line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Math::GrahamFunction; |
2
|
|
|
|
|
|
|
$Math::GrahamFunction::VERSION = '0.02004'; |
3
|
1
|
|
|
1
|
|
96541
|
use warnings; |
|
1
|
|
|
|
|
12
|
|
|
1
|
|
|
|
|
39
|
|
4
|
1
|
|
|
1
|
|
6
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
22
|
|
5
|
|
|
|
|
|
|
|
6
|
1
|
|
|
1
|
|
41
|
use 5.008; |
|
1
|
|
|
|
|
3
|
|
7
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
|
9
|
1
|
|
|
1
|
|
7
|
use parent qw(Math::GrahamFunction::Object); |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
7
|
|
10
|
|
|
|
|
|
|
|
11
|
1
|
|
|
1
|
|
473
|
use Math::GrahamFunction::SqFacts; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
4
|
|
12
|
1
|
|
|
1
|
|
464
|
use Math::GrahamFunction::SqFacts::Dipole; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
6
|
|
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
__PACKAGE__->mk_accessors( |
15
|
|
|
|
|
|
|
qw( |
16
|
|
|
|
|
|
|
_base |
17
|
|
|
|
|
|
|
n |
18
|
|
|
|
|
|
|
_n_vec |
19
|
|
|
|
|
|
|
next_id |
20
|
|
|
|
|
|
|
_n_sq_factors |
21
|
|
|
|
|
|
|
primes_to_ids_map |
22
|
|
|
|
|
|
|
) |
23
|
|
|
|
|
|
|
); |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
sub _initialize |
26
|
|
|
|
|
|
|
{ |
27
|
100
|
|
|
100
|
|
171
|
my $self = shift; |
28
|
100
|
|
|
|
|
177
|
my $args = shift; |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
$self->n( $args->{n} ) |
31
|
100
|
50
|
|
|
|
267
|
or die "n was not specified"; |
32
|
|
|
|
|
|
|
|
33
|
100
|
|
|
|
|
1500
|
$self->primes_to_ids_map( {} ); |
34
|
|
|
|
|
|
|
|
35
|
100
|
|
|
|
|
1014
|
return 0; |
36
|
|
|
|
|
|
|
} |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
sub _get_num_facts |
40
|
|
|
|
|
|
|
{ |
41
|
844
|
|
|
844
|
|
1397
|
my ( $self, $number ) = @_; |
42
|
|
|
|
|
|
|
|
43
|
844
|
|
|
|
|
2392
|
return Math::GrahamFunction::SqFacts->new( { 'n' => $number } ); |
44
|
|
|
|
|
|
|
} |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
sub _get_facts |
47
|
|
|
|
|
|
|
{ |
48
|
745
|
|
|
745
|
|
1271
|
my ( $self, $factors ) = @_; |
49
|
|
|
|
|
|
|
|
50
|
745
|
50
|
|
|
|
2591
|
return Math::GrahamFunction::SqFacts->new( |
51
|
|
|
|
|
|
|
{ 'factors' => ( ref($factors) eq "ARRAY" ? $factors : [$factors] ) } ); |
52
|
|
|
|
|
|
|
} |
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
sub _get_num_dipole |
55
|
|
|
|
|
|
|
{ |
56
|
745
|
|
|
745
|
|
2048
|
my ( $self, $number ) = @_; |
57
|
|
|
|
|
|
|
|
58
|
745
|
|
|
|
|
1418
|
return Math::GrahamFunction::SqFacts::Dipole->new( |
59
|
|
|
|
|
|
|
{ |
60
|
|
|
|
|
|
|
'result' => $self->_get_num_facts($number), |
