File Coverage

blib/lib/Math/Gradient.pm
Criterion Covered Total %
statement 15 76 19.7
branch 0 12 0.0
condition 0 14 0.0
subroutine 5 9 55.5
pod 4 4 100.0
total 24 115 20.8


line stmt bran cond sub pod time code
1             package Math::Gradient;
2 1     1   32212 use strict;
  1         3  
  1         44  
3 1     1   6 use warnings;
  1         2  
  1         44  
4              
5             =head1 NAME
6              
7             Math::Gradient - Perl extension for calculating gradients for colour transitions, etc.
8              
9             =head1 SYNOPSIS
10              
11             use Math::Gradient qw(multi_gradient);
12              
13             # make a 100-point colour pallette to smothly transition between 6 RGB values
14              
15             my(@hot_spots) = ([ 0, 255, 0 ], [ 255, 255, 0 ], [ 127, 127, 127 ], [ 0, 0, 255 ], [ 127, 0, 0 ], [ 255, 255, 255 ]);
16              
17             my(@gradient) = multi_array_gradient(100, @hot_spots);
18              
19             =head1 DESCRIPTION
20              
21             Math::Gradient is used to calculate smooth transitions between numerical values (also known as a "Gradient"). I wrote this module mainly to mix colours, but it probably has several other applications. Methods are supported to handle both basic and multiple-point gradients, both with scalars and arrays.
22              
23             =head1 FUNCTIONS
24              
25             =over 4
26              
27             =item gradient($start_value, $end_value, $steps)
28              
29             This function will return an array of evenly distributed values between $start_value and $end_value. All three values supplied should be numeric. $steps should be the number of steps that should occur between the two points; for instance, gradient(0, 10, 4) would return the array (2, 4, 6, 8); the 4 evenly-distributed steps neccessary to get from 0 to 10, whereas gradient(0, 1, 3) would return (0.25, 0.5, 0.75). This is the basest function in the Math::Gradient module and isn't very exciting, but all of the other functions below derive their work from it.
30              
31             =item array_gradient($start_value, $end_value, $steps)
32              
33             While gradient() takes numeric values for $start_value and $end_value, array_gradient() takes arrayrefs instead. The arrays supplied are expected to be lists of numerical values, and all of the arrays should contain the same number of elements. array_gradient() will return a list of arrayrefs signifying the gradient of all values on the lists $start_value and $end_value.
34              
35             For example, calling array_gradient([ 0, 100, 2 ], [ 100, 50, 70], 3) would return: ([ 25, 87.5, 19 ], [ 50, 75, 36 ], [ 75, 62.5, 53 ]).
36              
37             =item multi_gradient($steps, @values)
38              
39             multi_gradient() calculates multiple gradients at once, returning one list that is an even transition between all points, with the values supplied interpolated evenly within the list. If $steps is less than the number of entries in the list @values, items are deleted from @values instead.
40              
41             For example, calling multi_gradient(10, 0, 100, 50) would return: (0, 25, 50, 75, 100, 90, 80, 70, 60, 50)
42              
43             =item multi_array_gradient($steps, @values)
44              
45             multi_array_gradient() is the same as multi_gradient, except that it works on arrayrefs instead of scalars (like array_gradient() is to gradient()).
46              
47             =back
48            
49             =cut
50              
51 1     1   28 use 5.005;
  1         7  
  1         52  
52 1     1   5 use strict;
  1         2  
  1         39  
53 1     1   6 use warnings;
  1         2  
  1         985  
54              
55             require Exporter;
56              
57             sub gradient ($$$);
58             sub array_gradient ($$$);
59             sub multi_array_gradient ($@);
60             sub multi_gradient ($@);
61              
62             our @ISA = qw(Exporter);
63              
64             # Items to export into callers namespace by default. Note: do not export
65             # names by default without a very good reason. Use EXPORT_OK instead.
66             # Do not simply export all your public functions/methods/constants.
67              
68             # This allows declaration use Math::Gradient ':all';
69             # If you do not need this, moving things directly into @EXPORT or @EXPORT_OK
70             # will save memory.
71             our %EXPORT_TAGS = ( 'all' => [ qw(
72             gradient array_gradient multi_gradient multi_array_gradient
73             ) ] );
74              
75             our @EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } );
76              
77             our @EXPORT = qw(
78            
79             );
80              
81             our $VERSION = '0.04';
82              
83              
84             # Preloaded methods go here.
85              
86             # Math::Gradient
87              
88             # Take sets of numbers and a specified number of steps, and return a
89             # gradient for going betewen those steps
90              
91             # for example,
92              
93             # [ 2, 4, 6 ], [ 4, 8, 12 ], [ 16, 32, 48 ] with 5 steps would result in
94              
95             # [ 2, 4, 6 ], [ 3, 6, 9 ], [ 4, 8, 12 ], [ 10, 24, 30 ], [ 16, 32, 48 ]
96              
97             # This involves two distinct steps;
98             # making a gradient between two points,
99             # and calculating the gradient between X points.
