at | ||||||
6600 | element (i,i), the pivot element is the element in column i that has the largest | ||||||
6601 | absolute value. | ||||||
6602 | |||||||
6603 | This method is provided mostly for illustration purposes. | ||||||
6604 | |||||||
6605 | =cut | ||||||
6606 | |||||||
6607 | sub felim_pp { | ||||||
6608 | 1 | 50 | 1 | 1 | 13 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
6609 | 1 | 50 | 4 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
6610 | 1 | 2 | my $x = shift; | ||||
6611 | |||||||
6612 | 1 | 50 | 8 | croak "felim_pp(): too many input arguments" if @_ > 0; | |||
6613 | |||||||
6614 | 1 | 3 | $x = $x -> clone(); | ||||
6615 | 1 | 3 | my $nrow = $x -> nrow(); | ||||
6616 | 1 | 4 | my $ncol = $x -> ncol(); | ||||
6617 | |||||||
6618 | 1 | 3 | my $imax = $nrow - 1; | ||||
6619 | 1 | 2 | my $jmax = $ncol - 1; | ||||
6620 | |||||||
6621 | 1 | 3 | my $iperm = [ 0 .. $imax ]; # row permutation vector | ||||
6622 | 1 | 3 | my $jperm = [ 0 .. $imax ]; # column permutation vector | ||||
6623 | 1 | 2 | my $iswap = 0; # number of row swaps | ||||
6624 | 1 | 2 | my $jswap = 0; # number of column swaps | ||||
6625 | |||||||
6626 | 1 | 2 | my $debug = 0; | ||||
6627 | |||||||
6628 | 1 | 50 | 4 | printf "\nfelim_pp(): before 0:\n\n%s\n", $x if $debug; | |||
6629 | |||||||
6630 | 1 | 66 | 7 | for (my $i = 0 ; $i <= $imax && $i <= $jmax ; ++$i) { | |||
6631 | |||||||
6632 | # The so far remaining unreduced submatrix starts at element ($i,$i). | ||||||
6633 | |||||||
6634 | # Skip this round, if all elements below (i,i) are zero. | ||||||
6635 | |||||||
6636 | 5 | 5 | my $saw_non_zero = 0; | ||||
6637 | 5 | 13 | for (my $u = $i + 1 ; $u <= $imax ; ++$u) { | ||||
6638 | 6 | 100 | 13 | if ($x->[$u][$i] != 0) { | |||
6639 | 4 | 5 | $saw_non_zero = 1; | ||||
6640 | 4 | 5 | last; | ||||
6641 | } | ||||||
6642 | } | ||||||
6643 | 5 | 100 | 16 | next unless $saw_non_zero; | |||
6644 | |||||||
6645 | # The pivot element is the element in column $i (in the unreduced | ||||||
6646 | # submatrix) that has the largest absolute value. | ||||||
6647 | |||||||
6648 | 4 | 5 | my $p; # index of pivot row | ||||
6649 | 4 | 5 | my $max_abs_val = 0; | ||||
6650 | |||||||
6651 | 4 | 9 | for (my $u = $i ; $u <= $imax ; ++$u) { | ||||
6652 | 14 | 19 | my $abs_val = CORE::abs($x->[$u][$i]); | ||||
6653 | 14 | 100 | 30 | if ($abs_val > $max_abs_val) { | |||
6654 | 5 | 9 | $max_abs_val = $abs_val; | ||||
6655 | 5 | 7 | $p = $u; | ||||
6656 | } | ||||||
6657 | } | ||||||
6658 | |||||||
6659 | 4 | 50 | 8 | printf "\nfelim_pp(): pivot element is (%u,%u)\n", $p, $i if $debug; | |||
6660 | |||||||
6661 | # Swap rows $i and $p. | ||||||
6662 | |||||||
6663 | 4 | 100 | 8 | if ($p != $i) { | |||
6664 | 1 | 3 | ($x->[$p], $x->[$i]) = ($x->[$i], $x->[$p]); | ||||
6665 | 1 | 3 | ($iperm->[$p], $iperm->[$i]) = ($iperm->[$i], $iperm->[$p]); | ||||
6666 | 1 | 2 | $iswap++; | ||||
6667 | } | ||||||
6668 | |||||||
6669 | # Subtract row $i from all following rows. | ||||||
6670 | |||||||
6671 | 4 | 9 | for (my $u = $i + 1 ; $u <= $imax ; ++$u) { | ||||
6672 | |||||||
6673 | 10 | 16 | for (my $j = $jmax ; $j >= $i ; --$j) { | ||||
6674 | 40 | 84 | $x->[$u][$j] -= ($x->[$i][$j] * $x->[$u][$i]) / $x->[$i][$i]; | ||||
6675 | } | ||||||
6676 | |||||||
6677 | # In case of round-off errors. | ||||||
6678 | |||||||
6679 | 10 | 23 | $x->[$u][$i] *= 0; | ||||
6680 | } | ||||||
6681 | |||||||
6682 | 4 | 50 | 14 | printf "\nfelim_pp(): after %u:\n\n%s\n\n", $i, $x if $debug; | |||
6683 | } | ||||||
6684 | |||||||
6685 | 1 | 50 | 3 | return $x, $iperm, $jperm, $iswap, $jswap if wantarray; | |||
6686 | 1 | 4 | return $x; | ||||
6687 | } | ||||||
6688 | |||||||
6689 | =pod | ||||||
6690 | |||||||
6691 | =item felim_sp() | ||||||
6692 | |||||||
6693 | Perform forward elimination with scaled pivoting, a variant of partial pivoting. | ||||||
6694 | |||||||
6695 | $y = $x -> felim_sp(); | ||||||
6696 | |||||||
6697 | If A is a p-by-q matrix, and the so far remaining unreduced submatrix starts at | ||||||
6698 | element (i,i), the pivot element is the element in column i that has the largest | ||||||
6699 | absolute value relative to the other elements on the same row. | ||||||
6700 | |||||||
6701 | =cut | ||||||
6702 | |||||||
6703 | sub felim_sp { | ||||||
6704 | 1 | 50 | 1 | 1 | 22 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
6705 | 1 | 50 | 21 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
6706 | 1 | 5 | my $x = shift; | ||||
6707 | |||||||
6708 | 1 | 50 | 5 | croak "felim_sp(): too many input arguments" if @_ > 0; | |||
6709 | |||||||
6710 | 1 | 3 | $x = $x -> clone(); | ||||
6711 | 1 | 4 | my $nrow = $x -> nrow(); | ||||
6712 | 1 | 3 | my $ncol = $x -> ncol(); | ||||
6713 | |||||||
6714 | 1 | 3 | my $imax = $nrow - 1; | ||||
6715 | 1 | 3 | my $jmax = $ncol - 1; | ||||
6716 | |||||||
6717 | 1 | 2 | my $iperm = [ 0 .. $imax ]; # row permutation vector | ||||
6718 | 1 | 3 | my $jperm = [ 0 .. $imax ]; # column permutation vector | ||||
6719 | 1 | 3 | my $iswap = 0; # number of row swaps | ||||
6720 | 1 | 2 | my $jswap = 0; # number of column swaps | ||||
6721 | |||||||
6722 | 1 | 2 | my $debug = 0; | ||||
6723 | |||||||
6724 | 1 | 50 | 3 | printf "\nfelim_sp(): before 0:\n\n%s\n", $x if $debug; | |||
6725 | |||||||
6726 | 1 | 66 | 7 | for (my $i = 0 ; $i <= $imax && $i <= $jmax ; ++$i) { | |||