61
|
|
|
|
|
|
|
'compose' => $self->_get_facts($number), |
62
|
|
|
|
|
|
|
} |
63
|
|
|
|
|
|
|
); |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
} |
66
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
sub _calc_n_sq_factors |
68
|
|
|
|
|
|
|
{ |
69
|
100
|
|
|
100
|
|
147
|
my $self = shift; |
70
|
|
|
|
|
|
|
|
71
|
100
|
|
|
|
|
243
|
$self->_n_sq_factors( $self->_get_num_dipole( $self->n ) ); |
72
|
|
|
|
|
|
|
} |
73
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
sub _check_largest_factor_in_between |
75
|
|
|
|
|
|
|
{ |
76
|
90
|
|
|
90
|
|
1034
|
my $self = shift; |
77
|
|
|
|
|
|
|
|
78
|
90
|
|
|
|
|
185
|
my $n = $self->n(); |
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
# Cheating: |
81
|
|
|
|
|
|
|
# Check if between n and n+largest_factor we can fit |
82
|
|
|
|
|
|
|
# a square of SqFact{n*(n+largest_factor)}. If so, return |
83
|
|
|
|
|
|
|
# n+largest_factor. |
84
|
|
|
|
|
|
|
# |
85
|
|
|
|
|
|
|
# So, for instance, if n = p than n+largest_factor = 2p |
86
|
|
|
|
|
|
|
# and so SqFact{p*(2p)} = 2 and it is possible to see if |
87
|
|
|
|
|
|
|
# there's a 2*i^2 between p and 2p. That way, p*2*i^2*2p is |
88
|
|
|
|
|
|
|
# a square number. |
89
|
|
|
|
|
|
|
|
90
|
90
|
|
|
|
|
843
|
my $largest_factor = $self->_n_sq_factors()->last(); |
91
|
|
|
|
|
|
|
|
92
|
90
|
|
|
|
|
1454
|
my ( $lower_bound, $lb_sq_factors ); |
93
|
|
|
|
|
|
|
|
94
|
90
|
|
|
|
|
219
|
$lower_bound = $self->n() + $largest_factor; |
95
|
90
|
|
|
|
|
804
|
while (1) |
96
|
|
|
|
|
|
|
{ |
97
|
99
|
|
|
|
|
190
|
$lb_sq_factors = $self->_get_num_facts($lower_bound); |
98
|
99
|
100
|
|
|
|
367
|
if ( $lb_sq_factors->exists($largest_factor) ) |
99
|
|
|
|
|
|
|
{ |
100
|
90
|
|
|
|
|
189
|
last; |
101
|
|
|
|
|
|
|
} |
102
|
9
|
|
|
|
|
84
|
$lower_bound += $largest_factor; |
103
|
|
|
|
|
|
|
} |
104
|
|
|
|
|
|
|
|
105
|
90
|
|
|
|
|
324
|
my $n_times_lb = $self->_n_sq_factors->result->mult($lb_sq_factors); |
106
|
|
|
|
|
|
|
|
107
|
90
|
|
|
|
|
277
|
my $rest_of_factors_product = $n_times_lb->product(); |
108
|
|
|
|
|
|
|
|
109
|
90
|
|
|
|
|
980
|
my $low_square_val = int( sqrt( $n / $rest_of_factors_product ) ); |
110
|
90
|
|
|
|
|
181
|
my $high_square_val = |
111
|
|
|
|
|
|
|
int( sqrt( $lower_bound / $rest_of_factors_product ) ); |
112
|
|
|
|
|
|
|
|
113
|
90
|
100
|
|
|
|
191
|
if ( $low_square_val != $high_square_val ) |
114
|
|
|
|
|
|
|
{ |
115
|
44
|
|
|
|
|
138
|
my @factors = ( |
116
|
|
|
|
|
|
|
$n, |
117
|
|
|
|
|
|
|
( $low_square_val + 1 ) * |
118
|
|
|
|
|
|
|
( $low_square_val + 1 ) * |
