line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
=pod |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
=encoding utf8 |
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
=head1 Name |
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
Math::Intersection::Circle::Line - Find the points at which circles and lines |
8
|
|
|
|
|
|
|
intersect to test geometric intuition. |
9
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
=head1 Synopsis |
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
use Math::Intersection::Circle::Line q(:all); |
13
|
|
|
|
|
|
|
use Test::More q(no_plan); |
14
|
|
|
|
|
|
|
use utf8; |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
# Euler Line, see: L |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
if (1) |
19
|
|
|
|
|
|
|
{my @t = (0, 0, 4, 0, 0, 3); # Corners of the triangle |
20
|
|
|
|
|
|
|
&areaOfPolygon(sub {ok !$_[0]}, # Polygon formed by these points has zero area and so is a line or a point |
21
|
|
|
|
|
|
|
&circumCircle (sub {@_[0,1]}, @t), # green |
22
|
|
|
|
|
|
|
&ninePointCircle(sub {@_[0,1]}, @t), # red |
23
|
|
|
|
|
|
|
&orthoCentre (sub {@_[0,1]}, @t), # blue |
24
|
|
|
|
|
|
|
¢roid (sub {@_[0,1]}, @t)); # orange |
25
|
|
|
|
|
|
|
} |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
# An isosceles tringle with an apex height of 3/4 of the radius of its |
28
|
|
|
|
|
|
|
# circumcircle divides Euler's line into 6 equal pieces |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
if (1) |
31
|
|
|
|
|
|
|
{my $r = 400; # Arbitrary but convenient radius |
32
|
|
|
|
|
|
|
intersectionCircleLine # Find coordinates of equiangles of isoceles triangle |
33
|
|
|
|
|
|
|
{my ($x, $y, $𝕩, $𝕪) = @_; # Coordinates of equiangles |
34
|
|
|
|
|
|
|
my ($𝘅, $𝘆) = (0, $r); # Coordinates of apex |
35
|
|
|
|
|
|
|
my ($nx, $ny, $nr) = ninePointCircle {@_} $x, $y, $𝘅, $𝘆, $𝕩, $𝕪; # Coordinates of centre and radius of nine point circle |
36
|
|
|
|
|
|
|
my ($cx, $cy) = centroid {@_} $x, $y, $𝘅, $𝘆, $𝕩, $𝕪; # Coordinates of centroid |
37
|
|
|
|
|
|
|
my ($ox, $oy) = orthoCentre {@_} $x, $y, $𝘅, $𝘆, $𝕩, $𝕪; # Coordinates of orthocentre |
38
|
|
|
|
|
|
|
ok near(100, $y); # Circumcentre to base of triangle |
39
|
|
|
|
|
|
|
ok near(200, $cy); # Circumcentre to lower circumference of nine point circle |
40
|
|
|
|
|
|
|
ok near(300, $y+$nr); # Circumcentre to centre of nine point circle |
41
|
|
|
|
|
|
|
ok near(400, $𝘆); # Circumcentre to apex of isosceles triangle |
42
|
|
|
|
|
|
|
ok near(500, $y+2*$nr); # Circumcentre to upper circumference of nine point circle |
43
|
|
|
|
|
|
|
ok near(600, $oy); # Circumcentre to orthocentre |
44
|
|
|
|
|
|
|
} 0, 0, $r, 0, $r/4, 1, $r/4; # Chord at 1/4 radius |
45
|
|
|
|
|
|
|
} |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
# A line segment across a circle is never longer than the diameter |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
if (1) # Random circle and random line |
50
|
|
|
|
|
|
|
{my ($x, $y, $r, $𝘅, $𝘆, $𝕩, $𝕪) = map {rand()} 1..7; |
51
|
|
|
|
|
|
|
intersectionCircleLine # Find intersection of a circle and a line |
52
|
|
|
|
|
|
|
{return ok 1 unless @_ == 4; # Ignore line unless it crosses circle |
53
|
|
|
|
|
|
|
ok &vectorLength(@_) <= 2*$r; # Length if line segment is less than or equal to that of a diameter |
54
|
|
|
|
|
|
|
} $x, $y, $r, $𝘅, $𝘆, $𝕩, $𝕪; # Circle and line to be intersected |
55
|
|
|
|
|
|
|
} |
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
# The length of a side of a hexagon is the radius of a circle inscribed through |
58
|
|
|
|
|
|
|
# its vertices |
59
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
if (1) |
61
|
|
|
|
|
|
|
{my ($x, $y, $r) = map {rand()} 1..3; # Random circle |
62
|
|
|
|
|
|
|
my @p = intersectionCircles {@_} $x, $y, $r, $x+$r, $y, $r; # First step of one radius |
63
|
|
|
|
|
|
|
my @𝗽 = intersectionCircles {@_} $x, $y, $r, $p[0], $p[1], $r; # Second step of one radius |
64
|
|
|
|
|
|
|
my @q = !&near($x+$r, $y, @𝗽[0,1]) ? @𝗽[0,1] : @𝗽[2,3]; # Away from start point |
65
|
|
|
|
|
|
|
my @𝗾 = intersectionCircles {@_} $x, $y, $r, $q[0], $q[1], $r; # Third step of one radius |
66
|
|
|
|
|
|
|
ok &near2(@𝗾[0,1], $x-$r, $y) or # Brings us to a point |
67
|
|
|
|
|
|
|
&near2(@𝗾[2,3], $x-$r, $y); # opposite to the start point |
68
|
|
|
|
|
|
|
} |
69
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
# Circle through three points chosen at random has the same centre regardless of |
71
|
|
|
|
|
|
|
# the pairing of the points |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
sub circleThrough3 |
74
|
|
|
|
|
|
|
{my ($x, $y, $𝘅, $𝘆, $𝕩, $𝕪) = @_; # Three points |
75
|
|
|
|
|
|
|
&intersectionLines |
76
|
|
|
|
|
|
|
(sub # Intersection of bisectors is the centre of the circle |
77
|
|
|
|
|
|
|
{my @r =(&vectorLength(@_, $x, $y), # Radii from centre of circle to each point |
78
|
|
|
|
|
|
|
&vectorLength(@_, $𝘅, $𝘆), |
79
|
|
|
|
|
|
|
&vectorLength(@_, $𝕩, $𝕪)); |
80
|
|
|
|
|
|
|
ok &near(@r[0,1]); # Check radii are equal |
81
|
|
|
|
|
|
|
ok &near(@r[1,2]); |
82
|
|
|
|
|
|
|
@_ # Return centre |
83
|
|
|
|
|
|
|
}, rotate90AroundMidPoint($x, $y, $𝘅, $𝘆), # Bisectors between pairs of points |
84
|
|
|
|
|
|
|
rotate90AroundMidPoint($𝕩, $𝕪, $𝘅, $𝘆)); |
85
|
|
|
|
|
|
|
} |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
if (1) |
88
|
|
|
|
|
|
|
{my (@points) = map {rand()} 1..6; # Three points chosen at random |
89
|
|
|
|
|
|
|
ok &near2(circleThrough3(@points), circleThrough3(@points[2..5, 0..1])); # Circle has same centre regardless |
90
|
|
|
|
|
|
|
ok &near2(circleThrough3(@points), circleThrough3(@points[4..5, 0..3])); # of the pairing of the points |
91
|
|
|
|
|
|
|
} |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
=cut |
94
|
|
|
|
|
|
|
package Math::Intersection::Circle::Line; |
95
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
96
|
|
|
|
|
|
|
# Locate the points at which lines and circles cross in two dimensions |
97
|
|
|
|
|
|
|
# Philip R Brenan at gmail dot com, Appa Apps Ltd, 2016, http://www.appaapps.com |
98
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
99
|
|
|
|
|
|
|
|
100
|
1
|
|
|
1
|
|
897
|
use v5.18; |
|
1
|
|
|
|
|
4
|
|
101
|
1
|
|
|
1
|
|
5
|
use warnings FATAL => qw(all); |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
45
|
|
102
|
1
|
|
|
1
|
|
5
|
use strict; |
|
1
|
|
|
|
|
4
|
|
|
1
|
|
|
|
|
21
|
|
103
|
1
|
|
|
1
|
|
855
|
use utf8; |
|
1
|
|
|
|
|
10
|
|
|
1
|
|
|
|
|
5
|
|
104
|
1
|
|
|
1
|
|
27
|
use Carp; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
40058
|
|
105
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
107
|
|
|
|
|
|
|
# Our definition of nearness |
108
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
109
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
our $near = 1e-6; # Define nearness |
111
|
|
|
|
|
|
|
|
112
|
14059
|
|
100
|
14059
|
1
|
69454
|
sub near($;$) {return abs(($_[1]//0) - $_[0]) < $near} # Values this close are considered identical |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
sub near2($$;$$) # Check that we are near enough |
115
|
172
|
|
|
172
|
1
|
51477
|
{my ($a, $b, $A, $B) = @_; |
116
|
172
|
100
|
100
|
|
|
516
|
near($A//0, $a) && |
|
|
|
100
|
|
|
|
|
117
|
|
|
|
|
|
|
near($B//0, $b) |
118
|
|
|
|
|
|
|
} |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
sub near3($$$;$$$) # Check that we are near enough |
121
|
6
|
|
|
6
|
1
|
24
|
{my ($a, $b, $c, $A, $B, $C) = @_; |
122
|
6
|
50
|
100
|
|
|
20
|
near($A//0, $a) && |
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
33
|
|
|
|
|
123
|
|
|
|
|
|
|
near($B//0, $b) && |
124
|
|
|
|
|
|
|
near($C//0, $c) |
125
|
|
|
|
|
|
|
} |
126
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
sub near4($$$$;$$$$) # Check that we are near enough |
128
|
21
|
|
|
21
|
1
|
92
|
{my ($a, $b, $c, $d, $A, $B, $C, $D) = @_; |
129
|
21
|
50
|
100
|
|
|
63
|
near($A//0, $a) && |
|
|
|
100
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
33
|
|
|
|
|
130
|
|
|
|
|
|
|
near($B//0, $b) && |
131
|
|
|
|
|
|
|
near($C//0, $c) && |
132
|
|
|
|
|
|
|
near($D//0, $d) |
133
|
|
|
|
|
|
|
} |
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