6727 | |||||||
6728 | # The so far remaining unreduced submatrix starts at element ($i,$i). | ||||||
6729 | |||||||
6730 | # Skip this round, if all elements below (i,i) are zero. | ||||||
6731 | |||||||
6732 | 5 | 7 | my $saw_non_zero = 0; | ||||
6733 | 5 | 11 | for (my $u = $i + 1 ; $u <= $imax ; ++$u) { | ||||
6734 | 6 | 100 | 15 | if ($x->[$u][$i] != 0) { | |||
6735 | 4 | 4 | $saw_non_zero = 1; | ||||
6736 | 4 | 7 | last; | ||||
6737 | } | ||||||
6738 | } | ||||||
6739 | 5 | 100 | 12 | next unless $saw_non_zero; | |||
6740 | |||||||
6741 | # The pivot element is the element in column $i (in the unreduced | ||||||
6742 | # submatrix) that has the largest absolute value relative to the other | ||||||
6743 | # elements on the same row. | ||||||
6744 | |||||||
6745 | 4 | 4 | my $p; | ||||
6746 | 4 | 6 | my $max_abs_ratio = 0; | ||||
6747 | |||||||
6748 | 4 | 8 | for (my $u = $i ; $u <= $imax ; ++$u) { | ||||
6749 | |||||||
6750 | # Find the element with the largest absolute value in row $u. | ||||||
6751 | |||||||
6752 | 14 | 17 | my $max_abs_val = 0; | ||||
6753 | 14 | 24 | for (my $v = $i ; $v <= $jmax ; ++$v) { | ||||
6754 | 54 | 70 | my $abs_val = CORE::abs($x->[$u][$v]); | ||||
6755 | 54 | 100 | 167 | $max_abs_val = $abs_val if $abs_val > $max_abs_val; | |||
6756 | } | ||||||
6757 | |||||||
6758 | 14 | 50 | 23 | next if $max_abs_val == 0; | |||
6759 | |||||||
6760 | # Find the ratio for this row and see if it the best so far. | ||||||
6761 | |||||||
6762 | 14 | 23 | my $abs_ratio = CORE::abs($x->[$u][$i]) / $max_abs_val; | ||||
6763 | #croak "column ", $i + 1, " has only zeros" | ||||||
6764 | # if $ratio == 0; | ||||||
6765 | |||||||
6766 | 14 | 100 | 32 | if ($abs_ratio > $max_abs_ratio) { | |||
6767 | 6 | 7 | $max_abs_ratio = $abs_ratio; | ||||
6768 | 6 | 11 | $p = $u; | ||||
6769 | } | ||||||
6770 | |||||||
6771 | } | ||||||
6772 | |||||||
6773 | 4 | 50 | 8 | printf "\nfelim_sp(): pivot element is (%u,%u)\n", $p, $i if $debug; | |||
6774 | |||||||
6775 | # Swap rows $i and $p. | ||||||
6776 | |||||||
6777 | 4 | 100 | 8 | if ($p != $i) { | |||
6778 | 2 | 5 | ($x->[$p], $x->[$i]) = ($x->[$i], $x->[$p]); | ||||
6779 | 2 | 4 | ($iperm->[$p], $iperm->[$i]) = ($iperm->[$i], $iperm->[$p]); | ||||
6780 | 2 | 3 | $iswap++; | ||||
6781 | } | ||||||
6782 | |||||||
6783 | # Subtract row $i from all following rows. | ||||||
6784 | |||||||
6785 | 4 | 12 | for (my $u = $i + 1 ; $u <= $imax ; ++$u) { | ||||
6786 | |||||||
6787 | 10 | 17 | for (my $j = $jmax ; $j >= $i ; --$j) { | ||||
6788 | 40 | 81 | $x->[$u][$j] -= ($x->[$i][$j] * $x->[$u][$i]) / $x->[$i][$i]; | ||||
6789 | } | ||||||
6790 | |||||||
6791 | # In case of round-off errors. | ||||||
6792 | |||||||
6793 | 10 | 20 | $x->[$u][$i] *= 0; | ||||
6794 | } | ||||||
6795 | |||||||
6796 | 4 | 50 | 15 | printf "\nfelim_sp(): after %u:\n\n%s\n\n", $i, $x if $debug; | |||
6797 | } | ||||||
6798 | |||||||
6799 | 1 | 50 | 4 | return $x, $iperm, $jperm, $iswap, $jswap if wantarray; | |||
6800 | 1 | 4 | return $x; | ||||
6801 | } | ||||||
6802 | |||||||
6803 | =pod | ||||||
6804 | |||||||
6805 | =item felim_fp() | ||||||
6806 | |||||||
6807 | Performs forward elimination with full pivoting. | ||||||
6808 | |||||||
6809 | $y = $x -> felim_fp(); | ||||||
6810 | |||||||
6811 | The elimination is done with full pivoting, also called complete pivoting or | ||||||
6812 | total pivoting. If A is a p-by-q matrix, and the so far remaining unreduced | ||||||
6813 | submatrix starts at element (i,i), the pivot element is the element in the whole | ||||||
6814 | submatrix that has the largest absolute value. With full pivoting, both rows and | ||||||
6815 | columns might be swapped. | ||||||
6816 | |||||||
6817 | =cut | ||||||
6818 | |||||||
6819 | sub felim_fp { | ||||||
6820 | 70 | 50 | 70 | 1 | 205 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
6821 | 70 | 50 | 136 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
6822 | 70 | 108 | my $x = shift; | ||||
6823 | |||||||
6824 | 70 | 50 | 134 | croak "felim_fp(): too many input arguments" if @_ > 0; | |||
6825 | |||||||
6826 | 70 | 157 | $x = $x -> clone(); | ||||
6827 | 70 | 132 | my $nrow = $x -> nrow(); | ||||
6828 | 70 | 143 | my $ncol = $x -> ncol(); | ||||
6829 | |||||||
6830 | 70 | 105 | my $imax = $nrow - 1; | ||||
6831 | 70 | 104 | my $jmax = $ncol - 1; | ||||
6832 | |||||||
6833 | 70 | 132 | my $iperm = [ 0 .. $imax ]; # row permutation vector | ||||
6834 | 70 | 143 | my $jperm = [ 0 .. $imax ]; # column permutation vector | ||||
6835 | 70 | 143 | my $iswap = 0; # number of row swaps | ||||
6836 | 70 | 90 | my $jswap = 0; # number of column swaps | ||||
6837 | |||||||
6838 | 70 | 95 | my $debug = 0; | ||||
6839 | |||||||
6840 | 70 | 50 | 137 | printf "\nfelim_fp(): before 0:\n\n%s\n", $x if $debug; | |||
6841 | |||||||
6842 | 70 | 66 | 305 | for (my $i = 0 ; $i <= $imax && $i <= $jmax ; ++$i) { | |||
6843 | |||||||
6844 | # The so far remaining unreduced submatrix starts at element ($i,$i). | ||||||
6845 | # The pivot element is the element in the whole submatrix that has the | ||||||
6846 | # largest absolute value. | ||||||
6847 | |||||||
6848 | 184 | 279 | my $p; # index of pivot row | ||||
6849 | my $q; # index of pivot column | ||||||
6850 | |||||||
6851 | # Loop over each row and column in the submatrix to find the element | ||||||