119
|
|
|
|
|
|
|
$rest_of_factors_product, |
120
|
|
|
|
|
|
|
$lower_bound |
121
|
|
|
|
|
|
|
); |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
# TODO - possibly convert to Dipole |
124
|
|
|
|
|
|
|
# return ($lower_bound, $self->_get_facts(\@factors)); |
125
|
44
|
|
|
|
|
199
|
return \@factors; |
126
|
|
|
|
|
|
|
} |
127
|
|
|
|
|
|
|
else |
128
|
|
|
|
|
|
|
{ |
129
|
46
|
|
|
|
|
193
|
return; |
130
|
|
|
|
|
|
|
} |
131
|
|
|
|
|
|
|
} |
132
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
sub _get_next_id |
134
|
|
|
|
|
|
|
{ |
135
|
416
|
|
|
416
|
|
575
|
my $self = shift; |
136
|
416
|
|
|
|
|
842
|
return $self->next_id( $self->next_id() + 1 ); |
137
|
|
|
|
|
|
|
} |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
sub _get_prime_id |
140
|
|
|
|
|
|
|
{ |
141
|
2118
|
|
|
2118
|
|
3023
|
my $self = shift; |
142
|
2118
|
|
|
|
|
2755
|
my $p = shift; |
143
|
2118
|
|
|
|
|
3754
|
return $self->primes_to_ids_map()->{$p}; |
144
|
|
|
|
|
|
|
} |
145
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
sub _register_prime |
147
|
|
|
|
|
|
|
{ |
148
|
416
|
|
|
416
|
|
692
|
my ( $self, $p ) = @_; |
149
|
416
|
|
|
|
|
711
|
$self->primes_to_ids_map()->{$p} = $self->_get_next_id(); |
150
|
|
|
|
|
|
|
} |
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
sub _prime_exists |
153
|
|
|
|
|
|
|
{ |
154
|
819
|
|
|
819
|
|
1343
|
my ( $self, $p ) = @_; |
155
|
819
|
|
|
|
|
1523
|
return exists( $self->primes_to_ids_map->{$p} ); |
156
|
|
|
|
|
|
|
} |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
sub _get_min_id |
159
|
|
|
|
|
|
|
{ |
160
|
1017
|
|
|
1017
|
|
5839
|
my ( $self, $vec ) = @_; |
161
|
|
|
|
|
|
|
|
162
|
1017
|
|
|
|
|
1402
|
my $min_id = -1; |
163
|
1017
|
|
|
|
|
1390
|
my $min_p = 0; |
164
|
|
|
|
|
|
|
|
165
|
1017
|
|
|
|
|
1385
|
foreach my $p ( @{ $vec->result()->factors() } ) |
|
1017
|
|
|
|
|
1861
|
|
166
|
|
|
|
|
|
|
{ |
167
|
1637
|
|
|
|
|
17102
|
my $id = $self->_get_prime_id($p); |
168
|
1637
|
100
|
100
|
|
|
17141
|
if ( ( $min_id < 0 ) || ( $min_id > $id ) ) |
169
|
|
|
|
|
|
|
{ |
170
|
1144
|
|
|
|
|
1686
|
$min_id = $id; |
171
|
1144
|
|
|
|
|
1930
|
$min_p = $p; |
172
|
|
|
|
|
|
|
} |
173
|
|
|
|
|
|
|
} |
174
|
|
|
|
|
|
|
|
175
|
1017
|
|
|
|
|
2654
|
return ( $min_id, $min_p ); |
176
|
|
|
|
|
|
|
} |
177
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
sub _try_to_form_n |
179
|
|
|
|
|
|
|
{ |
180
|
444
|
|
|
444
|
|
668
|
my $self = shift; |
181
|
|
|
|
|
|
|
|
182
|
444
|
|
|
|
|
915
|
while ( !$self->_n_vec->is_square() ) |
183
|
|
|
|
|
|
|
{ |
184
|
|
|