100              
101              
102             # To make a gradient between two points, we are given the points,
103             # and the number of steps to create between them.
104              
105              
106             # basic_gradient - get start and end number and # of steps to
107             # create in-between the two. returns an array of the intermediary steps.
108             sub gradient ($$$)
109             {
110 0     0 1   my($low, $high, $steps) = @_;
111 0           my $xsteps = $steps + 1; # steps incl. low
112 0           my $xdistance = $high - $low; # distance; may be negative
113 0           my $step_value = $xdistance/$xsteps; # how much to add to each step to create a gradient
114 0           my $value = $low; # start off with the starting value
115            
116 0           my @values;
117 0           foreach my $step (1 .. $steps)
118             {
119 0           $value += $step_value;
120 0           push(@values, $value);
121             }
122 0           return(@values); # we have a gradient!
123             }
124              
125             # takes two arrayrefs, and # of steps. arrayrefs should have same number
126             # of values in each.
127             sub array_gradient ($$$)
128             {
129 0     0 1   my($low, $high, $steps) = @_;
130 0           my(@values);
131 0           my $g_count = scalar(@$low);
132 0           foreach my $x (1 .. scalar(@$low))
133             {
134 0           my(@y) = (gradient($low->[$x - 1], $high->[$x - 1], $steps));
135 0           foreach my $y (1 .. scalar(@y))
136             {
137 0   0       $values[$y - 1] ||= [];
138 0           push(@{$values[$y - 1]}, $y[$y - 1]);
  0            
139             }
140             }
141 0           return(@values);
142             }
143              
144             # takes a number of steps and any number of steps already filled in (at least two)
145             # returns the full gradient, including supplied steps
146              
147             sub multi_array_gradient ($@)
148             {
149 0     0 1   my($steps, @start_steps) = @_;
150 0 0         if($steps == scalar(@start_steps))
151             {
152 0           return(@start_steps); # already have the # of steps we want
153             }
154 0           my @values;
155             # "steppage" is how many steps we should request on average between
156             # steps we've been supplied.
157 0           my $steppage = ($steps - scalar(@start_steps)) / (scalar(@start_steps) - 1);
158 0           my $steps_left = $steps - scalar(@start_steps);
159 0           my $xstep = 0;
160 0           while(my $cstep = shift(@start_steps))
161             {
162 0           push(@values, $cstep);
163 0           $xstep += $steppage;
164 0 0 0       if(@start_steps && $xstep >= 1)
    0 0        
165             {
166 0           my $xxstep = int($xstep);
167 0           $xstep -= $xxstep;
168 0           $steps_left -= $xxstep;
169 0           push(@values, array_gradient($cstep, $start_steps[0], $xxstep));
170             }
171             elsif(@start_steps && $xstep <= 1)
172             {
173 0           my $xxstep = int($xstep);
174 0           $xstep -= $xxstep;
175 0           $steps_left -= $xxstep;
176 0           splice(@values, scalar(@values) + $xxstep, abs($xxstep));
177             }
178             }
179 0           return(@values);
180             }
181              
182             sub multi_gradient ($@)
183             {
184 0     0 1   my($steps, @start_steps) = (@_);
185 0 0         if($steps == scalar(@start_steps))
186             {
187 0           return(@start_steps); # already have the # of steps we want
188             }
189 0           my @values;
190             # "steppage" is how many steps we should request on average between
191             # steps we've been supplied.
192 0           my $steppage = ($steps - scalar(@start_steps)) / (scalar(@start_steps) - 1);
193 0           my $steps_left = $steps - scalar(@start_steps);
194 0           my $xstep = 0;
195 0           while(scalar(@start_steps))
196             {
197 0           my $cstep = shift(@start_steps);
198 0           push(@values, $cstep);
199 0           $xstep += $steppage;
200 0 0 0       if(@start_steps && $xstep >= 1)
    0 0        
201             {
202 0           my $xxstep = int($xstep);
203 0           $xstep -= $xxstep;
204 0           $steps_left -= $xxstep;
205 0           push(@values, gradient($cstep, $start_steps[0], $xxstep));
206             }
207             elsif(@start_steps && $xstep <= 1)
208             {
209 0           my $xxstep = int($xstep);
210 0           $xstep -= $xxstep;
211 0           $steps_left -= $xxstep;
212 0           splice(@values, scalar(@values) + $xxstep, abs($xxstep));
213             }
214             }
215 0           return(@values);
216             }
217              
218              
219             1;
220             __END__