6852 | # with the largest absolute value. | ||||||
6853 | |||||||
6854 | 184 | 250 | my $max_abs_val = 0; | ||||
6855 | 184 | 342 | for (my $u = $i ; $u <= $imax ; ++$u) { | ||||
6856 | 374 | 66 | 1023 | for (my $v = $i ; $v <= $imax && $v <= $jmax ; ++$v) { | |||
6857 | 982 | 1347 | my $abs_val = CORE::abs($x->[$u][$v]); | ||||
6858 | 982 | 100 | 2390 | if ($abs_val > $max_abs_val) { | |||
6859 | 345 | 432 | $max_abs_val = $abs_val; | ||||
6860 | 345 | 404 | $p = $u; | ||||
6861 | 345 | 862 | $q = $v; | ||||
6862 | } | ||||||
6863 | } | ||||||
6864 | } | ||||||
6865 | |||||||
6866 | # If we didn't find a pivot element, it means that the so far unreduced | ||||||
6867 | # submatrix contains zeros only, in which case we're done. | ||||||
6868 | |||||||
6869 | 184 | 100 | 336 | last unless defined $p; | |||
6870 | |||||||
6871 | 181 | 50 | 295 | printf "\nfelim_fp(): pivot element is (%u,%u)\n", $p, $q if $debug; | |||
6872 | |||||||
6873 | # Swap rows $i and $p. | ||||||
6874 | |||||||
6875 | 181 | 100 | 320 | if ($p != $i) { | |||
6876 | 76 | 50 | 134 | printf "\nfelim_fp(): swapping rows %u and %u\n", $p, $i if $debug; | |||
6877 | 76 | 50 | 142 | printf "\nfrom this:\n\n%s\n", $x if $debug; | |||
6878 | 76 | 182 | ($x->[$p], $x->[$i]) = ($x->[$i], $x->[$p]); | ||||
6879 | 76 | 50 | 137 | printf "\nto this:\n\n%s\n", $x if $debug; | |||
6880 | 76 | 159 | ($iperm->[$p], $iperm->[$i]) = ($iperm->[$i], $iperm->[$p]); | ||||
6881 | 76 | 109 | $iswap++; | ||||
6882 | } | ||||||
6883 | |||||||
6884 | # Swap columns $i and $q. | ||||||
6885 | |||||||
6886 | 181 | 100 | 409 | if ($q != $i) { | |||
6887 | 74 | 50 | 170 | printf "\nfelim_fp(): swapping columns %u and %u\n", $q, $i if $debug; | |||
6888 | 74 | 50 | 154 | printf "\nfrom this:\n\n%s\n", $x if $debug; | |||
6889 | 74 | 153 | for (my $u = 0 ; $u <= $imax ; ++$u) { | ||||
6890 | 248 | 559 | ($x->[$u][$q], $x->[$u][$i]) = ($x->[$u][$i], $x->[$u][$q]); | ||||
6891 | } | ||||||
6892 | 74 | 50 | 134 | printf "\nto this:\n\n%s\n", $x if $debug; | |||
6893 | 74 | 147 | ($jperm->[$q], $jperm->[$i]) = ($jperm->[$i], $jperm->[$q]); | ||||
6894 | 74 | 109 | $jswap++; | ||||
6895 | } | ||||||
6896 | |||||||
6897 | # Subtract row $i from all following rows. | ||||||
6898 | |||||||
6899 | 181 | 386 | for (my $u = $i + 1 ; $u <= $imax ; ++$u) { | ||||
6900 | |||||||
6901 | 190 | 340 | for (my $j = $jmax ; $j >= $i ; --$j) { | ||||
6902 | 1236 | 2520 | $x->[$u][$j] -= ($x->[$i][$j] * $x->[$u][$i]) / $x->[$i][$i]; | ||||
6903 | } | ||||||
6904 | |||||||
6905 | # In case of round-off errors. | ||||||
6906 | |||||||
6907 | 190 | 402 | $x->[$u][$i] *= 0; | ||||
6908 | } | ||||||
6909 | |||||||
6910 | 181 | 50 | 569 | printf "\nfelim_fp(): after %u:\n\n%s\n\n", $i, $x if $debug; | |||
6911 | } | ||||||
6912 | |||||||
6913 | 70 | 100 | 300 | return $x, $iperm, $jperm, $iswap, $jswap if wantarray; | |||
6914 | 1 | 7 | return $x; | ||||
6915 | } | ||||||
6916 | |||||||
6917 | =pod | ||||||
6918 | |||||||
6919 | =back | ||||||
6920 | |||||||
6921 | =head3 Back-substitution | ||||||
6922 | |||||||
6923 | =over 4 | ||||||
6924 | |||||||
6925 | =item bsubs() | ||||||
6926 | |||||||
6927 | Performs back-substitution. | ||||||
6928 | |||||||
6929 | $y = $x -> bsubs(); | ||||||
6930 | |||||||
6931 | The leftmost square portion of the matrix must be upper triangular. | ||||||
6932 | |||||||
6933 | =cut | ||||||
6934 | |||||||
6935 | sub bsubs { | ||||||
6936 | 10 | 50 | 10 | 1 | 43 | croak "Not enough arguments for ", (caller(0))[3] if @_ < 1; | |
6937 | 10 | 50 | 27 | croak "Too many arguments for ", (caller(0))[3] if @_ > 1; | |||
6938 | 10 | 39 | my $x = shift; | ||||
6939 | |||||||
6940 | 10 | 50 | 31 | croak "bsubs(): too many input arguments" if @_ > 0; | |||
6941 | |||||||
6942 | 10 | 26 | my $nrow = $x -> nrow(); | ||||
6943 | 10 | 24 | my $ncol = $x -> ncol(); | ||||
6944 | |||||||
6945 | 10 | 21 | my $imax = $nrow - 1; | ||||
6946 | 10 | 18 | my $jmax = $ncol - 1; | ||||
6947 | |||||||
6948 | 10 | 16 | my $debug = 0; | ||||
6949 | |||||||
6950 | 10 | 50 | 24 | printf "\nbsubs(): before 0:\n\n%s\n", $x if $debug; | |||
6951 | |||||||
6952 | 10 | 35 | for (my $i = 0 ; $i <= $imax ; ++$i) { | ||||
6953 | |||||||
6954 | # Check the elements below ($i,$i). They should all be zero. | ||||||
6955 | |||||||
6956 | 39 | 84 | for (my $k = $i + 1 ; $k <= $imax ; ++$k) { | ||||
6957 | 64 | 50 | 180 | croak "matrix is not upper triangular; element ($i,$i) is non-zero" | |||
6958 | unless $x->[$k][$i] == 0; | ||||||
6959 | } | ||||||
6960 | |||||||
6961 | # There is no rows above the first row to perform back-substitution on. | ||||||
6962 | |||||||
6963 | 39 | 100 | 82 | next if $i == 0; | |||
6964 | |||||||
6965 | # If the element on the diagonal is zero, we can't use it to perform | ||||||
6966 | # back-substitution. However, this is not a problem if all the elements | ||||||
6967 | # above ($i,$i) are zero. | ||||||
6968 | |||||||
6969 | 29 | 50 | 102 | if ($x->[$i][$i] == 0) { | |||
6970 | 0 | 0 | my $non_zero = 0; | ||||
6971 | 0 | 0 | my $k; | ||||
6972 | 0 | 0 | for ($k = 0 ; $k < $i ; ++$k) { | ||||
6973 | 0 | 0 | 0 | if ($x->[$k][$i] != 0) { | |||
6974 | 0 | 0 | $non_zero++; | ||||
6975 | 0 | 0 | last; | ||||
6976 | } | ||||||
6977 | } | ||||||
6978 | 0 | 0 | 0 | if ($non_zero) { | |||