|
|
|
|
# Calculating $id as the minimal ID of the squaring factors of $p |
185
|
573
|
|
|
|
|
5955
|
my ( $id, undef ) = $self->_get_min_id( $self->_n_vec ); |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
# Multiply by the controlling vector of this ID if it exists |
188
|
|
|
|
|
|
|
# or terminate if it doesn't. |
189
|
573
|
100
|
|
|
|
1222
|
return 0 if ( !defined( $self->_base->[$id] ) ); |
190
|
175
|
|
|
|
|
1762
|
$self->_n_vec->mult_by( $self->_base->[$id] ); |
191
|
|
|
|
|
|
|
} |
192
|
|
|
|
|
|
|
|
193
|
46
|
|
|
|
|
496
|
return 1; |
194
|
|
|
|
|
|
|
} |
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
sub _get_final_factors |
197
|
|
|
|
|
|
|
{ |
198
|
100
|
|
|
100
|
|
160
|
my $self = shift; |
199
|
|
|
|
|
|
|
|
200
|
100
|
|
|
|
|
259
|
$self->_calc_n_sq_factors(); |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
# The graham number of a perfect square is itself. |
203
|
100
|
100
|
|
|
|
1047
|
if ( $self->_n_sq_factors->is_square() ) |
|
|
100
|
|
|
|
|
|
204
|
|
|
|
|
|
|
{ |
205
|
10
|
|
|
|
|
119
|
return $self->_n_sq_factors->_get_ret(); |
206
|
|
|
|
|
|
|
} |
207
|
|
|
|
|
|
|
elsif ( defined( my $ret = $self->_check_largest_factor_in_between() ) ) |
208
|
|
|
|
|
|
|
{ |
209
|
44
|
|
|
|
|
161
|
return $ret; |
210
|
|
|
|
|
|
|
} |
211
|
|
|
|
|
|
|
else |
212
|
|
|
|
|
|
|
{ |
213
|
46
|
|
|
|
|
119
|
return $self->_main_solve(); |
214
|
|
|
|
|
|
|
} |
215
|
|
|
|
|
|
|
} |
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
sub solve |
218
|
|
|
|
|
|
|
{ |
219
|
100
|
|
|
100
|
1
|
446
|
my $self = shift; |
220
|
|
|
|
|
|
|
|
221
|
100
|
|
|
|
|
231
|
return { factors => $self->_get_final_factors() }; |
222
|
|
|
|
|
|
|
} |
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
sub _main_init |
225
|
|
|
|
|
|
|
{ |
226
|
46
|
|
|
46
|
|
83
|
my $self = shift; |
227
|
|
|
|
|
|
|
|
228
|
46
|
|
|
|
|
136
|
$self->next_id(0); |
229
|
|
|
|
|
|
|
|
230
|
46
|
|
|
|
|
521
|
$self->_base( [] ); |
231
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
# Register all the primes in the squaring factors of $n |
233
|
46
|
|
|
|
|
438
|
foreach my $p ( @{ $self->_n_sq_factors->factors() } ) |
|
46
|
|
|
|
|
110
|
|
234
|
|
|
|
|
|
|
{ |
235
|
78
|
|
|
|
|
1595
|
$self->_register_prime($p); |
236
|
|
|
|
|
|
|
} |
237
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
# $self->_n_vec is used to determine if $n can be composed out of the |
239
|
|
|
|
|
|
|
# base's vectors. |
240
|
46
|
|
|
|
|
1243
|
$self->_n_vec( $self->_n_sq_factors->clone() ); |
241
|
|
|
|
|
|
|
|
242
|
46
|
|
|
|
|
467
|