136
|
|
|
|
|
|
|
# Trigonometric functions |
137
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
138
|
|
|
|
|
|
|
|
139
|
134
|
|
|
134
|
0
|
36672
|
sub 𝝿 {4*atan2(1,1)} # Pi |
140
|
6
|
|
|
6
|
1
|
8
|
sub acos($) {my ($a) = @_; atan2(sqrt(1 - $a**2), $a)} # acos |
|
6
|
|
|
|
|
21
|
|
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
143
|
|
|
|
|
|
|
# Length of a vector |
144
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
sub vectorSquaredLength($$;$$) # Length of a vector or distance between two vectors squared - useful for finding out which is longest without having to take a square root |
147
|
5715
|
|
|
5715
|
0
|
8330
|
{my ($x, $y, $𝘅, $𝘆) = @_; |
148
|
5715
|
|
100
|
|
|
25733
|
my $r = ($x-($𝘅//0))**2+($y-($𝘆//0))**2; |
|
|
|
100
|
|
|
|
|
149
|
5715
|
|
|
|
|
11489
|
$r |
150
|
|
|
|
|
|
|
} |
151
|
|
|
|
|
|
|
|
152
|
5330
|
|
|
5330
|
1
|
9472
|
sub vectorLength($$;$$) {sqrt(&vectorSquaredLength(@_))} # Length of a vector or distance between two vectors |
153
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
155
|
|
|
|
|
|
|
# Lengths of the sides of a polygon |
156
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
sub lengthsOfTheSidesOfAPolygon($$@) |
159
|
5
|
|
|
5
|
1
|
12
|
{my ($x, $y, @vertices) = @_; |
160
|
5
|
50
|
|
|
|
15
|
@_% 2 == 0 or confess "Odd number of coordinates!"; |
161
|
5
|
50
|
|
|
|
11
|
@_> 4 or confess "Must have at least two vertices!"; |
162
|
5
|
|
|
|
|
7
|
my @l; |
163
|
5
|
|
|
|
|
7
|
my ($𝘅, $𝘆); |
164
|
5
|
|
|
|
|
12
|
for(;scalar(@vertices);) |
165
|
11
|
|
|
|
|
29
|
{($𝘅, $𝘆, @vertices) = @vertices; |
166
|
11
|
|
|
|
|
21
|
push @l, vectorLength($x, $y, $𝘅, $𝘆); |
167
|
11
|
|
|
|
|
33
|
($x, $y) = ($𝘅, $𝘆) |
168
|
|
|
|
|
|
|
} |
169
|
5
|
|
|
|
|
14
|
push @l, vectorLength($_[-2]-$_[0], $_[-1]-$_[1]); |
170
|
|
|
|
|
|
|
@l |
171
|
5
|
|
|
|
|
17
|
} |
172
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
174
|
|
|
|
|
|
|
# Check whether three points are close to collinear by the Schwartz inequality |
175
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
176
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
sub threeCollinearPoints($$$$$$) # Three points to be tested |
178
|
794
|
|
|
794
|
1
|
1288
|
{my ($x, $y, $𝘅, $𝘆, $𝕩, $𝕪) = @_; |
179
|
794
|
50
|
|
|
|
1723
|
@_ == 6 or confess "Wrong number of parameters"; |
180
|
794
|
100
|
66
|
|
|
1424
|
return 1 if near($x, $𝘅) && near($y, $𝘆) or near($x, $𝕩) && near($y, $𝕪); # When two points are close the points are effectively collinear - although we should really check that all three points are not close sa this would identify either a number representation problem or a bad definition of nearness for this application |
|
|
|
100
|
|
|
|
|
|
|
|
33
|
|
|
|
|
181
|
793
|
|
|
|
|
1604
|
my $d = vectorLength($𝘅, $𝘆, $𝕩, $𝕪); |
182
|
793
|
|
|
|
|
1471
|
my $𝗱 = vectorLength($x, $y, $𝕩, $𝕪); # Lengths of sides opposite corners |
183
|
793
|
|
|
|
|
1400
|
my $𝕕 = vectorLength($x, $y, $𝘅, $𝘆); |
184
|
793
|
50
|
66
|
|
|
1568
|
return 1 if near($d, $𝗱) && near($𝕕); # Two sides equal and the other small makes the lines effectively collinear |
185
|
793
|
50
|
66
|
|
|
1519
|
return 1 if near($d, $𝕕) && near($𝗱); |
186
|
793
|
100
|
100
|
|
|
1639
|
return 1 if near($𝗱, $𝕕) && near($d); |
187
|
792
|
100
|
100
|
|
|
1850
|
near($d, $𝗱+$𝕕) or near($𝗱, $𝕕+$d) or near($𝕕, $d+$𝗱) # One side is almost as long as the other two combined |
188
|
|
|
|
|
|
|
} |
189
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
191
|
|
|
|
|
|
|
# Average of two vectors = coordinates of the mid point on the line between them |
192
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
sub midPoint($$$$) |
195
|
219
|
|
|
219
|
1
|
315
|
{my ($x, $y, $𝘅, $𝘆) = @_; |
196
|
219
|
50
|
|
|
|
472
|
@_ == 4 or confess "Wrong number of parameters"; |
197
|
219
|
|
|
|
|
576
|
(($x+$𝘅) / 2, ($y+$𝘆) / 2) |
198
|
|
|
|
|
|
|
} |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
201
|
|
|
|
|
|
|
# Rotations |
202
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
203
|
|
|
|
|
|
|
|
204
|
104
|
|
|
104
|
1
|
137
|
sub rotate90CW ($$) {my ($x, $y) = @_; (+$y, -$x)} # Clockwise |
|
104
|
|
|
|
|
228
|
|
205
|
2
|
|
|
2
|
1
|
3
|
sub rotate90CCW($$) {my ($x, $y) = @_; (-$y, +$x)} # Counter clockwise |
|
2
|
|
|
|
|
11
|
|
206
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
sub rotate90AroundMidPoint($$$$) |
208
|
102
|
|
|
102
|
1
|
158
|
{my ($x, $y, $𝘅, $𝘆) = @_; |
209
|
102
|
50
|
|
|
|
224
|
@_ == 4 or confess "Wrong number of parameters"; |
210
|
102
|
|
|
|
|
251
|
my ($𝕩, $𝕪) = map {$_/2} rotate90CW($𝘅 - $x, $𝘆 - $y); |
|
204
|
|
|
|
|
402
|
|
211
|
102
|
|
|
|
|
271
|
my ($X, $Y) = &midPoint(@_); |
212
|
102
|
|
|
|
|
344
|
($X - $𝕩, $Y - $𝕪, $X + $𝕩, $Y + $𝕪) |
213
|
|
|
|
|
|
|
} |
214
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
216
|
|
|
|
|
|
|
# 𝗜ntersection of a circle A, with a circle B. |
217
|
|
|
|
|
|
|
# |
218
|
|
|
|
|
|
|
# 𝗞nown: coordinates of the centre and radius of each circle x, y, r, 𝘅, 𝘆, 𝗿 |
219
|
|
|
|
|
|
|
# |
220
|
|
|
|
|
|
|
# 𝗙ind: the coordinates of the points at which the circles intersect. |
221
|
|
|
|
|
|
|
# |
222
|
|
|
|
|
|
|
# 𝗠ethod: Two different circles either do not intersect, or if they do, they |
223
|
|
|
|
|
|
|
# intersect at one or two points. If they intersect at two points, the |
224
|
|
|
|
|
|
|
# intersections are mirror images of each other in the line that connects the |
225
|
|
|
|
|
|
|
# centres of the two circles. |
226
|
|
|
|
|
|
|
# |
227
|
|
|
|
|
|
|
# Let 𝗟 be the line joining the two centres with length 𝗹 = a + 𝗮 where a is the |
228
|
|
|
|
|
|
|
# distance from (x, y) along 𝗟 to the point closest to the intersections. Then: |
229
|
|
|
|
|
|
|
# |
230
|
|
|
|
|
|
|
# r*r-a*a == 𝗿*𝗿-𝗮*𝗮 |
231
|
|
|
|
|
|
|
# r*r-𝗿*𝗿 == a*a-𝗮*𝗮 |
232
|
|
|
|
|
|
|
# == a*a-𝗮*𝗮 = (a+𝗮)(a-𝗮) == 𝗹*(a-𝗮) == 𝗹*(a - (𝗹 - a)) = 2*a*𝗹 - 𝗹*𝗹 |
233
|
|
|
|
|
|
|
# |
234
|
|
|
|
|
|
|
# a == (r*r-𝗿*𝗿 + 𝗹*𝗹)/ (2*𝗹) |
235
|
|
|
|
|
|
|
# |
236
|
|
|
|
|
|
|
# The distance 𝗮 at right angles to 𝗟 to an intersection is sqrt(r*r-a*a) |
237
|
|
|
|
|
|
|
# |
238
|
|
|
|
|
|
|
# The unit vector 𝕕 == (𝕩, 𝕪) along line 𝗟 from (x,y) to (𝘅, 𝘆) is the unit in |
239
|
|
|
|
|
|
|
# direction: (𝘅-x, 𝘆-y) |
240
|
|
|
|
|
|
|
# |
241
|
|
|
|
|
|
|
# The unit vectors d, 𝗱 at right angles to 𝗟 are (-𝕪, 𝕩) and (𝕪, -𝕩) |
242
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
243
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
sub intersectionCircles(&$$$$$$) |
245
|
695
|
|
|
695
|
1
|
1561
|
{my ($sub, # Sub routine to process intersection |
246
|
|
|
|
|
|
|
$x, $y, $r, # First circle centre, radius |
247
|
|
|
|
|
|
|
$𝘅, $𝘆, $𝗿) = @_; # Second circle centre, radius |
248
|
695
|
50
|
|
|
|
1482
|
@_ == 7 or confess "Wrong number of parameters"; |
249
|
695
|
100
|
100
|
|
|
1256
|
return &$sub("Duplicate circles!") if # Complain if the two circles are in fact the same circle within the definition of nearness |
|
|
|
100
|
|
|
|
|
250
|
|
|
|
|
|
|
near($x, $𝘅) and near($y, $𝘆) and near($r, $𝗿); |
251
|
|
|
|
|
|
|
|
252
|
694
|
|
|
|
|
1406
|
my ($𝕏, $𝕐) = ($𝘅 - $x, $𝘆 - $y); # Vector between centres |
253
|
694
|
|
|
|
|
1132
|
my $𝗹 = vectorLength($𝕏, $𝕐); # Distance between centres |
254
|
694
|
100
|
100
|
|
|
3395
|
return &$sub("No intersection!") if $𝗹 > $r + $𝗿 or $𝗹 < abs($r - $𝗿); # The circles are too far apart or too close to intersect |
255
|
|
|
|
|
|
|
|
256
|
691
|
|
|
|
|
1220
|
my ($𝕩, $𝕪) = ($𝕏 / $𝗹, $𝕐 / $𝗹); # Unit vector between centres |
257
|
691
|
|
|
|
|
1382
|
my $a = ($r*$r - $𝗿*$𝗿 + $𝗹*$𝗹)/ (2*$𝗹); # Length of the common side |
258
|
|
|
|
|
|
|
|
259
|
691
|
100
|
100
|
|
|
1444
|
return &$sub($x+$𝕩*$a, $y+$𝕪*$a) if near($𝗹, $r + $𝗿) or # The circles touch at one point if within the definition of nearness |
260
|
|
|
|
|
|
|
near($𝗹, abs($r - $𝗿)); |
261
|
|
|
|
|
|
|
|
262
|
685
|
|
|
|
|
1458
|
my $𝗮 = sqrt($r*$r-$a*$a); |
263
|
685
|
|
|
|
|
2631
|
&$sub($x+$𝕩*$a-$𝕪*$𝗮, $y+$𝕪*$a+$𝕩*$𝗮, # The circles touch at two points |
264
|
|
|
|
|
|
|
$x+$𝕩*$a+$𝕪*$𝗮, $y+$𝕪*$a-$𝕩*$𝗮); |
265
|
|
|
|
|
|
|
} |
266