6979 | 0 | 0 | croak "bsubs(): back substitution failed; diagonal element", | ||||
6980 | " ($i,$i) is zero, but ($k,$i) isn't"; | ||||||
6981 | 0 | 0 | next; | ||||
6982 | } | ||||||
6983 | } | ||||||
6984 | |||||||
6985 | # Subtract row $i from each row $u above row $i. | ||||||
6986 | |||||||
6987 | 29 | 82 | for (my $u = $i - 1 ; $u >= 0 ; --$u) { | ||||
6988 | |||||||
6989 | # From row $u subtract $c times of row $i. | ||||||
6990 | |||||||
6991 | 64 | 156 | my $c = $x->[$u][$i] / $x->[$i][$i]; | ||||
6992 | |||||||
6993 | 64 | 140 | for (my $j = $jmax ; $j >= $i ; --$j) { | ||||
6994 | 372 | 649 | $x->[$u][$j] -= $c * $x->[$i][$j]; | ||||
6995 | } | ||||||
6996 | |||||||
6997 | # In case of round-off errors. (Will they ever happen?) | ||||||
6998 | |||||||
6999 | 64 | 119 | $x->[$u][$i] *= 0; | ||||
7000 | } | ||||||
7001 | |||||||
7002 | 29 | 50 | 83 | printf "\nbsubs(): after %u:\n\n%s\n\n", $i, $x if $debug; | |||
7003 | } | ||||||
7004 | |||||||
7005 | # Normalise. | ||||||
7006 | |||||||
7007 | 10 | 45 | for (my $i = 0 ; $i <= $imax ; ++$i) { | ||||
7008 | 39 | 50 | 76 | next if $x->[$i][$i] == 1; # row is already normalized | |||
7009 | 39 | 50 | 84 | next if $x->[$i][$i] == 0; # row can't be normalized | |||
7010 | 39 | 77 | for (my $j = $imax + 1 ; $j <= $jmax ; ++$j) { | ||||
7011 | 150 | 260 | $x->[$i][$j] /= $x->[$i][$i]; | ||||
7012 | } | ||||||
7013 | 39 | 81 | $x->[$i][$i] = 1; | ||||
7014 | } | ||||||
7015 | |||||||
7016 | 10 | 50 | 21 | printf "\nbsubs(): after normalisation:\n\n%s\n\n", $x if $debug; | |||
7017 | |||||||
7018 | 10 | 54 | return $x; | ||||
7019 | } | ||||||
7020 | |||||||
7021 | =pod | ||||||
7022 | |||||||
7023 | =back | ||||||
7024 | |||||||
7025 | =head2 Miscellaneous methods | ||||||
7026 | |||||||
7027 | =over 4 | ||||||
7028 | |||||||
7029 | =item print() | ||||||
7030 | |||||||
7031 | Prints the matrix on STDOUT. If the method has additional parameters, these are | ||||||
7032 | printed before the matrix is printed. | ||||||
7033 | |||||||
7034 | =cut | ||||||
7035 | |||||||
7036 | sub print { | ||||||
7037 | 7 | 7 | 1 | 51 | my $self = shift; | ||
7038 | |||||||
7039 | 7 | 50 | 70 | print @_ if scalar(@_); | |||
7040 | 7 | 27 | print $self->as_string; | ||||
7041 | } | ||||||
7042 | |||||||
7043 | =pod | ||||||
7044 | |||||||
7045 | =item version() | ||||||
7046 | |||||||
7047 | Returns a string contining the package name and version number. | ||||||
7048 | |||||||
7049 | =cut | ||||||
7050 | |||||||
7051 | sub version { | ||||||
7052 | 1 | 1 | 1 | 91 | return "Math::Matrix $VERSION"; | ||
7053 | } | ||||||
7054 | |||||||
7055 | # Internal utility methods. | ||||||
7056 | |||||||
7057 | # Compute the sum of all elements using Neumaier's algorithm, an improvement | ||||||
7058 | # over Kahan's algorithm. | ||||||
7059 | # | ||||||
7060 | # See | ||||||
7061 | # https://en.wikipedia.org/wiki/Kahan_summation_algorithm#Further_enhancements | ||||||
7062 | |||||||
7063 | sub _sum { | ||||||
7064 | 312 | 312 | 427 | my $sum = 0; | |||
7065 | 312 | 371 | my $c = 0; | ||||
7066 | |||||||
7067 | 312 | 477 | for (@_) { | ||||
7068 | 929 | 1200 | my $t = $sum + $_; | ||||
7069 | 929 | 100 | 1445 | if (CORE::abs($sum) >= CORE::abs($_)) { | |||
7070 | 441 | 579 | $c += ($sum - $t) + $_; | ||||
7071 | } else { | ||||||
7072 | 488 | 680 | $c += ($_ - $t) + $sum; | ||||
7073 | } | ||||||
7074 | 929 | 1310 | $sum = $t; | ||||
7075 | } | ||||||
7076 | |||||||
7077 | 312 | 779 | return $sum + $c; | ||||
7078 | } | ||||||
7079 | |||||||
7080 | # _prod LIST | ||||||
7081 | # | ||||||
7082 | |||||||
7083 | sub _prod { | ||||||
7084 | 27 | 27 | 34 | my $prod = 1; | |||
7085 | 27 | 57 | $prod *= $_ for @_; | ||||
7086 | 27 | 45 | return $prod; | ||||
7087 | } | ||||||
7088 | |||||||
7089 | # _mean LIST | ||||||
7090 | # | ||||||
7091 | # Method for finding the mean. | ||||||
7092 | |||||||
7093 | sub _mean { | ||||||
7094 | 27 | 50 | 27 | 52 | return 0 unless @_; | ||
7095 | 27 | 48 | _sum(@_) / @_; | ||||
7096 | } | ||||||
7097 | |||||||
7098 | # Method used to calculate the length of the hypotenuse of a right-angle | ||||||
7099 | # triangle. It is designed to avoid errors arising due to limited-precision | ||||||
7100 | # calculations performed on computers. E.g., with double-precision arithmetic: | ||||||
7101 | # | ||||||
7102 | # sqrt(3e200**2 + 4e200**2) # = Inf, due to overflow | ||||||
7103 | # _hypot(3e200, 4e200) # = 5e200, which is correct | ||||||
7104 | # | ||||||
7105 | # sqrt(3e-200**2 + 4e-200**2) # = 0, due to underflow | ||||||
7106 | # _hypot(3e-200, 4e-200) # = 5e-200, which is correct | ||||||
7107 | # | ||||||
7108 | # See https://en.wikipedia.org/wiki/Hypot | ||||||
7109 | |||||||
7110 | sub _hypot { | ||||||
7111 | 22 | 22 | 43 | my @x = map { CORE::abs($_) } @_; | |||
46 | 89 | ||||||
7112 | |||||||
7113 | # Compute the maximum value. | ||||||
7114 | |||||||
7115 | 22 | 59 | my $max = _max(@x); | ||||
7116 | 22 | 50 | 48 | return 0 if $max == 0; | |||
7117 | |||||||
7118 | # Scale and square the values. | ||||||
7119 | |||||||
7120 | 22 | 38 | for (@x) { | ||||
7121 | 46 | 69 | $_ /= $max; | ||||
7122 | 46 | 72 | $_ *= $_; | ||||
7123 | } | ||||||
7124 | |||||||
7125 | 22 | 47 | $max * sqrt(_sum(@x)) | ||||
7126 | } | ||||||
7127 | |||||||
7128 | # _sumsq LIST | ||||||