return; |
243
|
|
|
|
|
|
|
} |
244
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
sub _update_base |
247
|
|
|
|
|
|
|
{ |
248
|
444
|
|
|
444
|
|
754
|
my ( $self, $final_vec ) = @_; |
249
|
|
|
|
|
|
|
|
250
|
|
|
|
|
|
|
# Get the minimal ID and its corresponding prime number |
251
|
|
|
|
|
|
|
# in $final_vec. |
252
|
444
|
|
|
|
|
770
|
my ( $min_id, $min_p ) = $self->_get_min_id($final_vec); |
253
|
|
|
|
|
|
|
|
254
|
444
|
100
|
|
|
|
941
|
if ( $min_id >= 0 ) |
255
|
|
|
|
|
|
|
{ |
256
|
|
|
|
|
|
|
# Assign $final_vec as the controlling vector for this prime |
257
|
|
|
|
|
|
|
# number |
258
|
411
|
|
|
|
|
922
|
$self->_base->[$min_id] = $final_vec; |
259
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
# Canonicalize the rest of the vectors with the new vector. |
261
|
|
|
|
|
|
|
CANON_LOOP: |
262
|
411
|
|
|
|
|
3849
|
for my $j ( keys @{ $self->_base } ) |
|
411
|
|
|
|
|
731
|
|
263
|
|
|
|
|
|
|
{ |
264
|
3161
|
100
|
100
|
|
|
11198
|
if ( ( $j == $min_id ) || ( !defined( $self->_base->[$j] ) ) ) |
265
|
|
|
|
|
|
|
{ |
266
|
1311
|
|
|
|
|
10100
|
next CANON_LOOP; |
267
|
|
|
|
|
|
|
} |
268
|
1850
|
100
|
|
|
|
19036
|
if ( $self->_base->[$j]->exists($min_p) ) |
269
|
|
|
|
|
|
|
{ |
270
|
414
|
|
|
|
|
851
|
$self->_base->[$j]->mult_by($final_vec); |
271
|
|
|
|
|
|
|
} |
272
|
|
|
|
|
|
|
} |
273
|
|
|
|
|
|
|
} |
274
|
|
|
|
|
|
|
} |
275
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
sub _get_final_composition |
277
|
|
|
|
|
|
|
{ |
278
|
444
|
|
|
444
|
|
788
|
my ( $self, $i_vec ) = @_; |
279
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
# $final_vec is the new vector to add after it was |
281
|
|
|
|
|
|
|
# stair-shaped by all the controlling vectors in the base. |
282
|
|
|
|
|
|
|
|
283
|
444
|
|
|
|
|
597
|
my $final_vec = $i_vec; |
284
|
|
|
|
|
|
|
|
285
|
444
|
|
|
|
|
618
|
foreach my $p ( @{ $i_vec->factors() } ) |
|
444
|
|
|
|
|
882
|
|
286
|
|
|
|
|
|
|
{ |
287
|
819
|
100
|
|
|
|
9971
|
if ( !$self->_prime_exists($p) ) |
288
|
|
|
|
|
|
|
{ |
289
|
338
|
|
|
|
|
3448
|
$self->_register_prime($p); |
290
|
|
|
|
|
|
|
} |
291
|
|
|
|
|
|
|
else |
292
|
|
|
|
|
|
|
{ |
293
|
481
|
|
|
|
|
4905
|
my $id = $self->_get_prime_id($p); |
294
|
481
|
100
|
|
|
|
4583
|
if ( defined( $self->_base->[$id] ) ) |
295
|
|
|
|
|
|
|
{ |
296
|
387
|
|
|
|
|
3687
|
$final_vec->mult_by( $self->_base->[$id] ); |
297
|
|
|
|
|
|
|
} |
298
|
|
|
|
|
|
|
} |
299
|
|
|
|
|
|
|
} |
300
|
|
|
|
|
|
|
|
301
|
444
|
|
|
|
|
7637
|
return $final_vec; |
302
|
|
|
|
|
|
|
} |
303
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