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
268
|
|
|
|
|
|
|
# 𝗔rea of intersection of two circles. |
269
|
|
|
|
|
|
|
# |
270
|
|
|
|
|
|
|
# 𝗞nown: two circles specified by ($x, $y, $r) and ($𝘅, $𝘆, $𝗿) |
271
|
|
|
|
|
|
|
# |
272
|
|
|
|
|
|
|
# 𝗙ind: the area of intersection expressed as a fraction of the area |
273
|
|
|
|
|
|
|
# of the smaller circle |
274
|
|
|
|
|
|
|
# |
275
|
|
|
|
|
|
|
# 𝗠ethod: the area of a triangle is (base * height) / 2, the area of a slice is |
276
|
|
|
|
|
|
|
# 𝝰𝗿𝗿/2 where 𝝰 is the angle of a slice. |
277
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
278
|
|
|
|
|
|
|
|
279
|
|
|
|
|
|
|
sub intersectionCirclesArea(&$$$$$$) |
280
|
10
|
|
|
10
|
1
|
2518
|
{my ($sub, # Sub routine to process area |
281
|
|
|
|
|
|
|
$x, $y, $r, # First circle centre, radius |
282
|
|
|
|
|
|
|
$𝘅, $𝘆, $𝗿) = @_; # Second circle centre, radius |
283
|
10
|
50
|
|
|
|
30
|
@_ == 7 or confess "Wrong number of parameters"; |
284
|
10
|
50
|
|
|
|
14
|
near($r) and confess "Radius of first circle is too small!"; |
285
|
10
|
50
|
|
|
|
21
|
near($𝗿) and confess "Radius of second circle is too small!"; |
286
|
10
|
|
|
|
|
25
|
my $l = vectorLength($𝘅 - $x, $𝘆 - $y); # Distance between centres |
287
|
10
|
100
|
|
|
|
29
|
return &$sub(0) if $l >= $r + $𝗿; # The circles are too far apart to overlap |
288
|
9
|
100
|
|
|
|
20
|
my $𝕣 = $r < $𝗿 ? $r : $𝗿; # Radius of smaller circle |
289
|
9
|
100
|
|
|
|
27
|
return &$sub(1) if $l <= abs($r - $𝗿); # The larger circle overlaps the smaller circle completely |
290
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
intersectionCircles |
292
|
6
|
|
|
6
|
|
10
|
{my ($X, $Y, $𝗫, $𝗬) = @_; |
293
|
6
|
|
|
|
|
93
|
my $h = vectorLength($X - $𝗫, $Y - $𝗬) / 2; # Height of triangles |
294
|
6
|
|
|
|
|
14
|
my $R = sqrt($r**2 - $h**2); # Base of triangle in first circle |
295
|
6
|
|
|
|
|
11
|
my $𝗥 = sqrt($𝗿**2 - $h**2); # Base of triangle in second circle |
296
|
6
|
|
|
|
|
38
|
&$sub(($r**2*atan2($h, $R) + $𝗿**2*atan2($h, $𝗥) - $h*($R+$𝗥))/(𝝿()*$𝕣**2)) # Fraction of smaller circle overlapped |
297
|
6
|
|
|
|
|
32
|
} $x, $y, $r, $𝘅, $𝘆, $𝗿; |
298
|
|
|
|
|
|
|
} |
299
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
301
|
|
|
|
|
|
|
# 𝗣osition on a line closest to a specified point |
302
|
|
|
|
|
|
|
# |
303
|
|
|
|
|
|
|
# 𝗞nown: two points on the line 𝗟 such that: 𝗹 = (𝘅, 𝘆), 𝕝 = (𝕩, 𝕪) and the |
304
|
|
|
|
|
|
|
# specified point 𝗽 = (x, y). |
305
|
|
|
|
|
|
|
# |
306
|
|
|
|
|
|
|
# 𝗙ind 𝗰 the point on 𝗟 closest to 𝗽. |
307
|
|
|
|
|
|
|
# |
308
|
|
|
|
|
|
|
# 𝗠ethod: a circle with centre 𝗹 through 𝗽 will intersect a circle with centre 𝕝 |
309
|
|
|
|
|
|
|
# through 𝗽 at 𝗾. 𝗰 is then the average of 𝗽 and 𝗾. |
310
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
311
|
|
|
|
|
|
|
|
312
|
|
|
|
|
|
|
sub intersectionLinePoint(&$$$$$$) |
313
|
796
|
|
|
796
|
1
|
1640
|
{my ($sub, # Sub routine to process intersection |
314
|
|
|
|
|
|
|
$𝘅, $𝘆, $𝕩, $𝕪, # Two points on line 𝗹 |
315
|
|
|
|
|
|
|
$x, $y) = @_; # The point 𝗽 |
316
|
796
|
50
|
|
|
|
1831
|
@_ == 7 or confess "Wrong number of parameters"; |
317
|
796
|
50
|
66
|
|
|
1353
|
near($𝘅, $𝕩) and near($𝘆, $𝕪) and confess "Points on line are too close!"; # Line not well defined |
318
|
|
|
|
|
|
|
|
319
|
796
|
100
|
100
|
|
|
1719
|
return &$sub($x, $y) if near($x, $𝘅) && near($y, $𝘆) or # Point in question is near an end of the line segment |
|
|
|
100
|
|
|
|
|
|
|
|
66
|
|
|
|
|
320
|
|
|
|
|
|
|
near($x, $𝕩) && near($y, $𝕪); |
321
|
|
|
|
|
|
|
|
322
|
785
|
100
|
|
|
|
1742
|
return &$sub($x, $y) if threeCollinearPoints($𝘅, $𝘆, $𝕩, $𝕪, $x, $y); # Collinear |
323
|
|
|
|
|
|
|
# Points known not to be collinear |
324
|
666
|
|
|
|
|
1937
|
my $𝗿 = vectorLength($𝘅 - $x, $𝘆 - $y); # Radius of first circle |
325
|
666
|
|
|
|
|
1660
|
my $𝕣 = vectorLength($𝕩 - $x, $𝕪 - $y); # Radius of second circle |
326
|
|
|
|
|
|
|
intersectionCircles |
327
|
666
|
50
|
|
666
|
|
1532
|
{return &$sub(@_) if @_ == 2; # Point is on line |
328
|
666
|
|
|
|
|
1134
|
my ($x, $y, $𝘅, $𝘆) = @_; |
329
|
666
|
|
|
|
|
2024
|
&$sub(($x+$𝘅) / 2, ($y+$𝘆) / 2) # Average intersection of intersection points |
330
|
666
|
|
|
|
|
3412
|
} $𝘅, $𝘆, $𝗿, $𝕩, $𝕪, $𝕣; |
331
|
|
|
|
|
|
|
} |
332
|
|
|
|
|
|
|
|
333
|
|
|
|
|
|
|
sub unsignedDistanceFromLineToPoint(&$$$$$$) # Unsigned distance from point to line |
334
|
287
|
|
|
287
|
0
|
545
|
{my ($sub, $𝘅, $𝘆, $𝕩, $𝕪, $x, $y) = @_; # Parameters are the same as for intersectionLinePoint() |
335
|
287
|
50
|
|
|
|
609
|
@_ == 7 or confess "Wrong number of parameters"; |
336
|
287
|
|
|
287
|
|
1041
|
intersectionLinePoint {&$sub(&vectorLength($x, $y, @_))} $𝘅,$𝘆, $𝕩,$𝕪, $x,$y; # Distance from point to nearest point on line |
|
287
|
|
|
|
|
552
|
|
337
|
|
|
|
|
|
|
} |
338
|
|
|
|
|
|
|
|
339
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
340
|
|
|
|
|
|
|
# 𝗜ntersection of two lines |
341
|
|
|
|
|
|
|
# |
342
|
|
|
|
|
|
|
# 𝗞nown: two lines l specified by two points 𝗹 = (𝘅, 𝘆), 𝕝 = (𝕩, 𝕪) and |
343
|
|
|
|
|
|
|
# L specified by two points 𝗟 = (𝗫, 𝗬), 𝕃 = (𝕏, 𝕐) |
344
|
|
|
|
|
|
|
# 𝗙ind 𝗰 the point where the two lines intersect else $sub is called empty |
345
|
|
|
|
|
|
|
# |
346
|
|
|
|
|
|
|
# 𝗠ethod: Let the closest point to point 𝗟 on line l be 𝗮 and the closest point |
347
|
|
|
|
|
|
|
# to point 𝗮 on line L be 𝗯. L𝗮𝗯 is similar to L𝗮𝗰. |
348
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
349
|
|
|
|
|
|
|
|
350
|
|
|
|
|
|
|
sub intersectionLines(&$$$$$$$$) |
351
|
196
|
|
|
196
|
1
|
4803
|
{my ($sub, # Sub routine to process intersection |
352
|
|
|
|
|
|
|
$𝘅, $𝘆, $𝕩, $𝕪, # Two points on line l |
353
|
|
|
|
|
|
|
$𝗫, $𝗬, $𝕏, $𝕐) = @_; # Two points on line L |
354
|
196
|
50
|
|
|
|
463
|
@_ == 9 or confess "Wrong number of parameters"; |
355
|
196
|
50
|
66
|
|
|
385
|
near($𝘅, $𝕩) and near($𝘆, $𝕪) and confess "Points on first line are too close!"; |
356
|
196
|
50
|
66
|
|
|
410
|
near($𝗫, $𝕏) and near($𝗬, $𝕐) and confess "Points on second line are too close!"; |
357
|
196
|
100
|
|
|
|
31168
|
return &$sub("Parallel lines!") if # Lines are parallel if they have the same gradient |
358
|
|
|
|
|
|
|
near(atan2($𝘆-$𝕪, $𝘅-$𝕩), atan2($𝗬-$𝕐, $𝗫-$𝕏)); |
359
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
intersectionLinePoint # Find 𝗮 |
361
|
193
|
|
|
193
|
|
304
|
{my ($𝗮x, $𝗮y) = @_; |
362
|
|
|
|
|
|
|
|
363
|
|
|
|
|
|
|
intersectionLinePoint # Find 𝗯 |
364
|
193
|
|
|
|
|
344
|
{my ($𝗯x, $𝗯y) = @_; |
365
|
193
|
|
|
|
|
468
|
my $La = vectorSquaredLength($𝗫 - $𝗮x, $𝗬 - $𝗮y); # Squared distance from 𝗟 to 𝗮 |
366
|
193
|
100
|
|
|
|
407
|
return &$sub($𝗫, $𝗬) if near($La); # End point of second line is on first line but the lines are not parallel |
367
|
192
|
|
|
|
|
510
|
my $Lb = vectorSquaredLength($𝗫 - $𝗯x, $𝗬 - $𝗯y); # Squared distance from 𝗟 to 𝗯 |
368
|
192
|
50
|
|
|
|
395
|
near($Lb) and confess "Parallel lines!"; # Although this should not happen as we have already checked that the lines are not parallel |
369
|
192
|
|
|
|
|
370
|
my $s = $La / $Lb; # Scale factor for 𝗟𝗯 |
370
|
192
|
|
|
|
|
767
|
&$sub($𝗫 + $s * ($𝗯x - $𝗫), $𝗬 + $s * ($𝗯y - $𝗬)) # Point of intersection |
371
|
193
|
|
|
|
|
997
|
} $𝗫,$𝗬, $𝕏,$𝕐, $𝗮x,$𝗮y; # Find 𝗯 on second line |
372
|
193
|
|
|
|
|
963
|
} $𝘅,$𝘆, $𝕩,$𝕪, $𝗫,$𝗬; # Find 𝗮 on first line |
373
|
|
|
|
|
|
|
} |
374
|
|
|
|
|
|
|
|
375
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
376
|
|
|
|
|
|
|
# 𝗜ntersection of a circle with a line |
377
|
|
|
|
|
|
|
# |
378
|
|
|
|
|
|
|
# 𝗞nown: a circle specified by its centre (x, y), and radius (r) |
379
|
|
|
|
|
|
|
# and a line that passes through points: ($𝘅, $𝘆) and ($𝕩, $𝕪). |
380
|
|
|
|
|
|
|
# |
381
|
|
|
|
|
|
|
# 𝗙ind: the two points at which the line crosses the circle or the single point |
382
|
|
|
|
|
|
|
# at which the line touches the circle or report that there are no points in |
383
|
|
|
|
|
|
|
# common. |
384
|
|
|
|
|
|
|
# |
385
|
|
|
|
|
|
|
# 𝗠ethod: If the line crosses the circle we can draw an isosceles triangle from |
386
|
|
|
|
|
|
|
# the centre of the circle to the points of intersection, with the line forming |
387