7129 | # | ||||||
7130 | # Sum of squared absolute values. | ||||||
7131 | |||||||
7132 | sub _sumsq { | ||||||
7133 | 0 | 0 | 0 | _sum(map { $_ * $_ } map { CORE::abs($_) } @_); | |||
0 | 0 | ||||||
0 | 0 | ||||||
7134 | } | ||||||
7135 | |||||||
7136 | # _vecnorm P, LIST | ||||||
7137 | # | ||||||
7138 | # Vector P-norm. If the input is $x[0], $x[1], ..., then the output is | ||||||
7139 | # | ||||||
7140 | # (abs($x[0])**$p + abs($x[1])**$p + ...)**(1/$p) | ||||||
7141 | |||||||
7142 | sub _vecnorm { | ||||||
7143 | 46 | 46 | 63 | my $p = shift; | |||
7144 | 46 | 64 | my @x = map { CORE::abs($_) } @_; | ||||
80 | 143 | ||||||
7145 | |||||||
7146 | 46 | 100 | 105 | return _sum(@x) if $p == 1; | |||
7147 | |||||||
7148 | 32 | 152 | require Math::Trig; | ||||
7149 | 32 | 78 | my $inf = Math::Trig::Inf(); | ||||
7150 | |||||||
7151 | 32 | 100 | 154 | return _max(@x) if $p == $inf; | |||
7152 | |||||||
7153 | # Compute the maximum value. | ||||||
7154 | |||||||
7155 | 18 | 29 | my $max = 0; | ||||
7156 | 18 | 24 | for (@x) { | ||||
7157 | 32 | 50 | 68 | $max = $_ if $_ > $max; | |||
7158 | } | ||||||
7159 | |||||||
7160 | # Scale and apply power function. | ||||||
7161 | |||||||
7162 | 18 | 25 | for (@x) { | ||||
7163 | 32 | 51 | $_ /= $max; | ||||
7164 | 32 | 54 | $_ **= $p; | ||||
7165 | } | ||||||
7166 | |||||||
7167 | 18 | 37 | $max * _sum(@x) ** (1/$p); | ||||
7168 | } | ||||||
7169 | |||||||
7170 | # _min LIST | ||||||
7171 | # | ||||||
7172 | # Minimum value. | ||||||
7173 | |||||||
7174 | sub _min { | ||||||
7175 | 27 | 27 | 34 | my $min = shift; | |||
7176 | 27 | 35 | for (@_) { | ||||
7177 | 60 | 100 | 83 | $min = $_ if $_ < $min; | |||
7178 | } | ||||||
7179 | |||||||
7180 | 27 | 40 | return $min; | ||||
7181 | } | ||||||
7182 | |||||||
7183 | # _max LIST | ||||||
7184 | # | ||||||
7185 | # Maximum value. | ||||||
7186 | |||||||
7187 | sub _max { | ||||||
7188 | 63 | 63 | 93 | my $max = shift; | |||
7189 | 63 | 108 | for (@_) { | ||||
7190 | 94 | 100 | 188 | $max = $_ if $_ > $max; | |||
7191 | } | ||||||
7192 | |||||||
7193 | 63 | 106 | return $max; | ||||
7194 | } | ||||||
7195 | |||||||
7196 | # _median LIST | ||||||
7197 | # | ||||||
7198 | # Method for finding the median. | ||||||
7199 | |||||||
7200 | sub _median { | ||||||
7201 | 27 | 27 | 52 | my @x = sort { $a <=> $b } @_; | |||
105 | 113 | ||||||
7202 | 27 | 100 | 40 | if (@x % 2) { | |||
7203 | 15 | 30 | $x[$#x / 2]; | ||||
7204 | } else { | ||||||
7205 | 12 | 34 | ($x[@x / 2] + $x[@x / 2 - 1]) / 2; | ||||
7206 | } | ||||||
7207 | } | ||||||
7208 | |||||||
7209 | # _any LIST | ||||||
7210 | # | ||||||
7211 | # Method that returns 1 if at least one value in LIST is non-zero and 0 | ||||||
7212 | # otherwise. | ||||||
7213 | |||||||
7214 | sub _any { | ||||||
7215 | 27 | 27 | 42 | for (@_) { | |||
7216 | 28 | 100 | 69 | return 1 if $_ != 0; | |||
7217 | } | ||||||
7218 | 1 | 2 | return 0; | ||||
7219 | } | ||||||
7220 | |||||||
7221 | # _all LIST | ||||||
7222 | # | ||||||
7223 | # Method that returns 1 if all values in LIST are non-zero and 0 otherwise. | ||||||
7224 | |||||||
7225 | sub _all { | ||||||
7226 | 27 | 27 | 41 | for (@_) { | |||
7227 | 76 | 100 | 137 | return 0 if $_ == 0; | |||
7228 | } | ||||||
7229 | 18 | 29 | return 1; | ||||
7230 | } | ||||||
7231 | |||||||
7232 | # _cumsum LIST | ||||||
7233 | # | ||||||
7234 | # Cumulative sum. If the input is $x[0], $x[1], ..., then output element $y[$i] | ||||||
7235 | # is the sum of the elements $x[0], $x[1], ..., $x[$i]. | ||||||
7236 | |||||||
7237 | sub _cumsum { | ||||||
7238 | 27 | 27 | 37 | my @sum = (); | |||
7239 | |||||||
7240 | 27 | 33 | my $sum = 0; | ||||
7241 | 27 | 37 | my $c = 0; | ||||
7242 | |||||||
7243 | 27 | 36 | for (@_) { | ||||
7244 | 87 | 114 | my $t = $sum + $_; | ||||
7245 | 87 | 100 | 134 | if (CORE::abs($sum) >= CORE::abs($_)) { | |||
7246 | 43 | 54 | $c += ($sum - $t) + $_; | ||||
7247 | } else { | ||||||
7248 | 44 | 59 | $c += ($_ - $t) + $sum; | ||||
7249 | } | ||||||
7250 | 87 | 103 | $sum = $t; | ||||
7251 | 87 | 130 | push @sum, $sum + $c; | ||||
7252 | } | ||||||
7253 | |||||||
7254 | 27 | 53 | return @sum; | ||||
7255 | } | ||||||
7256 | |||||||
7257 | # _cumprod LIST | ||||||
7258 | # | ||||||
7259 | # Cumulative product. If the input is $x[0], $x[1], ..., then output element | ||||||
7260 | # $y[$i] is the product of the elements $x[0], $x[1], ..., $x[$i]. | ||||||
7261 | |||||||
7262 | sub _cumprod { | ||||||
7263 | 27 | 27 | 40 | my @prod = shift; | |||
7264 | 27 | 62 | push @prod, $prod[-1] * $_ for @_; | ||||
7265 | 27 | 48 | return @prod; | ||||
7266 | } | ||||||
7267 | |||||||
7268 | # _cummean LIST | ||||||
7269 | # | ||||||
7270 | # Cumulative mean. If the input is $x[0], $x[1], ..., then output element $y[$i] | ||||||
7271 | # is the mean of the elements $x[0], $x[1], ..., $x[$i]. | ||||||
7272 | |||||||
7273 | sub _cummean { | ||||||
7274 | 27 | 27 | 42 | my @mean = (); | |||
7275 | 27 | 35 | my $sum = 0; | ||||
7276 | 27 | 52 | for my $i (0 .. $#_) { | ||||
7277 | 87 | 108 | $sum += $_[$i]; | ||||
7278 | 87 | 144 | push @mean, $sum / ($i + 1); | ||||
7279 | } | ||||||
7280 | 27 | 69 | return @mean; | ||||
7281 | } | ||||||
7282 | |||||||
7283 | # _cummean LIST | ||||||
7284 | # | ||||||
7285 | # Cumulative minimum. If the input is $x[0], $x[1], ..., then output element | ||||||