sub _get_i_vec |
305
|
|
|
|
|
|
|
{ |
306
|
645
|
|
|
645
|
|
1008
|
my ( $self, $i ) = @_; |
307
|
|
|
|
|
|
|
|
308
|
645
|
|
|
|
|
1142
|
my $i_vec = $self->_get_num_dipole($i); |
309
|
|
|
|
|
|
|
|
310
|
|
|
|
|
|
|
# Skip perfect squares - they do not add to the solution |
311
|
645
|
100
|
|
|
|
1570
|
if ( $i_vec->is_square() ) |
312
|
|
|
|
|
|
|
{ |
313
|
45
|
|
|
|
|
593
|
return; |
314
|
|
|
|
|
|
|
} |
315
|
|
|
|
|
|
|
|
316
|
|
|
|
|
|
|
# Check if $i is a prime number |
317
|
|
|
|
|
|
|
# We need n > 2 because for n == 2 it does include a prime number. |
318
|
|
|
|
|
|
|
# |
319
|
|
|
|
|
|
|
# Prime numbers cannot be included because 2*n is an upper bound |
320
|
|
|
|
|
|
|
# to G(n) and so if there is a prime p > n than its next multiple |
321
|
|
|
|
|
|
|
# will be greater than G(n). |
322
|
600
|
100
|
66
|
|
|
6437
|
if ( ( $self->n() > 2 ) && ( $i_vec->first() == $i ) ) |
323
|
|
|
|
|
|
|
{ |
324
|
156
|
|
|
|
|
2142
|
return; |
325
|
|
|
|
|
|
|
} |
326
|
|
|
|
|
|
|
|
327
|
444
|
|
|
|
|
5017
|
return $i_vec; |
328
|
|
|
|
|
|
|
} |
329
|
|
|
|
|
|
|
|
330
|
|
|
|
|
|
|
sub _solve_iteration |
331
|
|
|
|
|
|
|
{ |
332
|
645
|
|
|
645
|
|
1119
|
my ( $self, $i ) = @_; |
333
|
|
|
|
|
|
|
|
334
|
645
|
100
|
|
|
|
1110
|
my $i_vec = $self->_get_i_vec($i) |
335
|
|
|
|
|
|
|
or return; |
336
|
|
|
|
|
|
|
|
337
|
444
|
|
|
|
|
842
|
my $final_vec = $self->_get_final_composition($i_vec); |
338
|
|
|
|
|
|
|
|
339
|
444
|
|
|
|
|
1066
|
$self->_update_base($final_vec); |
340
|
|
|
|
|
|
|
|
341
|
|
|
|
|
|
|
# Check if we can form $n |
342
|
444
|
100
|
|
|
|
1004
|
if ( $self->_try_to_form_n() ) |
343
|
|
|
|
|
|
|
{ |
344
|
46
|
|
|
|
|
99
|
return $self->_n_vec->_get_ret(); |
345
|
|
|
|
|
|
|
} |
346
|
|
|
|
|
|
|
else |
347
|
|
|
|
|
|
|
{ |
348
|
398
|
|
|
|
|
4642
|
return; |
349
|
|
|
|
|
|
|
} |
350
|
|
|
|
|
|
|
} |
351
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
sub _main_solve |
353
|
|
|
|
|
|
|
{ |
354
|
46
|
|
|
46
|
|
89
|
my $self = shift; |
355
|
|
|
|
|
|
|
|
356
|
46
|
|
|
|
|
122
|
$self->_main_init(); |
357
|
|
|
|
|
|
|
|
358
|
46
|
|
|
|
|
95
|
for ( my $i = $self->n() + 1 ; ; ++$i ) |
359
|
|
|
|
|
|
|
{ |
360
|
645
|
100
|
|
|
|
1572
|
if ( defined( my $ret = $self->_solve_iteration($i) ) ) |
361
|
|
|
|
|
|
|
{ |
362
|
46
|
|
|
|
|
1052
|
return $ret; |
363
|
|
|
|
|
|
|
} |
364
|
|
|
|
|
|
|
} |
365
|
|
|
|
|
|
|
} |
366
|
|
|
|
|
|
|
|
367
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
1; # End of Math::GrahamFunction |
369
|
|
|
|
|
|
|
|
370
|
|
|
|
|
|
|
__END__ |