|
|
|
|
|
|
|
# the base of said triangle. The centre of the base is the closest point on the |
388
|
|
|
|
|
|
|
# line to the centre of the circle. The line is at right angles to the line from |
389
|
|
|
|
|
|
|
# the centre of the circle to the centre of the base. |
390
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
391
|
|
|
|
|
|
|
|
392
|
|
|
|
|
|
|
sub intersectionCircleLine(&$$$$$$$) |
393
|
66
|
|
|
66
|
1
|
4535
|
{my ($sub, # Sub routine to process intersection |
394
|
|
|
|
|
|
|
$x, $y, $r, # Circle centre, radius |
395
|
|
|
|
|
|
|
$𝘅, $𝘆, $𝕩, $𝕪) = @_; # Line goes through these two points |
396
|
66
|
50
|
|
|
|
148
|
@_ == 8 or confess "Wrong number of parameters"; |
397
|
66
|
100
|
100
|
|
|
110
|
near($𝘅, $𝕩) and near($𝘆, $𝕪) and confess "Points on line are too close!"; |
398
|
65
|
100
|
|
|
|
130
|
if (near($r)) # Zero radius circle |
399
|
1
|
50
|
|
|
|
4
|
{return &$sub($x, $y) if threeCollinearPoints($x, $y, $𝘅, $𝘆, $𝕩, $𝕪); # Line passes through the centre of the circle |
400
|
0
|
|
|
|
|
0
|
confess "Radius is too small!"; |
401
|
|
|
|
|
|
|
} |
402
|
|
|
|
|
|
|
|
403
|
|
|
|
|
|
|
intersectionLinePoint |
404
|
64
|
|
|
64
|
|
98
|
{my ($X, $Y) = @_; # Midpoint on line |
405
|
64
|
100
|
100
|
|
|
131
|
if (near($x, $X) and near($y, $Y)) # Line passes through centre of circle |
406
|
11
|
|
|
|
|
18
|
{my ($𝗫, $𝗬) = ($𝕩 - $𝘅, $𝕪 - $𝘆); # Vector along line |
407
|
11
|
|
|
|
|
27
|
my $D = vectorLength($𝗫, $𝗬); # Length of vector along line |
408
|
11
|
|
|
|
|
24
|
my $s = $r/$D; # Length from midpoint along line to circumference relative to length from centre to midpoint |
409
|
11
|
|
|
|
|
87
|
return &$sub($x + $s * $𝗫, $y + $s * $𝗬, $x - $s * $𝗫, $y - $s * $𝗬); # Intersection points |
410
|
|
|
|
|
|
|
} |
411
|
53
|
|
|
|
|
118
|
my ($𝗫, $𝗬) = ($X - $x, $Y - $y); # Centre to midpoint |
412
|
53
|
|
|
|
|
87
|
my $𝗗 = vectorLength($𝗫, $𝗬); # Distance to midpoint |
413
|
53
|
100
|
|
|
|
139
|
return &$sub("No intersection!") if $𝗗 > $r; # Midpoint outside circle |
414
|
51
|
100
|
|
|
|
88
|
return &$sub($X, $Y) if near($𝗗, $r); # Tangent |
415
|
48
|
|
|
|
|
107
|
my $𝔻 = sqrt($r*$r - $𝗗*$𝗗); # Length from midpoint along line to circumference |
416
|
48
|
|
|
|
|
70
|
my $s = $𝔻/$𝗗; # Length from midpoint along line to circumference relative to length from centre to midpoint |
417
|
48
|
|
|
|
|
181
|
&$sub($X - $s * $𝗬, $Y + $s * $𝗫, $X + $s * $𝗬, $Y - $s * $𝗫) # Intersection points |
418
|
64
|
|
|
|
|
344
|
} $𝘅, $𝘆, $𝕩, $𝕪, $x, $y; # Find point on line closest to centre of circle |
419
|
|
|
|
|
|
|
} |
420
|
|
|
|
|
|
|
|
421
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
422
|
|
|
|
|
|
|
# 𝗔rea of intersection of a circle with a line |
423
|
|
|
|
|
|
|
# |
424
|
|
|
|
|
|
|
# 𝗞nown: a circle specified by its centre (x, y), and radius (r) |
425
|
|
|
|
|
|
|
# and a line that passes through points: ($𝘅, $𝘆) and ($𝕩, $𝕪). |
426
|
|
|
|
|
|
|
# 𝗙ind: the area of the smallest lune as a fraction of the area of the circle |
427
|
|
|
|
|
|
|
# 𝗠ethod: |
428
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
429
|
|
|
|
|
|
|
|
430
|
|
|
|
|
|
|
sub intersectionCircleLineArea(&$$$$$$$) |
431
|
49
|
|
|
49
|
1
|
19090
|
{my ($sub, # Sub routine to process area |
432
|
|
|
|
|
|
|
$x, $y, $r, # Circle centre, radius |
433
|
|
|
|
|
|
|
$𝘅, $𝘆, $𝕩, $𝕪) = @_; # Line goes through these two points |
434
|
49
|
50
|
|
|
|
128
|
@_ == 8 or confess "Wrong number of parameters"; |
435
|
49
|
50
|
33
|
|
|
98
|
near($𝘅, $𝕩) and near($𝘆, $𝕪) and confess "Points on line are too close!"; |
436
|
49
|
50
|
|
|
|
96
|
near($r) and confess "Radius is too small!"; |
437
|
|
|
|
|
|
|
|
438
|
|
|
|
|
|
|
intersectionCircleLine |
439
|
49
|
100
|
|
49
|
|
116
|
{return &$sub(0) if @_ < 4; |
440
|
46
|
|
|
|
|
68
|
my ($X, $Y, $𝗫, $𝗬) = @_; # Intersection points |
441
|
46
|
|
|
|
|
101
|
my $h = vectorLength($X - $𝗫, $Y - $𝗬) / 2; # Height of triangle |
442
|
46
|
|
|
|
|
112
|
my $w = sqrt($r**2 - $h**2); # Base of triangle |
443
|
46
|
|
|
|
|
159
|
&$sub(($r**2*atan2($h, $w) - $h*$w)/(𝝿()*$r**2)) # Area of smallest lune as a fraction of circle |
444
|
49
|
|
|
|
|
244
|
} $x, $y, $r, $𝘅, $𝘆, $𝕩, $𝕪; |
445
|
|
|
|
|
|
|
} |
446
|
|
|
|
|
|
|
|
447
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
448
|
|
|
|
|
|
|
# 𝗖ircumCentre: intersection of the sides of a triangle when rotated 𝝿/2 at |
449
|
|
|
|
|
|
|
# their mid points - centre of the circumCircle |
450
|
|
|
|
|
|
|
# 𝗞nown: coordinates of each corner of the triangle |
451
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
452
|
|
|
|
|
|
|
|
453
|
|
|
|
|
|
|
sub circumCentre(&$$$$$$) |
454
|
46
|
|
|
46
|
1
|
84
|
{my ($sub, $x, $y, $𝘅, $𝘆, $𝕩, $𝕪) = @_; # Subroutine to process results, coordinates of corners |
455
|
46
|
50
|
|
|
|
152
|
@_ == 7 or confess "Wrong number of parameters"; |
456
|
46
|
50
|
66
|
|
|
80
|
(near($x, $𝘅) && near($y, $𝘆) or near($𝘅, $𝕩) && near($𝘆, $𝕪)) and confess "Corners are too close!"; |
|
|
|
66
|
|
|
|
|
|
|
|
33
|
|
|
|
|
457
|
|
|
|
|
|
|
|
458
|
46
|
|
|
46
|
|
98
|
&intersectionLines(sub{&$sub(@_)}, |
459
|
46
|
|
|
|
|
179
|
rotate90AroundMidPoint($x, $y, $𝘅, $𝘆), |
460
|
|
|
|
|
|
|
rotate90AroundMidPoint($𝘅, $𝘆, $𝕩, $𝕪)); |
461
|
|
|
|
|
|
|
} |
462
|
|
|
|
|
|
|
|
463
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
464
|
|
|
|
|
|
|
# 𝗖ircle through three points: https://en.wikipedia.org/wiki/Circumscribed_circle |
465
|
|
|
|
|
|
|
# 𝗞nown: coordinates of each point |
466
|
|
|
|
|
|
|
# 𝗙ind: coordinates of the centre and radius of the circle through these three |
467
|
|
|
|
|
|
|
# points |
468
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
469
|
|
|
|
|
|
|
|
470
|
|
|
|
|
|
|
sub circumCircle(&$$$$$$) |
471
|
46
|
|
|
46
|
1
|
10904
|
{my ($sub, $x, $y, $𝘅, $𝘆, $𝕩, $𝕪) = @_; # Subroutine to process results, coordinates of corners |
472
|
46
|
50
|
|
|
|
114
|
@_ == 7 or confess "Wrong number of parameters"; |
473
|
46
|
50
|
66
|
|
|
101
|
(near($x, $𝘅) && near($y, $𝘆) or near($𝘅, $𝕩) && near($𝘆, $𝕪)) and confess "Points are too close!"; |
|
|
|
66
|
|
|
|
|
|
|
|
33
|
|
|
|
|
474
|
|
|
|
|
|
|
|
475
|
|
|
|
|
|
|
circumCentre |
476
|
46
|
|
|
46
|
|
71
|
{my ($X, $Y) = @_; # Centre |
477
|
46
|
|
|
|
|
80
|
my @r = (vectorLength($x, $y, $X, $Y), # Radii |
478
|
|
|
|
|
|
|
vectorLength($𝘅, $𝘆, $X, $Y), |
479
|
|
|
|
|
|
|
vectorLength($𝕩, $𝕪, $X, $Y)); |
480
|
46
|
50
|
33
|
|
|
115
|
&near(@r[0,1]) && &near(@r[1,2]) or confess "Bad radius computed!"; |
481
|
46
|
|
|
|
|
145
|
&$sub($X, $Y, $r[0]) # Result |
482
|
46
|
|
|
|
|
259
|
} $x, $y, $𝘅, $𝘆, $𝕩, $𝕪; # Centre lies at the intersection of |
483
|
|
|
|
|
|
|
} |
484
|
|
|
|
|
|
|
|
485
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
486
|
|
|
|
|
|
|
# 𝗖entre of a circle inscribed inside a triangle so that the inscribed circle |
487
|
|
|
|
|
|
|
# touches each side just once. |
488
|
|
|
|
|
|
|
# |
489
|
|
|
|
|
|
|
# 𝗞nown: coordinates of each corner of the triangle |
490
|
|
|
|
|
|
|
# 𝗙ind: centre coordinates and radius of inscribed circle |
491
|
|
|
|
|
|
|
# 𝗠ethod: find the intersection of the lines bisecting two angles |
492
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
493
|
|
|
|
|
|
|
|
494
|
|
|
|
|
|
|
sub circleInscribedInTriangle(&$$$$$$) |
495
|
1
|
|
|
1
|
1
|
451
|
{my ($sub, $x, $y, $𝘅, $𝘆, $𝕩, $𝕪) = @_; # Subroutine to process results, coordinates of corners |
496
|
1
|
50
|
|
|
|
6
|
@_ == 7 or confess "Wrong number of parameters"; |
497
|
1
|
50
|
33
|
|
|
4
|
(near($x, $𝘅) && near($y, $𝘆) or near($𝘅, $𝕩) && near($𝘆, $𝕪)) and confess "Corners are too close!"; |
|
|
|
33
|
|
|
|
|
|
|
|
33
|
|
|
|
|
498
|
1
|
|
|
|
|
3
|
my $𝗱 = vectorLength($x, $y, $𝕩, $𝕪); # Lengths of sides opposite corners |
499
|
1
|
|
|
|
|
3
|
my $𝕕 = vectorLength($x, $y, $𝘅, $𝘆); |
500
|
1
|
|
|
|
|
2
|
my $d = vectorLength($𝘅, $𝘆, $𝕩, $𝕪); |
501
|
|
|
|
|
|
|
|
502
|
|
|
|
|
|
|
intersectionLines |
503
|
1
|
|
|
1
|
|
9
|
{my ($X, $Y) = @_; # Intersection point |
504
|
1
|
|
|
|
|
7
|
my @r = ((unsignedDistanceFromLineToPoint {@_} $x, $y, $𝘅, $𝘆, $X, $Y), |
505
|
1
|
|
|
|
|
8
|