7286 | # $y[$i] is the minimum of the elements $x[0], $x[1], ..., $x[$i]. | ||||||
7287 | |||||||
7288 | sub _cummin { | ||||||
7289 | 0 | 0 | 0 | my @min = shift; | |||
7290 | 0 | 0 | for (@_) { | ||||
7291 | 0 | 0 | 0 | push @min, $min[-1] < $_ ? $min[-1] : $_; | |||
7292 | } | ||||||
7293 | 0 | 0 | return @min; | ||||
7294 | } | ||||||
7295 | |||||||
7296 | # _cummax LIST | ||||||
7297 | # | ||||||
7298 | # Cumulative maximum. If the input is $x[0], $x[1], ..., then output element | ||||||
7299 | # $y[$i] is the maximum of the elements $x[0], $x[1], ..., $x[$i]. | ||||||
7300 | |||||||
7301 | sub _cummax { | ||||||
7302 | 0 | 0 | 0 | my @max = shift; | |||
7303 | 0 | 0 | for (@_) { | ||||
7304 | 0 | 0 | 0 | push @max, $max[-1] > $_ ? $max[-1] : $_; | |||
7305 | } | ||||||
7306 | 0 | 0 | return @max; | ||||
7307 | } | ||||||
7308 | |||||||
7309 | # _cumany LIST | ||||||
7310 | # | ||||||
7311 | # Cumulative any. If the input is $x[0], $x[1], ..., then output element $y[$i] | ||||||
7312 | # is 1 if at least one of the elements $x[0], $x[1], ..., $x[$i] is non-zero, | ||||||
7313 | # and 0 otherwise. | ||||||
7314 | |||||||
7315 | sub _cumany { | ||||||
7316 | 27 | 27 | 38 | my @any = (); | |||
7317 | 27 | 39 | for (@_) { | ||||
7318 | 28 | 100 | 81 | if ($_ != 0) { | |||
7319 | 26 | 51 | push @any, (1) x (@_ - @any); | ||||
7320 | 26 | 42 | last; | ||||
7321 | } | ||||||
7322 | 2 | 4 | push @any, 0; | ||||
7323 | } | ||||||
7324 | 27 | 46 | return @any; | ||||
7325 | } | ||||||
7326 | |||||||
7327 | # _cumall LIST | ||||||
7328 | # | ||||||
7329 | # Cumulative all. If the input is $x[0], $x[1], ..., then output element $y[$i] | ||||||
7330 | # is 1 if all of the elements $x[0], $x[1], ..., $x[$i] are non-zero, and 0 | ||||||
7331 | # otherwise. | ||||||
7332 | |||||||
7333 | sub _cumall { | ||||||
7334 | 27 | 27 | 42 | my @all = (); | |||
7335 | 27 | 40 | for (@_) { | ||||
7336 | 76 | 100 | 124 | if ($_ == 0) { | |||
7337 | 9 | 21 | push @all, (0) x (@_ - @all); | ||||
7338 | 9 | 11 | last; | ||||
7339 | } | ||||||
7340 | 67 | 93 | push @all, 1; | ||||
7341 | } | ||||||
7342 | 27 | 52 | return @all; | ||||
7343 | } | ||||||
7344 | |||||||
7345 | # _diff LIST | ||||||
7346 | # | ||||||
7347 | # Difference. If the input is $x[0], $x[1], ..., then output element $y[$i] = | ||||||
7348 | # $x[$i+1] - $x[$i]. | ||||||
7349 | |||||||
7350 | sub _diff { | ||||||
7351 | 27 | 27 | 74 | my @diff = (); | |||
7352 | 27 | 50 | for my $i (1 .. $#_) { | ||||
7353 | 60 | 100 | push @diff, $_[$i] - $_[$i - 1]; | ||||
7354 | } | ||||||
7355 | 27 | 54 | return @diff; | ||||
7356 | } | ||||||
7357 | |||||||
7358 | =pod | ||||||
7359 | |||||||
7360 | =back | ||||||
7361 | |||||||
7362 | =head1 OVERLOADING | ||||||
7363 | |||||||
7364 | The following operators are overloaded. | ||||||
7365 | |||||||
7366 | =over 4 | ||||||
7367 | |||||||
7368 | =item C<+> and C<+=> | ||||||
7369 | |||||||
7370 | Matrix or scalar addition. Unless one or both of the operands is a scalar, both | ||||||
7371 | operands must have the same size. | ||||||
7372 | |||||||
7373 | $C = $A + $B; # assign $A + $B to $C | ||||||
7374 | $A += $B; # assign $A + $B to $A | ||||||
7375 | |||||||
7376 | Note that | ||||||
7377 | |||||||
7378 | =item C<-> and C<-=> | ||||||
7379 | |||||||
7380 | Matrix or scalar subtraction. Unless one or both of the operands is a scalar, | ||||||
7381 | both operands must have the same size. | ||||||
7382 | |||||||
7383 | $C = $A + $B; # assign $A - $B to $C | ||||||
7384 | $A += $B; # assign $A - $B to $A | ||||||
7385 | |||||||
7386 | =item C<*> and C<*=> | ||||||
7387 | |||||||
7388 | Matrix or scalar multiplication. Unless one or both of the operands is a scalar, | ||||||
7389 | the number of columns in the first operand must be equal to the number of rows | ||||||
7390 | in the second operand. | ||||||
7391 | |||||||
7392 | $C = $A * $B; # assign $A * $B to $C | ||||||
7393 | $A *= $B; # assign $A * $B to $A | ||||||
7394 | |||||||
7395 | =item C<**> and C<**=> | ||||||
7396 | |||||||
7397 | Matrix power. The second operand must be a scalar. | ||||||
7398 | |||||||
7399 | $C = $A * $B; # assign $A ** $B to $C | ||||||
7400 | $A *= $B; # assign $A ** $B to $A | ||||||
7401 | |||||||
7402 | =item C<==> | ||||||
7403 | |||||||
7404 | Equal to. | ||||||
7405 | |||||||
7406 | $A == $B; # is $A equal to $B? | ||||||
7407 | |||||||
7408 | =item C | ||||||
7409 | |||||||
7410 | Not equal to. | ||||||
7411 | |||||||
7412 | $A != $B; # is $A not equal to $B? | ||||||
7413 | |||||||
7414 | =item C |
||||||
7415 | |||||||
7416 | Negation. | ||||||
7417 | |||||||
7418 | $B = -$A; # $B is the negative of $A | ||||||
7419 | |||||||
7420 | =item C<~> | ||||||
7421 | |||||||
7422 | Transpose. | ||||||
7423 | |||||||
7424 | $B = ~$A; # $B is the transpose of $A | ||||||
7425 | |||||||
7426 | =item C |
||||||
7427 | |||||||
7428 | Absolute value. | ||||||
7429 | |||||||
7430 | $B = abs $A; # $B contains absolute values of $A | ||||||
7431 | |||||||
7432 | =item C |
||||||
7433 | |||||||
7434 | Truncate to integer. | ||||||
7435 | |||||||
7436 | $B = int $A; # $B contains only integers | ||||||
7437 | |||||||
7438 | =back | ||||||
7439 | |||||||
7440 | =head1 IMPROVING THE SOLUTION OF LINEAR SYSTEMS | ||||||
7441 | |||||||