(unsignedDistanceFromLineToPoint {@_} $𝘅, $𝘆, $𝕩, $𝕪, $X, $Y), |
506
|
1
|
|
|
|
|
19
|
(unsignedDistanceFromLineToPoint {@_} $𝕩, $𝕪, $x, $y, $X, $Y)); |
|
1
|
|
|
|
|
5
|
|
507
|
1
|
50
|
33
|
|
|
16
|
&near(@r[0,1]) && &near(@r[1,2]) or confess "Bad radius computed!"; |
508
|
1
|
|
|
|
|
5
|
return &$sub($X, $Y, $r[0]); # Coordinates of the centre of the inscribed circle, plus three estimates of its radius |
509
|
|
|
|
|
|
|
} |
510
|
1
|
|
|
|
|
14
|
$x, $y, $x + ($𝘅-$x)/$𝕕 + ($𝕩-$x)/$𝗱, $y + ($𝘆-$y)/$𝕕 + ($𝕪-$y)/$𝗱, # Intersection of an angle bisector |
511
|
|
|
|
|
|
|
$𝘅, $𝘆, $𝘅 + ($𝕩-$𝘅)/$d + ($x-$𝘅)/$𝕕, $𝘆 + ($𝕪-$𝘆)/$d + ($y-$𝘆)/$𝕕; # Intersection of an angle bisector |
512
|
|
|
|
|
|
|
} |
513
|
|
|
|
|
|
|
|
514
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
515
|
|
|
|
|
|
|
# 𝗖entre of a circle inscribed through the midpoints of each side of a triangle |
516
|
|
|
|
|
|
|
# == Nine point circle: https://en.wikipedia.org/wiki/Nine-point_circle |
517
|
|
|
|
|
|
|
# 𝗞nown: coordinates of each corner of the triangle |
518
|
|
|
|
|
|
|
# 𝗙ind: centre coordinates and radius of circle through midpoints |
519
|
|
|
|
|
|
|
# 𝗠ethod: use circumCircle on the midpoints |
520
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
521
|
|
|
|
|
|
|
|
522
|
|
|
|
|
|
|
sub ninePointCircle(&$$$$$$) |
523
|
24
|
|
|
24
|
1
|
1632
|
{my ($sub, $x, $y, $𝘅, $𝘆, $𝕩, $𝕪) = @_; # Subroutine to process results, coordinates of corners |
524
|
24
|
50
|
|
|
|
60
|
@_ == 7 or confess "Wrong number of parameters"; |
525
|
24
|
50
|
33
|
|
|
46
|
(near($x, $𝘅) && near($y, $𝘆) or near($𝘅, $𝕩) && near($𝘆, $𝕪)) and confess "Corners are too close!"; |
|
|
|
66
|
|
|
|
|
|
|
|
33
|
|
|
|
|
526
|
|
|
|
|
|
|
|
527
|
24
|
|
|
24
|
|
76
|
&circumCircle(sub{&$sub(@_)}, # Circle through mid points |
528
|
24
|
|
|
|
|
95
|
midPoint($x, $y, $𝘅, $𝘆), |
529
|
|
|
|
|
|
|
midPoint($𝘅, $𝘆, $𝕩, $𝕪), |
530
|
|
|
|
|
|
|
midPoint($𝕩, $𝕪, $x, $y)); |
531
|
|
|
|
|
|
|
} |
532
|
|
|
|
|
|
|
|
533
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
534
|
|
|
|
|
|
|
# Bisect the first angle of a triangle |
535
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
536
|
|
|
|
|
|
|
|
537
|
|
|
|
|
|
|
sub bisectAnAngle(&$$$$$$) |
538
|
114
|
|
|
114
|
0
|
209
|
{my ($sub, $x, $y, $𝘅, $𝘆, $𝕩, $𝕪) = @_; # Subroutine to process results, coordinates of corners |
539
|
114
|
50
|
|
|
|
258
|
@_ == 7 or confess "Wrong number of parameters"; |
540
|
114
|
50
|
33
|
|
|
207
|
(near($x, $𝘅) && near($y, $𝘆) or near($𝘅, $𝕩) && near($𝘆, $𝕪)) and confess "Corners are too close!"; |
|
|
|
66
|
|
|
|
|
|
|
|
33
|
|
|
|
|
541
|
114
|
|
|
|
|
256
|
my $𝕕 = vectorLength($x, $y, $𝕩, $𝕪); # Lengths to opposite corners |
542
|
114
|
|
|
|
|
220
|
my $𝗱 = vectorLength($x, $y, $𝘅, $𝘆); |
543
|
114
|
|
|
|
|
465
|
&$sub($x, $y, $x + ($𝘅-$x)/$𝕕 + ($𝕩-$x)/$𝗱, $y + ($𝘆-$y)/$𝕕 + ($𝕪-$y)/$𝗱) # Vector from vertex pointing along bisector |
544
|
|
|
|
|
|
|
} |
545
|
|
|
|
|
|
|
|
546
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
547
|
|
|
|
|
|
|
# 𝗙ind the centres and radii of the excircles of a triangle |
548
|
|
|
|
|
|
|
# https://en.wikipedia.org/wiki/Incircle_and_excircles_of_a_triangle |
549
|
|
|
|
|
|
|
# 𝗞nown: coordinates of each corner of the triangle |
550
|
|
|
|
|
|
|
# 𝗠ethod: intersection of appropriate angles of the triangles |
551
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
552
|
|
|
|
|
|
|
|
553
|
|
|
|
|
|
|
sub exCircles(&$$$$$$) |
554
|
19
|
|
|
19
|
1
|
278
|
{my ($sub, $x, $y, $𝘅, $𝘆, $𝕩, $𝕪) = @_; # Subroutine to process results, coordinates of corners |
555
|
19
|
50
|
|
|
|
53
|
@_ == 7 or confess "Wrong number of parameters"; |
556
|
19
|
50
|
33
|
|
|
79
|
(near($x, $𝘅) && near($y, $𝘆) or near($𝘅, $𝕩) && near($𝘆, $𝕪)) and confess "Corners are too close!"; |
|
|
|
33
|
|
|
|
|
|
|
|
33
|
|
|
|
|
557
|
|
|
|
|
|
|
|
558
|
19
|
|
|
19
|
|
126
|
my @c = &intersectionLines(sub{@_}, # Centres |
559
|
19
|
|
|
19
|
|
118
|
(bisectAnAngle {@_} $x, $y, $𝘅, $𝘆, $𝕩, $𝕪), |
560
|
19
|
|
|
19
|
|
103
|
(bisectAnAngle {@_} $𝘅, $𝘆, $𝕩, $𝕪, 2*$𝘅 - $x, 2*$𝘆 - $y)); |
|
19
|
|
|
|
|
59
|
|
561
|
|
|
|
|
|
|
|
562
|
19
|
|
|
19
|
|
116
|
my @𝗰 = &intersectionLines(sub{@_}, |
563
|
19
|
|
|
19
|
|
109
|
(bisectAnAngle {@_} $𝘅, $𝘆, $𝕩, $𝕪, $x, $y), |
564
|
19
|
|
|
19
|
|
383
|
(bisectAnAngle {@_} $𝕩, $𝕪, $x, $y, 2*$𝕩 - $𝘅, 2*$𝕪 - $𝘆)); |
|
19
|
|
|
|
|
60
|
|
565
|
|
|
|
|
|
|
|
566
|
19
|
|
|
19
|
|
106
|
my @𝕔 = &intersectionLines(sub{@_}, |
567
|
19
|
|
|
19
|
|
106
|
(bisectAnAngle {@_} $𝕩, $𝕪, $x, $y, $𝘅, $𝘆), |
568
|
19
|
|
|
19
|
|
341
|
(bisectAnAngle {@_} $x, $y, $𝘅, $𝘆, 2*$x - $𝕩, 2*$y - $𝕪)); |
|
19
|
|
|
|
|
65
|
|
569
|
|
|
|
|
|
|
|
570
|
19
|
|
|
19
|
|
105
|
my @r = (&unsignedDistanceFromLineToPoint(sub {@_}, $x, $y, $𝘅, $𝘆, @c), |
571
|
19
|
|
|
19
|
|
109
|
&unsignedDistanceFromLineToPoint(sub {@_}, $𝘅, $𝘆, $𝕩, $𝕪, @c), |
572
|
19
|
|
|
19
|
|
357
|
&unsignedDistanceFromLineToPoint(sub {@_}, $𝕩, $𝕪, $x, $y, @c)); |
|
19
|
|
|
|
|
76
|
|
573
|
|
|
|
|
|
|
|
574
|
19
|
|
|
19
|
|
101
|
my @𝗿 = (&unsignedDistanceFromLineToPoint(sub {@_}, $x, $y, $𝘅, $𝘆, @𝗰), |
575
|
19
|
|
|
19
|
|
103
|
&unsignedDistanceFromLineToPoint(sub {@_}, $𝘅, $𝘆, $𝕩, $𝕪, @𝗰), |
576
|
19
|
|
|
19
|
|
343
|
&unsignedDistanceFromLineToPoint(sub {@_}, $𝕩, $𝕪, $x, $y, @𝗰)); |
|
19
|
|
|
|
|
73
|
|
577
|
|
|
|
|
|
|
|
578
|
19
|
|
|
19
|
|
111
|
my @𝕣 = (&unsignedDistanceFromLineToPoint(sub {@_}, $x, $y, $𝘅, $𝘆, @𝕔), |
579
|
19
|
|
|
19
|
|
108
|
&unsignedDistanceFromLineToPoint(sub {@_}, $𝘅, $𝘆, $𝕩, $𝕪, @𝕔), |
580
|
19
|
|
|
19
|
|
297
|
&unsignedDistanceFromLineToPoint(sub {@_}, $𝕩, $𝕪, $x, $y, @𝕔)); |
|
19
|
|
|
|
|
78
|
|
581
|
19
|
|
|
|
|
401
|
([@c, @r], [@𝗰, @𝗿], [@𝕔, @𝕣]) # For each circle, the centre followed by the radii estimates |
582
|
|
|
|
|
|
|
} |
583
|
|
|
|
|
|
|
|
584
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
585
|
|
|
|
|
|
|
# 𝗖entroid: intersection of lines between corners and mid points of opposite sides |
586
|
|
|
|
|
|
|
# 𝗙ind: coordinates of centroid |
587
|
|
|
|
|
|
|
# 𝗞nown: coordinates of each corner of the triangle |
588
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
589
|
|
|
|
|
|
|
|
590
|
|
|
|
|
|
|
sub centroid(&$$$$$$) |
591
|
22
|
|
|
22
|
1
|
669
|
{my ($sub, $x, $y, $𝘅, $𝘆, $𝕩, $𝕪) = @_; # Subroutine to process results, coordinates of corners |
592
|
22
|
50
|
|
|
|
50
|
@_ == 7 or confess "Wrong number of parameters"; |
593
|
22
|
50
|
33
|
|
|
39
|
(near($x, $𝘅) && near($y, $𝘆) or near($𝘅, $𝕩) && near($𝘆, $𝕪)) and confess "Corners are too close!"; |
|
|
|
33
|
|
|
|
|
|
|
|
33
|
|
|
|
|
594
|
|
|
|
|
|
|
|
595
|
22
|
|
|
22
|
|
55
|
&intersectionLines(sub{&$sub(@_)}, |
596
|
22
|
|
|
|
|
93
|
$x, $y, midPoint($𝘅, $𝘆, $𝕩, $𝕪), |
597
|
|
|
|
|
|
|
$𝘅, $𝘆, midPoint($𝕩, $𝕪, $x, $y)); |
598
|
|
|
|
|
|
|
} |
599
|
|
|
|
|
|
|
|
600
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
601
|
|
|
|
|
|
|
# 𝗢rthocentre: intersection of altitudes |
602
|
|
|
|
|
|
|
# 𝗙ind: coordinates of orthocentre |
603
|
|
|
|
|
|
|
# 𝗞nown: coordinates of each corner of the triangle |
604
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
605
|
|
|
|
|
|
|
|
606
|
|
|
|
|
|
|
sub orthoCentre(&$$$$$$) |
607
|
22
|
|
|
22
|
1
|
674
|
{my ($sub, $x, $y, $𝘅, $𝘆, $𝕩, $𝕪) = @_; # Subroutine to process results, coordinates of corners |
608
|
22
|
50
|
|
|
|
73
|
@_ == 7 or confess "Wrong number of parameters"; |
609
|
22
|
50
|
33
|
|
|
41
|
(near($x, $𝘅) && near($y, $𝘆) or near($𝘅, $𝕩) && near($𝘆, $𝕪)) and confess "Corners are too close!"; |
|
|
|
33
|
|
|
|
|
|
|
|
33
|
|
|
|
|
610
|
|
|
|
|
|
|
|
611
|
22
|
|
|
22
|
|
65
|
&intersectionLines(sub{&$sub(@_)}, |
612
|
22
|
|
|
22
|
|
124
|
$x, $y, (intersectionLinePoint {@_} $𝘅, $𝘆, $𝕩, $𝕪, $x, $y), |
613
|
22
|
|
|
22
|
|
113
|
$𝘅, $𝘆, (intersectionLinePoint {@_} $𝕩, $𝕪, $x, $y, $𝘅, $𝘆)); |
|
22
|
|
|
|
|
81
|
|
614
|
|
|
|
|
|
|
} |
615
|
|
|
|
|
|
|
|
616
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
617
|
|
|
|
|
|
|
# 𝗔rea of a triangle |
618
|
|
|
|
|
|
|
# 𝗞nown: coordinates of each corner of the triangle |
619
|
|
|
|
|
|
|
# 𝗙ind: area |
620
|
|
|
|
|
|
|
# 𝗠ethod: height of one corner from line through other two corners |
621
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
622
|
|
|
|
|
|
|
|
623
|
|
|
|
|
|
|
sub areaOfTriangle(&$$$$$$) |
624
|
125
|
|
|
125
|
1
|
15073
|
{my ($sub, $x, $y, $𝘅, $𝘆, $𝕩, $𝕪) = @_; # Subroutine to process results, coordinates of corners |
625
|
125
|
50
|
|
|
|
337
|
@_ == 7 or confess "Wrong number of parameters"; |
626
|
125
|
100
|
100
|
|
|
236
|
return &$sub(0) if near($x, $𝘅) && near($y, $𝘆) or near($𝘅, $𝕩) && near($𝘆, $𝕪); # A pair of corners are close, so the area of the triangle must be zero |
|
|
|
66
|
|
|
|
|
|
|
|
66
|
|
|
|
|
627
|
113
|
|
|
113
|
|
485
|
my ($d) = unsignedDistanceFromLineToPoint(sub {@_}, $𝘅, $𝘆, $𝕩, $𝕪, $x, $y); # Distance for first corner from opposite line |
|
113
|
|
|
|
|
315
|
|
628
|
113
|
|
|
|
|
559
|
&$sub($d * vectorLength($𝘅, $𝘆, $𝕩, $𝕪)/2) # Area = half base * height |
629
|
|
|
|
|
|
|
} |
630
|
|
|
|
|
|
|
|
631
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
632
|
|
|
|
|
|
|
# 𝗔rea of a polygon |
633
|
|
|
|
|
|
|
# 𝗞nown: coordinates of each corner=vertex of the polygon |
634
|
|
|
|
|
|
|
# 𝗙ind: area |
635
|
|
|
|
|
|
|
# 𝗠ethod: divide the polygon into triangles which all share the first vertex |
636
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
637
|
|
|
|
|
|
|
|
638
|
|
|
|
|
|
|
sub areaOfPolygon(&@) |
639
|
33
|
|
|
33
|
1
|
1738
|
{my ($sub, $x, $y, $𝘅, $𝘆, $𝕩, $𝕪, @vertices) = @_; # Subroutine to process results, coordinates of vertices |
640
|
33
|
|
|
33
|
|
133
|
my ($area) = areaOfTriangle {@_} $x, $y, $𝘅, $𝘆, $𝕩, $𝕪; # Area of first triangle |
|
33
|
|
|
|
|
79
|
|
641
|
33
|
|
|
|
|
128
|
for(;scalar @vertices;) # Each subsequent triangle |
642
|
26
|
|
|
|
|
38
|
{($𝘅, $𝘆) = ($𝕩, $𝕪); # Move up one vertex at a time |
643
|
26
|
|
|
|
|
53
|
($𝕩, $𝕪) = splice @vertices, 0, 2; # Remove one vertex |
644
|
26
|
|
|
26
|
|
96
|
my ($a) = areaOfTriangle {@_} $x, $y, $𝘅, $𝘆, $𝕩, $𝕪; # Area of latest triangle |
|
26
|
|
|
|
|
54
|
|
645
|
26
|
|
|
|
|
107
|
$area += $a; # Sum areas |
646
|
|
|
|
|
|
|
} |
647
|
33
|
|
|
|
|
82
|
&$sub($area) # Area of polygon |
648
|
|
|
|
|
|
|
} |
649
|
|
|
|
|
|
|
|
650
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
651
|
|
|
|
|
|
|
# 𝗦mallest positive angle made at the intersection of two lines, expressed in degrees |
652
|
|
|
|
|
|
|
# 𝗞nown: coordinates of start and end of each line segment |
653
|
|
|
|
|
|
|
# 𝗙ind: smallest angle between the two lines or zero if they do not intersect |
654
|
|
|
|
|
|
|
# 𝗠ethod: use dot product |
655
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
656
|
|
|
|
|
|
|
|
657
|
|
|
|
|
|
|
sub smallestPositiveAngleBetweenTwoLines($$$$$$$$) |
658
|
6
|
|
|
6
|
1
|
404
|
{my ($x, $y, $𝘅, $𝘆, $X, $Y, $𝗫, $𝗬) = @_; # Start and end coordinates of two line segments |
659
|
6
|
|
|
|
|
14
|
my ($𝕩, $𝕪) = ($𝘅 - $x, $𝘆 - $y); # Vector along first line segment |
660
|
6
|
|
|
|
|
11
|
my ($𝕏, $𝕐) = ($𝗫 - $X, $𝗬 - $Y); # Vector along second line segment |
661
|
6
|
|
|
|
|
29
|
my $r = acos(($𝕩*$𝕏 + $𝕪*$𝕐) / sqrt(($𝕩*$𝕩+$𝕪*$𝕪) * ($𝕏*$𝕏 + $𝕐*$𝕐))); # Result in radians |
662
|
6
|
|
|
|
|
16
|
my $𝗿 = abs(180 * $r / 𝝿()); # Result in positive degrees |
663
|
6
|
100
|
|
|
|
37
|
$𝗿 > 90 ? 180 - $𝗿 : $𝗿 # Smallest angle between two lines |
664
|
|
|
|
|
|
|
} |
665
|
|
|
|
|
|
|
|
666
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
667
|
|
|
|
|
|
|
# 𝗜s a triangle equilateral? |
668
|
|
|
|
|
|
|
# 𝗞nown: coordinates of each corner=vertex of the triangle |
669
|
|
|
|
|
|
|
# 𝗠ethod: compare lengths of sides |
670
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
671
|
|
|
|
|
|
|
|
672
|
|
|
|
|
|
|
sub isEquilateralTriangle(@) |
673
|
1
|
|
|
1
|
1
|
2
|
{my ($x, $y, $𝘅, $𝘆, $𝕩, $𝕪) = @_; # Coordinates of vertices |
674
|
1
|
50
|
|
|
|
4
|
@_ == 6 or confess "Wrong number of parameters"; |
675
|
1
|
|
|
|
|
4
|
my ($d, $𝗱, $𝕕) = &lengthsOfTheSidesOfAPolygon(@_); # Lengths of sides |
676
|
1
|
50
|
|
|
|
4
|
near($d, $𝗱) && near($𝗱, $𝕕) # Equal sided? |
677
|
|
|
|
|
|
|
} |
678
|
|
|
|
|
|
|
|
679
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
680
|
|
|
|
|
|
|
# 𝗜s a triangle isosceles |
681
|
|
|
|
|
|
|
# 𝗞nown: coordinates of each corner=vertex of the triangle |
682
|
|
|
|
|
|
|
# 𝗠ethod: compare lengths of sides |
683
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
684
|
|
|
|
|
|
|
|
685
|
|
|
|
|
|
|
sub isIsoscelesTriangle(@) |
686
|
2
|
|
|
2
|
1
|
5
|
{my ($x, $y, $𝘅, $𝘆, $𝕩, $𝕪) = @_; # Coordinates of vertices |
687
|
2
|
50
|
|
|
|
7
|
@_ == 6 or confess "Wrong number of parameters"; |
688
|
2
|
|
|
|
|
6
|
my ($d, $𝗱, $𝕕) = &lengthsOfTheSidesOfAPolygon(@_); # Lengths of sides |
689
|
2
|
50
|
66
|
|
|
6
|
near($d, $𝗱) || near($𝗱, $𝕕) || near($d, $𝕕) # Two sides with equal lengths |
690
|
|
|
|
|
|
|
} |
691
|
|
|
|
|
|
|
|
692
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
693
|
|
|
|
|
|
|
# 𝗜s a right angled triangle |
694
|
|
|
|
|
|
|
# 𝗞nown: coordinates of each corner=vertex of the triangle |
695
|
|
|
|
|
|
|
# 𝗠ethod: pythagoras on sides |
696
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
697
|
|
|
|
|
|
|
|
698
|
|
|
|
|
|
|
sub isRightAngledTriangle(@) |
699
|
1
|
|
|
1
|
1
|
3
|
{my ($x, $y, $𝘅, $𝘆, $𝕩, $𝕪) = @_; # Coordinates of vertices |
700
|
1
|
50
|
|
|
|
4
|
@_ == 6 or confess "Wrong number of parameters"; |
701
|
1
|
|
|
|
|
4
|
my ($d, $𝗱, $𝕕) = &lengthsOfTheSidesOfAPolygon(@_); # Lengths of sides |
702
|
1
|
50
|
33
|
|
|
5
|
near($d**2,$𝗱**2+$𝕕**2)||near($𝗱**2,$d**2+$𝕕**2) || near($𝕕**2,$d**2+$𝗱**2) # Pythagoras |
703
|
|
|
|
|
|
|
} |
704
|
|
|
|
|
|
|
|
705
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
706
|
|
|
|
|
|
|
# 𝗘xport details |
707
|
|
|
|
|
|
|
#------------------------------------------------------------------------------- |
708
|
|
|
|
|
|
|
|
709
|
|
|
|
|
|
|
require 5; |
710
|
|
|
|
|
|
|
require Exporter; |
711
|
|
|
|
|
|
|
|
712
|
1
|
|
|
1
|
|
18
|
use vars qw(@ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $VERSION); |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
525
|
|
713
|
|
|
|
|
|
|
|
714
|
|
|
|
|
|
|
@ISA = qw(Exporter); |
715
|
|
|
|
|
|
|
|
716
|
|
|
|
|
|
|
@EXPORT = qw(exCircles intersectionCircles intersectionCirclesArea |
717
|
|
|
|
|
|
|
intersectionCircleLine intersectionCircleLineArea intersectionLines |
718
|
|
|
|
|
|
|
intersectionLinePoint circumCircle circumCentre circleInscribedInTriangle |
719
|
|
|
|
|
|
|
ninePointCircle areaOfTriangle areaOfPolygon orthoCentre centroid |
720
|
|
|
|
|
|
|
isEquilateralTriangle isIsoscelesTriangle isRightAngledTriangle); |
721
|
|
|
|
|
|
|
|
722
|
|
|
|
|
|
|
@EXPORT_OK = qw(midPoint near near2 near3 near4 rotate90CW rotate90CCW |
723
|
|
|
|
|
|
|
rotate90AroundMidPoint vectorLength 𝝿 lengthsOfTheSidesOfAPolygon |
724
|
|
|
|
|
|
|
threeCollinearPoints smallestPositiveAngleBetweenTwoLines); |
725
|
|
|
|
|
|
|
|
726
|
|
|
|
|
|
|
$EXPORT_TAGS{all} = [@EXPORT, @EXPORT_OK]; |
727
|
|
|
|
|
|
|
|
728
|
|
|
|
|
|
|
=head1 Description |
729
|
|
|
|
|
|
|
|
730
|
|
|
|
|
|
|
Find the points at which circles and lines intersect to test geometric |
731
|
|
|
|
|
|
|
intuition. |
732
|
|
|
|
|
|
|
|
733
|
|
|
|
|
|
|
Fast, fun and easy to use these functions are written in 100% Pure Perl. |
734
|
|
|
|
|
|
|
|
735
|
|
|
|
|
|
|
=head2 areaOfTriangle 𝘀𝘂𝗯 triangle |
736
|
|
|
|
|
|
|
|
737
|
|
|
|
|
|
|
Calls 𝘀𝘂𝗯($a) where $a is the area of the specified triangle: |
738
|
|
|
|
|
|
|
|
739
|
|
|
|
|
|
|
A triangle is specified by supplying a list of six numbers: |
740
|
|
|
|
|
|
|
|
741
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆, 𝕩, 𝕪) |
742
|
|
|
|
|
|
|
|
743
|
|
|
|
|
|
|
where (x, y), (𝘅, 𝘆) and (𝕩, 𝕪) are the coordinates of the vertices of the |
744
|
|
|
|
|
|
|
triangle. |
745
|
|
|
|
|
|
|
|
746
|
|
|
|
|
|
|
=head2 areaOfPolygon 𝘀𝘂𝗯 points... |
747
|
|
|
|
|
|
|
|
748
|
|
|
|
|
|
|
Calls 𝘀𝘂𝗯($a) where $a is the area of the polygon with vertices specified by |
749
|
|
|
|
|
|
|
the points. |
750
|
|
|
|
|
|
|
|
751
|
|
|
|
|
|
|
A point is specified by supplying a list of two numbers: |
752
|
|
|
|
|
|
|
|
753
|
|
|
|
|
|
|
(𝘅, 𝘆) |
754
|
|
|
|
|
|
|
|