7442 | The methods that do an explicit or implicit matrix left division accept some | ||||||
7443 | additional parameters. If these parameters are specified, the matrix left | ||||||
7444 | division is done repeatedly in an iterative way, which often gives a better | ||||||
7445 | solution. | ||||||
7446 | |||||||
7447 | =head2 Background | ||||||
7448 | |||||||
7449 | The linear system of equations | ||||||
7450 | |||||||
7451 | $A * $x = $y | ||||||
7452 | |||||||
7453 | can be solved for C<$x> with | ||||||
7454 | |||||||
7455 | $x = $y -> mldiv($A); | ||||||
7456 | |||||||
7457 | Ideally C<$A * $x> should equal C<$y>, but due to numerical errors, this is not | ||||||
7458 | always the case. The following illustrates how to improve the solution C<$x> | ||||||
7459 | computed above: | ||||||
7460 | |||||||
7461 | $r = $A -> mmuladd($x, -$y); # compute the residual $A*$x-$y | ||||||
7462 | $d = $r -> mldiv($A); # compute the delta for $x | ||||||
7463 | $x -= $d; # improve the solution $x | ||||||
7464 | |||||||
7465 | This procedure is repeated, and at each step, the absolute error | ||||||
7466 | |||||||
7467 | ||$A*$x - $y|| = ||$r|| | ||||||
7468 | |||||||
7469 | and the relative error | ||||||
7470 | |||||||
7471 | ||$A*$x - $y|| / ||$y|| = ||$r|| / ||$y|| | ||||||
7472 | |||||||
7473 | are computed and compared to the tolerances. Once one of the stopping criteria | ||||||
7474 | is satisfied, the algorithm terminates. | ||||||
7475 | |||||||
7476 | =head2 Stopping criteria | ||||||
7477 | |||||||
7478 | The algorithm stops when at least one of the errors are within the specified | ||||||
7479 | tolerances or the maximum number of iterations is reached. If the maximum number | ||||||
7480 | of iterations is reached, but noen of the errors are within the tolerances, a | ||||||
7481 | warning is displayed and the best solution so far is returned. | ||||||
7482 | |||||||
7483 | =head2 Parameters | ||||||
7484 | |||||||
7485 | =over 4 | ||||||
7486 | |||||||
7487 | =item MaxIter | ||||||
7488 | |||||||
7489 | The maximum number of iterations to perform. The value must be a positive | ||||||
7490 | integer. The default is 20. | ||||||
7491 | |||||||
7492 | =item RelTol | ||||||
7493 | |||||||
7494 | The limit for the relative error. The value must be a non-negative. The default | ||||||
7495 | value is 1e-19 when perl is compiled with long doubles or quadruple precision, | ||||||
7496 | and 1e-9 otherwise. | ||||||
7497 | |||||||
7498 | =item AbsTol | ||||||
7499 | |||||||
7500 | The limit for the absolute error. The value must be a non-negative. The default | ||||||
7501 | value is 0. | ||||||
7502 | |||||||
7503 | =item Debug | ||||||
7504 | |||||||
7505 | If this parameter does not affect when the algorithm terminates, but when set to | ||||||
7506 | non-zero, some information is displayed at each step. | ||||||
7507 | |||||||
7508 | =back | ||||||
7509 | |||||||
7510 | =head2 Example | ||||||
7511 | |||||||
7512 | If | ||||||
7513 | |||||||
7514 | $A = [[ 8, -8, -5, 6, -1, 3 ], | ||||||
7515 | [ -7, -1, 5, -9, 5, 6 ], | ||||||
7516 | [ -7, 8, 9, -2, -4, 3 ], | ||||||
7517 | [ 3, -4, 5, 5, 3, 3 ], | ||||||
7518 | [ 9, 8, -3, -4, 1, 6 ], | ||||||
7519 | [ -8, 9, -1, 3, 5, 2 ]]; | ||||||
7520 | |||||||
7521 | $y = [[ 80, -13 ], | ||||||
7522 | [ -2, 104 ], | ||||||
7523 | [ -57, -27 ], | ||||||
7524 | [ 47, -28 ], | ||||||
7525 | [ 5, 77 ], | ||||||
7526 | [ 91, 133 ]]; | ||||||
7527 | |||||||
7528 | the result of C<< $x = $y -> mldiv($A); >>, using double precision arithmetic, | ||||||
7529 | is the approximate solution | ||||||
7530 | |||||||
7531 | $x = [[ -2.999999999999998, -5.000000000000000 ], | ||||||
7532 | [ -1.000000000000000, 3.000000000000001 ], | ||||||
7533 | [ -5.999999999999997, -8.999999999999996 ], | ||||||
7534 | [ 8.000000000000000, -2.000000000000003 ], | ||||||
7535 | [ 6.000000000000003, 9.000000000000002 ], | ||||||
7536 | [ 7.999999999999997, 8.999999999999995 ]]; | ||||||
7537 | |||||||
7538 | The residual C<< $res = $A -> mmuladd($x, -$y); >> is | ||||||
7539 | |||||||
7540 | $res = [[ 1.24344978758018e-14, 1.77635683940025e-15 ], | ||||||
7541 | [ 8.88178419700125e-15, -5.32907051820075e-15 ], | ||||||
7542 | [ -1.24344978758018e-14, 1.77635683940025e-15 ], | ||||||
7543 | [ -7.10542735760100e-15, -4.08562073062058e-14 ], | ||||||
7544 | [ -1.77635683940025e-14, -3.81916720471054e-14 ], | ||||||
7545 | [ 1.24344978758018e-14, 8.43769498715119e-15 ]]; | ||||||
7546 | |||||||
7547 | and the delta C<< $dx = $res -> mldiv($A); >> is | ||||||
7548 | |||||||
7549 | $dx = [[ -8.592098303124e-16, -2.86724066474914e-15 ], | ||||||
7550 | [ -7.92220125658508e-16, -2.99693950082398e-15 ], | ||||||
7551 | [ -2.22533360993874e-16, 3.03465504177947e-16 ], | ||||||
7552 | [ 6.47376093198353e-17, -1.12378127899388e-15 ], | ||||||
7553 | [ 6.35204502123966e-16, 2.40938179521241e-15 ], | ||||||
7554 | [ 1.55166908001001e-15, 2.08339859425849e-15 ]]; | ||||||
7555 | |||||||
7556 | giving the improved, and in this case exact, solution C<< $x -= $dx; >>, | ||||||
7557 | |||||||
7558 | $x = [[ -3, -5 ], | ||||||
7559 | [ -1, 3 ], | ||||||
7560 | [ -6, -9 ], | ||||||
7561 | [ 8, -2 ], | ||||||
7562 | [ 6, 9 ], | ||||||
7563 | [ 8, 9 ]]; | ||||||
7564 | |||||||
7565 | =head1 SUBCLASSING | ||||||
7566 | |||||||
7567 | The methods should work fine with any kind of numerical objects, provided that | ||||||
7568 | the assignment operator C<=> is overloaded, so that Perl knows how to create a | ||||||
7569 | copy. | ||||||
7570 | |||||||
7571 | You can check the behaviour of the assignment operator by assigning a value to a | ||||||
7572 | new variable, modify the new variable, and check whether this also modifies the | ||||||
7573 | original value. Here is an example: | ||||||
7574 | |||||||
7575 | $x = Some::Class -> new(0); # create object $x | ||||||
7576 | $y = $x; # create new variable $y | ||||||
7577 | $y++; # modify $y | ||||||
7578 | print "it's a clone\n" if $x != $y; # is $x modified? | ||||||
7579 | |||||||
7580 | The subclass might need to implement some methods of its own. For instance, if | ||||||
7581 | each element is a complex number, a transpose() method needs to be implemented | ||||||
7582 | to take the complex conjugate of each value. An as_string() method might also be | ||||||
7583 | useful for displaying the matrix in a format more suitable for the subclass. | ||||||
7584 | |||||||
7585 | Here is an example showing Math::Matrix::Complex, a fully-working subclass of | ||||||
7586 | Math::Matrix, where each element is a Math::Complex object. | ||||||
7587 | |||||||
7588 | use strict; | ||||||
7589 | use warnings; | ||||||
7590 | |||||||
7591 | package Math::Matrix::Complex; | ||||||
7592 | |||||||
7593 | use Math::Matrix; | ||||||
7594 | use Scalar::Util 'blessed'; | ||||||
7595 | use Math::Complex 1.57; # "=" didn't clone before 1.57 | ||||||
7596 | |||||||
7597 | our @ISA = ('Math::Matrix'); | ||||||
7598 | |||||||
7599 | # We need a new() method to make sure every element is an object. | ||||||
7600 | |||||||
7601 | sub new { | ||||||
7602 | my $self = shift; | ||||||
7603 | my $x = $self -> SUPER::new(@_); | ||||||
7604 | |||||||
7605 | my $sub = sub { | ||||||
7606 | defined(blessed($_[0])) && $_[0] -> isa('Math::Complex') | ||||||
7607 | ? $_[0] | ||||||
7608 | : Math::Complex -> new($_[0]); | ||||||
7609 | }; | ||||||
7610 | |||||||
7611 | return $x -> sapply($sub); | ||||||
7612 | } | ||||||
7613 | |||||||
7614 | # We need a transpose() method, since the transpose of a matrix | ||||||
7615 | # with complex numbers also takes the conjugate of all elements. | ||||||
7616 | |||||||
7617 | sub transpose { | ||||||
7618 | my $x = shift; | ||||||
7619 | my $y = $x -> SUPER::transpose(@_); | ||||||
7620 | |||||||
7621 | return $y -> sapply(sub { ~$_[0] }); | ||||||
7622 | } | ||||||
7623 | |||||||
7624 | # We need an as_string() method, since our parent's methods | ||||||
7625 | # doesn't format complex numbers correctly. | ||||||
7626 | |||||||
7627 | sub as_string { | ||||||
7628 | my $self = shift; | ||||||
7629 | my $out = ""; | ||||||
7630 | for my $row (@$self) { | ||||||
7631 | for my $elm (@$row) { | ||||||
7632 | $out = $out . sprintf "%10s ", $elm; | ||||||
7633 | } | ||||||
7634 | $out = $out . sprintf "\n"; | ||||||
7635 | } | ||||||
7636 | $out; | ||||||
7637 | } | ||||||
7638 | |||||||
7639 | 1; | ||||||
7640 | |||||||
7641 | =head1 BUGS | ||||||
7642 | |||||||
7643 | Please report any bugs or feature requests via | ||||||
7644 | L |
||||||
7645 | |||||||
7646 | Old bug reports and feature requests can be found at | ||||||
7647 | L |
||||||
7648 | |||||||
7649 | =head1 SUPPORT | ||||||
7650 | |||||||
7651 | You can find documentation for this module with the perldoc command. | ||||||
7652 | |||||||
7653 | perldoc Math::Matrix | ||||||
7654 | |||||||
7655 | You can also look for information at: | ||||||
7656 | |||||||
7657 | =over 4 | ||||||
7658 | |||||||
7659 | =item * GitHub Source Repository | ||||||
7660 | |||||||
7661 | L |
||||||
7662 | |||||||
7663 | =item * MetaCPAN | ||||||
7664 | |||||||
7665 | L |
||||||
7666 | |||||||
7667 | =item * CPAN Ratings | ||||||
7668 | |||||||
7669 | L |
||||||
7670 | |||||||
7671 | =item * CPAN Testers PASS Matrix | ||||||
7672 | |||||||
7673 | L |
||||||
7674 | |||||||
7675 | =item * CPAN Testers Reports | ||||||
7676 | |||||||
7677 | L |
||||||
7678 | |||||||
7679 | =item * CPAN Testers Matrix | ||||||
7680 | |||||||
7681 | L |
||||||
7682 | |||||||
7683 | =back | ||||||
7684 | |||||||
7685 | =head1 LICENSE AND COPYRIGHT | ||||||
7686 | |||||||
7687 | Copyright (c) 2020-2021, Peter John Acklam | ||||||
7688 | |||||||
7689 | Copyright (C) 2013, John M. Gamble |
||||||
7690 | |||||||
7691 | Copyright (C) 2009, oshalla | ||||||
7692 | https://rt.cpan.org/Public/Bug/Display.html?id=42919 | ||||||
7693 | |||||||
7694 | Copyright (C) 2002, Bill Denney |
||||||
7695 | reserved. | ||||||
7696 | |||||||
7697 | Copyright (C) 2001, Brian J. Watson |
||||||
7698 | |||||||
7699 | Copyright (C) 2001, Ulrich Pfeifer |
||||||
7700 | Copyright (C) 1995, Universität Dortmund, all rights reserved. | ||||||
7701 | |||||||
7702 | Copyright (C) 2001, Matthew Brett |
||||||
7703 | |||||||
7704 | This program is free software; you may redistribute it and/or modify it under | ||||||
7705 | the same terms as Perl itself. | ||||||
7706 | |||||||
7707 | =head1 AUTHORS | ||||||
7708 | |||||||
7709 | Peter John Acklam E |
||||||
7710 | |||||||
7711 | Ulrich Pfeifer E |
||||||
7712 | |||||||
7713 | Brian J. Watson E |
||||||
7714 | |||||||
7715 | Matthew Brett E |
||||||
7716 | |||||||
7717 | =cut | ||||||
7718 | |||||||
7719 | 1; |