755
|
|
|
|
|
|
|
=head2 centroid 𝘀𝘂𝗯 triangle |
756
|
|
|
|
|
|
|
|
757
|
|
|
|
|
|
|
Calls 𝘀𝘂𝗯($x,$y) where $x,$y are the coordinates of the centroid of the |
758
|
|
|
|
|
|
|
specified triangle: |
759
|
|
|
|
|
|
|
|
760
|
|
|
|
|
|
|
See: L |
761
|
|
|
|
|
|
|
|
762
|
|
|
|
|
|
|
A triangle is specified by supplying a list of six numbers: |
763
|
|
|
|
|
|
|
|
764
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆, 𝕩, 𝕪) |
765
|
|
|
|
|
|
|
|
766
|
|
|
|
|
|
|
where (x, y), (𝘅, 𝘆) and (𝕩, 𝕪) are the coordinates of the vertices of the |
767
|
|
|
|
|
|
|
triangle. |
768
|
|
|
|
|
|
|
|
769
|
|
|
|
|
|
|
=head2 circumCentre 𝘀𝘂𝗯 triangle |
770
|
|
|
|
|
|
|
|
771
|
|
|
|
|
|
|
Calls 𝘀𝘂𝗯($x,$y,$r) where $x,$y are the coordinates of the centre of the |
772
|
|
|
|
|
|
|
circle drawn through the corners of the specified triangle and $r is its |
773
|
|
|
|
|
|
|
radius: |
774
|
|
|
|
|
|
|
|
775
|
|
|
|
|
|
|
See: L |
776
|
|
|
|
|
|
|
|
777
|
|
|
|
|
|
|
A triangle is specified by supplying a list of six numbers: |
778
|
|
|
|
|
|
|
|
779
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆, 𝕩, 𝕪) |
780
|
|
|
|
|
|
|
|
781
|
|
|
|
|
|
|
where (x, y), (𝘅, 𝘆) and (𝕩, 𝕪) are the coordinates of the vertices of the |
782
|
|
|
|
|
|
|
triangle. |
783
|
|
|
|
|
|
|
|
784
|
|
|
|
|
|
|
=head2 circumCircle 𝘀𝘂𝗯 triangle |
785
|
|
|
|
|
|
|
|
786
|
|
|
|
|
|
|
Calls 𝘀𝘂𝗯($x,$y,$r) where $x,$y are the coordinates of the circumcentre of |
787
|
|
|
|
|
|
|
the specified triangle and $r is its radius: |
788
|
|
|
|
|
|
|
|
789
|
|
|
|
|
|
|
See: L |
790
|
|
|
|
|
|
|
|
791
|
|
|
|
|
|
|
A triangle is specified by supplying a list of six numbers: |
792
|
|
|
|
|
|
|
|
793
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆, 𝕩, 𝕪) |
794
|
|
|
|
|
|
|
|
795
|
|
|
|
|
|
|
where (x, y), (𝘅, 𝘆) and (𝕩, 𝕪) are the coordinates of the vertices of the |
796
|
|
|
|
|
|
|
triangle. |
797
|
|
|
|
|
|
|
|
798
|
|
|
|
|
|
|
=head2 exCircles 𝘀𝘂𝗯 triangle |
799
|
|
|
|
|
|
|
|
800
|
|
|
|
|
|
|
Calls 𝘀𝘂𝗯([$x,$y,$r]...) where $x,$y are the coordinates of the centre of each |
801
|
|
|
|
|
|
|
ex-circle and $r its radius for the specified triangle: |
802
|
|
|
|
|
|
|
|
803
|
|
|
|
|
|
|
See: L |
804
|
|
|
|
|
|
|
|
805
|
|
|
|
|
|
|
A triangle is specified by supplying a list of six numbers: |
806
|
|
|
|
|
|
|
|
807
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆, 𝕩, 𝕪) |
808
|
|
|
|
|
|
|
|
809
|
|
|
|
|
|
|
where (x, y), (𝘅, 𝘆) and (𝕩, 𝕪) are the coordinates of the vertices of the |
810
|
|
|
|
|
|
|
triangle. |
811
|
|
|
|
|
|
|
|
812
|
|
|
|
|
|
|
=head2 circleInscribedInTriangle 𝘀𝘂𝗯 triangle |
813
|
|
|
|
|
|
|
|
814
|
|
|
|
|
|
|
Calls 𝘀𝘂𝗯($x,$y,$r) where $x,$y are the coordinates of the centre of |
815
|
|
|
|
|
|
|
a circle which touches each side of the triangle just once and $r is its radius: |
816
|
|
|
|
|
|
|
|
817
|
|
|
|
|
|
|
See: L |
818
|
|
|
|
|
|
|
|
819
|
|
|
|
|
|
|
A triangle is specified by supplying a list of six numbers: |
820
|
|
|
|
|
|
|
|
821
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆, 𝕩, 𝕪) |
822
|
|
|
|
|
|
|
|
823
|
|
|
|
|
|
|
where (x, y), (𝘅, 𝘆) and (𝕩, 𝕪) are the coordinates of the vertices of the |
824
|
|
|
|
|
|
|
triangle. |
825
|
|
|
|
|
|
|
|
826
|
|
|
|
|
|
|
=head2 intersectionCircles 𝘀𝘂𝗯 circle1, circle2 |
827
|
|
|
|
|
|
|
|
828
|
|
|
|
|
|
|
Find the points at which two circles intersect. Complains if the two circles |
829
|
|
|
|
|
|
|
are identical. |
830
|
|
|
|
|
|
|
|
831
|
|
|
|
|
|
|
𝘀𝘂𝗯 specifies a subroutine to be called with the coordinates of the |
832
|
|
|
|
|
|
|
intersection points if there are any or an empty parameter list if there are |
833
|
|
|
|
|
|
|
no points of intersection. |
834
|
|
|
|
|
|
|
|
835
|
|
|
|
|
|
|
A circle is specified by supplying a list of three numbers: |
836
|
|
|
|
|
|
|
|
837
|
|
|
|
|
|
|
(𝘅, 𝘆, 𝗿) |
838
|
|
|
|
|
|
|
|
839
|
|
|
|
|
|
|
where (𝘅, 𝘆) are the coordinates of the centre of the circle and (𝗿) is its |
840
|
|
|
|
|
|
|
radius. |
841
|
|
|
|
|
|
|
|
842
|
|
|
|
|
|
|
Returns whatever is returned by 𝘀𝘂𝗯. |
843
|
|
|
|
|
|
|
|
844
|
|
|
|
|
|
|
=head2 intersectionCirclesArea 𝘀𝘂𝗯 circle1, circle2 |
845
|
|
|
|
|
|
|
|
846
|
|
|
|
|
|
|
Find the area of overlap of two circles expressed as a fraction of the area of |
847
|
|
|
|
|
|
|
the smallest circle. The fractional area is expressed as a number between 0 |
848
|
|
|
|
|
|
|
and 1. |
849
|
|
|
|
|
|
|
|
850
|
|
|
|
|
|
|
𝘀𝘂𝗯 specifies a subroutine to be called with the fractional area. |
851
|
|
|
|
|
|
|
|
852
|
|
|
|
|
|
|
A circle is specified by supplying a list of three numbers: |
853
|
|
|
|
|
|
|
|
854
|
|
|
|
|
|
|
(𝘅, 𝘆, 𝗿) |
855
|
|
|
|
|
|
|
|
856
|
|
|
|
|
|
|
where (𝘅, 𝘆) are the coordinates of the centre of the circle and (𝗿) is its |
857
|
|
|
|
|
|
|
radius. |
858
|
|
|
|
|
|
|
|
859
|
|
|
|
|
|
|
Returns whatever is returned by 𝘀𝘂𝗯. |
860
|
|
|
|
|
|
|
|
861
|
|
|
|
|
|
|
=head2 intersectionCircleLine 𝘀𝘂𝗯 circle, line |
862
|
|
|
|
|
|
|
|
863
|
|
|
|
|
|
|
Find the points at which a circle and a line intersect. |
864
|
|
|
|
|
|
|
|
865
|
|
|
|
|
|
|
𝘀𝘂𝗯 specifies a subroutine to be called with the coordinates of the |
866
|
|
|
|
|
|
|
intersection points if there are any or an empty parameter list if there are |
867
|
|
|
|
|
|
|
no points of intersection. |
868
|
|
|
|
|
|
|
|
869
|
|
|
|
|
|
|
A circle is specified by supplying a list of three numbers: |
870
|
|
|
|
|
|
|
|
871
|
|
|
|
|
|
|
(𝘅, 𝘆, 𝗿) |
872
|
|
|
|
|
|
|
|
873
|
|
|
|
|
|
|
where (𝘅, 𝘆) are the coordinates of the centre of the circle and (𝗿) is its |
874
|
|
|
|
|
|
|
radius. |
875
|
|
|
|
|
|
|
|
876
|
|
|
|
|
|
|
A line is specified by supplying a list of four numbers: |
877
|
|
|
|
|
|
|
|
878
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆) |
879
|
|
|
|
|
|
|
|
880
|
|
|
|
|
|
|
where (x, y) and (𝘅, 𝘆) are the coordinates of two points on the line. |
881
|
|
|
|
|
|
|
|
882
|
|
|
|
|
|
|
Returns whatever is returned by 𝘀𝘂𝗯. |
883
|
|
|
|
|
|
|
|
884
|
|
|
|
|
|
|
=head2 intersectionCircleLineArea 𝘀𝘂𝗯 circle, line |
885
|
|
|
|
|
|
|
|
886
|
|
|
|
|
|
|
Find the fractional area of a circle occupied by a lune produced by an |
887
|
|
|
|
|
|
|
intersecting line. The fractional area is expressed as a number |
888
|
|
|
|
|
|
|
between 0 and 1. |
889
|
|
|
|
|
|
|
|
890
|
|
|
|
|
|
|
𝘀𝘂𝗯 specifies a subroutine to be called with the fractional area. |
891
|
|
|
|
|
|
|
|
892
|
|
|
|
|
|
|
A circle is specified by supplying a list of three numbers: |
893
|
|
|
|
|
|
|
|
894
|
|
|
|
|
|
|
(𝘅, 𝘆, 𝗿) |
895
|
|
|
|
|
|
|
|
896
|
|
|
|
|
|
|
where (𝘅, 𝘆) are the coordinates of the centre of the circle and (𝗿) is its |
897
|
|
|
|
|
|
|
radius. |
898
|
|
|
|
|
|
|
|
899
|
|
|
|
|
|
|
A line is specified by supplying a list of four numbers: |
900
|
|
|
|
|
|
|
|
901
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆) |
902
|
|
|
|
|
|
|
|
903
|
|
|
|
|
|
|
where (x, y) and (𝘅, 𝘆) are the coordinates of two points on the line. |
904
|
|
|
|
|
|
|
|
905
|
|
|
|
|
|
|
Returns whatever is returned by 𝘀𝘂𝗯. |
906
|
|
|
|
|
|
|
|
907
|
|
|
|
|
|
|
=head2 intersectionLines 𝘀𝘂𝗯 line1, line2 |
908
|
|
|
|
|
|
|
|
909
|
|
|
|
|
|
|
Finds the point at which two lines intersect. |
910
|
|
|
|
|
|
|
|
911
|
|
|
|
|
|
|
𝘀𝘂𝗯 specifies a subroutine to be called with the coordinates of the |
912
|
|
|
|
|
|
|
intersection point or an empty parameter list if the two lines do not |
913
|
|
|
|
|
|
|
intersect. |
914
|
|
|
|
|
|
|
|
915
|
|
|
|
|
|
|
Complains if the two lines are collinear. |
916
|
|
|
|
|
|
|
|
917
|
|
|
|
|
|
|
A line is specified by supplying a list of four numbers: |
918
|
|
|
|
|
|
|
|
919
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆) |
920
|
|
|
|
|
|
|
|
921
|
|
|
|
|
|
|
where (x, y) and (𝘅, 𝘆) are the coordinates of two points on the line. |
922
|
|
|
|
|
|
|
|
923
|
|
|
|
|
|
|
Returns whatever is returned by 𝘀𝘂𝗯. |
924
|
|
|
|
|
|
|
|
925
|
|
|
|
|
|
|
=head2 intersectionLinePoint 𝘀𝘂𝗯 line, point |
926
|
|
|
|
|
|
|
|
927
|
|
|
|
|
|
|
Find the point on a line closest to a specified point. |
928
|
|
|
|
|
|
|
|
929
|
|
|
|
|
|
|
𝘀𝘂𝗯 specifies a subroutine to be called with the coordinates of the |
930
|
|
|
|
|
|
|
intersection points if there are any. |
931
|
|
|
|
|
|
|
|
932
|
|
|
|
|
|
|
A line is specified by supplying a list of four numbers: |
933
|
|
|
|
|
|
|
|
934
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆) |
935
|
|
|
|
|
|
|
|
936
|
|
|
|
|
|
|
where (x, y) and (𝘅, 𝘆) are the coordinates of two points on the line. |
937
|
|
|
|
|
|
|
|
938
|
|
|
|
|
|
|
A point is specified by supplying a list of two numbers: |
939
|
|
|
|
|
|
|
|
940
|
|
|
|
|
|
|
(𝘅, 𝘆) |
941
|
|
|
|
|
|
|
|
942
|
|
|
|
|
|
|
where (𝘅, 𝘆) are the coordinates of the point. |
943
|
|
|
|
|
|
|
|
944
|
|
|
|
|
|
|
Returns whatever is returned by 𝘀𝘂𝗯. |
945
|
|
|
|
|
|
|
|
946
|
|
|
|
|
|
|
=head2 isEquilateralTriangle triangle |
947
|
|
|
|
|
|
|
|
948
|
|
|
|
|
|
|
Return true if the specified triangle is close to being equilateral within the |
949
|
|
|
|
|
|
|
definition of nearness. |
950
|
|
|
|
|
|
|
|
951
|
|
|
|
|
|
|
A triangle is specified by supplying a list of six numbers: |
952
|
|
|
|
|
|
|
|
953
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆, 𝕩, 𝕪) |
954
|
|
|
|
|
|
|
|
955
|
|
|
|
|
|
|
where (x, y), (𝘅, 𝘆) and (𝕩, 𝕪) are the coordinates of the vertices of the |
956
|
|
|
|
|
|
|
triangle. |
957
|
|
|
|
|
|
|
|
958
|
|
|
|
|
|
|
=head2 isIsoscelesTriangle triangle |
959
|
|
|
|
|
|
|
|
960
|
|
|
|
|
|
|
Return true if the specified triangle is close to being isosceles within the |
961
|
|
|
|
|
|
|
definition of nearness. |
962
|
|
|
|
|
|
|
|
963
|
|
|
|
|
|
|
A triangle is specified by supplying a list of six numbers: |
964
|
|
|
|
|
|
|
|
965
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆, 𝕩, 𝕪) |
966
|
|
|
|
|
|
|
|
967
|
|
|
|
|
|
|
where (x, y), (𝘅, 𝘆) and (𝕩, 𝕪) are the coordinates of the vertices of the |
968
|
|
|
|
|
|
|
triangle. |
969
|
|
|
|
|
|
|
|
970
|
|
|
|
|
|
|
=head2 isRightAngledTriangle triangle |
971
|
|
|
|
|
|
|
|
972
|
|
|
|
|
|
|
Return true if the specified triangle is close to being right angled within |
973
|
|
|
|
|
|
|
the definition of nearness. |
974
|
|
|
|
|
|
|
|
975
|
|
|
|
|
|
|
A triangle is specified by supplying a list of six numbers: |
976
|
|
|
|
|
|
|
|
977
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆, 𝕩, 𝕪) |
978
|
|
|
|
|
|
|
|
979
|
|
|
|
|
|
|
where (x, y), (𝘅, 𝘆) and (𝕩, 𝕪) are the coordinates of the vertices of the |
980
|
|
|
|
|
|
|
triangle. |
981
|
|
|
|
|
|
|
|
982
|
|
|
|
|
|
|
=head2 ninePointCircle 𝘀𝘂𝗯 triangle |
983
|
|
|
|
|
|
|
|
984
|
|
|
|
|
|
|
Calls 𝘀𝘂𝗯($x,$y,$r) where $x,$y are the coordinates of the centre of the |
985
|
|
|
|
|
|
|
circle drawn through the midpoints of each side of the specified triangle and |
986
|
|
|
|
|
|
|
$r is its radius which gives the nine point circle: |
987
|
|
|
|
|
|
|
|
988
|
|
|
|
|
|
|
See: L |
989
|
|
|
|
|
|
|
|
990
|
|
|
|
|
|
|
A triangle is specified by supplying a list of six numbers: |
991
|
|
|
|
|
|
|
|
992
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆, 𝕩, 𝕪) |
993
|
|
|
|
|
|
|
|
994
|
|
|
|
|
|
|
where (x, y), (𝘅, 𝘆) and (𝕩, 𝕪) are the coordinates of the vertices of the |
995
|
|
|
|
|
|
|
triangle. |
996
|
|
|
|
|
|
|
|
997
|
|
|
|
|
|
|
=head2 orthoCentre 𝘀𝘂𝗯 triangle |
998
|
|
|
|
|
|
|
|
999
|
|
|
|
|
|
|
Calls 𝘀𝘂𝗯($x,$y) where $x,$y are the coordinates of the orthocentre of the |
1000
|
|
|
|
|
|
|
specified triangle: |
1001
|
|
|
|
|
|
|
|
1002
|
|
|
|
|
|
|
See: L |
1003
|
|
|
|
|
|
|
|
1004
|
|
|
|
|
|
|
A triangle is specified by supplying a list of six numbers: |
1005
|
|
|
|
|
|
|
|
1006
|
|
|
|
|
|
|
(x, y, 𝘅, 𝘆, 𝕩, 𝕪) |
1007
|
|
|
|
|
|
|
|
1008
|
|
|
|
|
|
|
where (x, y), (𝘅, 𝘆) and (𝕩, 𝕪) are the coordinates of the vertices of the |
1009
|
|
|
|
|
|
|
triangle. |
1010
|
|
|
|
|
|
|
|
1011
|
|
|
|
|
|
|
=head2 $Math::Intersection::Circle::Line::near |
1012
|
|
|
|
|
|
|
|
1013
|
|
|
|
|
|
|
As a finite computer cannot represent an infinite plane of points it is |
1014
|
|
|
|
|
|
|
necessary to make the plane discrete by merging points closer than the |
1015
|
|
|
|
|
|
|
distance contained in this variable, which is set by default to 1e-6. |
1016
|
|
|
|
|
|
|
|
1017
|
|
|
|
|
|
|
=head1 Exports |
1018
|
|
|
|
|
|
|
|
1019
|
|
|
|
|
|
|
The following functions are exported by default: |
1020
|
|
|
|
|
|
|
|
1021
|
|
|
|
|
|
|
=over |
1022
|
|
|
|
|
|
|
|
1023
|
|
|
|
|
|
|
=item C |
1024
|
|
|
|
|
|
|
|
1025
|
|
|
|
|
|
|
=item C |
1026
|
|
|
|
|
|
|
|
1027
|
|
|
|
|
|
|
=item C |
1028
|
|
|
|
|
|
|
|
1029
|
|
|
|
|
|
|
=item C |
1030
|
|
|
|
|
|
|
|
1031
|
|
|
|
|
|
|
=item C |
1032
|
|
|
|
|
|
|
|
1033
|
|
|
|
|
|
|
=item C |
1034
|
|
|
|
|
|
|
|
1035
|
|
|
|
|
|
|
=item C |
1036
|
|
|
|
|
|
|
|
1037
|
|
|
|
|
|
|
=item C |
1038
|
|
|
|
|
|
|
|
1039
|
|
|
|
|
|
|
=item C |
1040
|
|
|
|
|
|
|
|
1041
|
|
|
|
|
|
|
=item C |
1042
|
|
|
|
|
|
|
|
1043
|
|
|
|
|
|
|
=item C |
1044
|
|
|
|
|
|
|
|
1045
|
|
|
|
|
|
|
=item C |
1046
|
|
|
|
|
|
|
|
1047
|
|
|
|
|
|
|
=item C |
1048
|
|
|
|
|
|
|
|
1049
|
|
|
|
|
|
|
=item C |
1050
|
|
|
|
|
|
|
|
1051
|
|
|
|
|
|
|
=item C |
1052
|
|
|
|
|
|
|
|
1053
|
|
|
|
|
|
|
=item C |
1054
|
|
|
|
|
|
|
|
1055
|
|
|
|
|
|
|
=item C |
1056
|
|
|
|
|
|
|
|
1057
|
|
|
|
|
|
|
=item C |
1058
|
|
|
|
|
|
|
|
1059
|
|
|
|
|
|
|
=item C |
1060
|
|
|
|
|
|
|
|
1061
|
|
|
|
|
|
|
=back |
1062
|
|
|
|
|
|
|
|
1063
|
|
|
|
|
|
|
Optionally some useful helper functions can also be exported either by |
1064
|
|
|
|
|
|
|
specifying the tag :𝗮𝗹𝗹 or by naming the required functions individually: |
1065
|
|
|
|
|
|
|
|
1066
|
|
|
|
|
|
|
=over |
1067
|
|
|
|
|
|
|
|
1068
|
|
|
|
|
|
|
=item C |
1069
|
|
|
|
|
|
|
|
1070
|
|
|
|
|
|
|
=item C |
1071
|
|
|
|
|
|
|
|
1072
|
|
|
|
|
|
|
=item C |
1073
|
|
|
|
|
|
|
|
1074
|
|
|
|
|
|
|
=item C |
1075
|
|
|
|
|
|
|
|
1076
|
|
|
|
|
|
|
=item C |
1077
|
|
|
|
|
|
|
|
1078
|
|
|
|
|
|
|
=item C |
1079
|
|
|
|
|
|
|
|
1080
|
|
|
|
|
|
|
=item C |
1081
|
|
|
|
|
|
|
|
1082
|
|
|
|
|
|
|
=item C |
1083
|
|
|
|
|
|
|
|
1084
|
|
|
|
|
|
|
=item C |
1085
|
|
|
|
|
|
|
|
1086
|
|
|
|
|
|
|
=item C |
1087
|
|
|
|
|
|
|
|
1088
|
|
|
|
|
|
|
=item C |
1089
|
|
|
|
|
|
|
|
1090
|
|
|
|
|
|
|
=item C |
1091
|
|
|
|
|
|
|
|
1092
|
|
|
|
|
|
|
=item C |
1093
|
|
|
|
|
|
|
|
1094
|
|
|
|
|
|
|
=item C |
1095
|
|
|
|
|
|
|
|
1096
|
|
|
|
|
|
|
=item C<𝝿()> |
1097
|
|
|
|
|
|
|
|
1098
|
|
|
|
|
|
|
=back |
1099
|
|
|
|
|
|
|
|
1100
|
|
|
|
|
|
|
=head1 Changes |
1101
|
|
|
|
|
|
|
|
1102
|
|
|
|
|
|
|
1.003 Sun 30 Aug 2015 - Started Geometry app |
1103
|
|
|
|
|
|
|
1.005 Sun 20 Dec 2015 - Still going! |
1104
|
|
|
|
|
|
|
1.006 Sat 02 Jan 2016 - Euler's line divided into 6 equal pieces |
1105
|
|
|
|
|
|
|
1.007 Sat 02 Jan 2016 - [rt.cpan.org #110849] Test suite fails with uselongdouble |
1106
|
|
|
|
|
|
|
1.008 Sun 03 Jan 2016 - [rt.cpan.org #110849] Removed dump |
1107
|
|
|
|
|
|
|
|
1108
|
|
|
|
|
|
|
=cut |
1109
|
|
|
|
|
|
|
|
1110
|
|
|
|
|
|
|
$VERSION = '1.008'; |
1111
|
|
|
|
|
|
|
|
1112
|
|
|
|
|
|
|
=pod |
1113
|
|
|
|
|
|
|
|
1114
|
|
|
|
|
|
|
=head1 Installation |
1115
|
|
|
|
|
|
|
|
1116
|
|
|
|
|
|
|
Standard Module::Build process for building and installing modules: |
1117
|
|
|
|
|
|
|
|
1118
|
|
|
|
|
|
|
perl Build.PL |
1119
|
|
|
|
|
|
|
./Build |
1120
|
|
|
|
|
|
|
./Build test |
1121
|
|
|
|
|
|
|
./Build install |
1122
|
|
|
|
|
|
|
|
1123
|
|
|
|
|
|
|
Or, if you're on a platform (like DOS or Windows) that doesn't require |
1124
|
|
|
|
|
|
|
the "./" notation, you can do this: |
1125
|
|
|
|
|
|
|
|
1126
|
|
|
|
|
|
|
perl Build.PL |
1127
|
|
|
|
|
|
|
Build |
1128
|
|
|
|
|
|
|
Build test |
1129
|
|
|
|
|
|
|
Build install |
1130
|
|
|
|
|
|
|
|
1131
|
|
|
|
|
|
|
=head1 Author |
1132
|
|
|
|
|
|
|
|
1133
|
|
|
|
|
|
|
Philip R Brenan at gmail dot com |
1134
|
|
|
|
|
|
|
|
1135
|
|
|
|
|
|
|
http://www.appaapps.com |
1136
|
|
|
|
|
|
|
|
1137
|
|
|
|
|
|
|
=head1 Copyright |
1138
|
|
|
|
|
|
|
|
1139
|
|
|
|
|
|
|
Copyright (c) 2016 Philip R Brenan. |
1140
|
|
|
|
|
|
|
|
1141
|
|
|
|
|
|
|
This module is free software. It may be used, redistributed and/or |
1142
|
|
|
|
|
|
|
modified under the same terms as Perl itself. |
1143
|
|
|
|
|
|
|
|
1144
|
|
|
|
|
|
|
=cut |