line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# |
2
|
|
|
|
|
|
|
# Copyright (c) 2002 Danny Van de Pol - Alcatel Telecom Belgium |
3
|
|
|
|
|
|
|
# danny.vandepol@alcatel.be |
4
|
|
|
|
|
|
|
# |
5
|
|
|
|
|
|
|
# Free usage under the same Perl Licence condition. |
6
|
|
|
|
|
|
|
# |
7
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
package Math::Geometry::Planar; |
9
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
$VERSION = '1.18'; |
11
|
|
|
|
|
|
|
|
12
|
1
|
|
|
|
|
83
|
use vars qw( |
13
|
|
|
|
|
|
|
$VERSION |
14
|
|
|
|
|
|
|
@ISA |
15
|
|
|
|
|
|
|
@EXPORT |
16
|
|
|
|
|
|
|
@EXPORT_OK |
17
|
|
|
|
|
|
|
$precision |
18
|
1
|
|
|
1
|
|
8750
|
); |
|
1
|
|
|
|
|
2
|
|
19
|
|
|
|
|
|
|
|
20
|
1
|
|
|
1
|
|
5
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
27
|
|
21
|
1
|
|
|
1
|
|
902
|
use Math::Geometry::Planar::GPC; |
|
1
|
|
|
|
|
12716
|
|
|
1
|
|
|
|
|
104
|
|
22
|
1
|
|
|
1
|
|
1154
|
use Math::Geometry::Planar::Offset; |
|
1
|
|
|
|
|
4187
|
|
|
1
|
|
|
|
|
61
|
|
23
|
1
|
|
|
1
|
|
8
|
use Carp; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
63
|
|
24
|
1
|
|
|
1
|
|
1135
|
use POSIX; |
|
1
|
|
|
|
|
8073
|
|
|
1
|
|
|
|
|
7
|
|
25
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
$precision = 7; |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
require Exporter; |
29
|
|
|
|
|
|
|
@ISA = qw(Exporter); |
30
|
|
|
|
|
|
|
@EXPORT = qw( |
31
|
|
|
|
|
|
|
SegmentLength Determinant DotProduct CrossProduct |
32
|
|
|
|
|
|
|
TriangleArea Colinear |
33
|
|
|
|
|
|
|
SegmentIntersection LineIntersection RayIntersection |
34
|
|
|
|
|
|
|
SegmentLineIntersection RayLineIntersection |
35
|
|
|
|
|
|
|
SegmentRayIntersection |
36
|
|
|
|
|
|
|
Perpendicular PerpendicularFoot |
37
|
|
|
|
|
|
|
DistanceToLine DistanceToSegment |
38
|
|
|
|
|
|
|
Gpc2Polygons GpcClip |
39
|
|
|
|
|
|
|
CircleToPoly ArcToPoly CalcAngle |
40
|
|
|
|
|
|
|
); |
41
|
|
|
|
|
|
|
@EXPORT_OK = qw($precision); |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
=pod |
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
=head1 NAME |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
Math::Geometry::Planar - A collection of planar geometry functions |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
=head1 SYNOPSIS |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
use Math::Geometry::Planar; |
52
|
|
|
|
|
|
|
$polygon = Math::Geometry::Planar->new; creates a new polygon object; |
53
|
|
|
|
|
|
|
$contour = Math::Geometry::Planar->new; creates a new contour object; |
54
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
=head4 Formats |
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
A point is a reference to an array holding the x and y coordinates of the point. |
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
$point = [$x_coord,$y_coord]; |
60
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
A polygon is a reference to an (ordered) array of points. The first point is the |
62
|
|
|
|
|
|
|
begin and end point of the polygon. The points can be given in any direction |
63
|
|
|
|
|
|
|
(clockwise or counter clockwise). |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
A contour is a reference to an array of polygons. By convention, the first polygon |
66
|
|
|
|
|
|
|
is the outer shape, all other polygons represent holes in the outer shape. The outer |
67
|
|
|
|
|
|
|
shape must enclose all holes ! |
68
|
|
|
|
|
|
|
Using this convention, the points can be given in any direction, however, keep |
69
|
|
|
|
|
|
|
in mind that some functions (e.g. triangulation) require that the outer polygons |
70
|
|
|
|
|
|
|
are entered in counter clockwise order and the inner polygons (holes) in clock |
71
|
|
|
|
|
|
|
wise order. The points, polygons, add_polygons methods will automatically set the |
72
|
|
|
|
|
|
|
right order of points. |
73
|
|
|
|
|
|
|
No points can be assigned to an object that already has polygons assigned to and |
74
|
|
|
|
|
|
|
vice versa. |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
$points = [[$x1,$y1],[$x2,$y2], ... ]; |
77
|
|
|
|
|
|
|
$polygon->points($points); # assign points to polygon object |
78
|
|
|
|
|
|
|
$points1 = [[$x1,$y1],[$x2,$y2], ... ]; |
79
|
|
|
|
|
|
|
$points2 = [[ax1,by1],[ax2,by2], ... ]; |
80
|
|
|
|
|
|
|
$contour->polygons([$points1,$points2, ...]); # assign polgyons to contour object |
81
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
=head1 METHODS |
83
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
The available methods are: |
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
=head4 $polygon->points(arg); |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
Returns the polygon points if no argument is entered. |
89
|
|
|
|
|
|
|
If the argument is a refence to a points array, sets the points for a polygon object. |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
=head4 $contour->polygons(arg); |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
Returns the contour polygons if no argument is entered. |
94
|
|
|
|
|
|
|
If the argument is a refence to a polygons array, sets the polygons for a contour object. |
95
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
=head4 $contour->num_polygons; |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
Returns the total number of polygons in the contour. |
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
=head4 $contour->add_polygons(arg); |
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
Adds a list of polygons to a contour object (if the contour object doesn't have any |
103
|
|
|
|
|
|
|
polygons yet, the very first polygon reference from the list is used as the outer |
104
|
|
|
|
|
|
|
shape). Returns the total number of polygons in the contour. |
105
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
=head4 $contour->get_polygons(arg_1,arg_2, ... ); |
107
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
Returns a list of polygons where each element of the list corresponds to the polygon |
109
|
|
|
|
|
|
|
at index arg_x - starting at 0, the outer shape. If the index arg_x is out of range, |
110
|
|
|
|
|
|
|
the corresponding value in the result list wil be undefined. If no argument is |
111
|
|
|
|
|
|
|
entered, a full list of all polygons is returned. Please note that this method returns |
112
|
|
|
|
|
|
|
a list rather then a reference. |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
=head4 $polygon->cleanup; |
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
Remove colinear points from the polygon/contour. |
117
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
=head4 $polygon->isconvex; |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
Returns true if the polygon/contour is convex. A contour is considered to be convex if |
121
|
|
|
|
|
|
|
the outer shape is convex. |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
=head4 $polygon->issimple; |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
Returns true if the polygon/contour is simple. A contour is considered to be simple if |
126
|
|
|
|
|
|
|
all it's polygons are simple. |
127
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
=head4 $polygon->perimeter; |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
Returns the perimeter of the polygon/contour. The perimeter of a contour is the perimeter |
131
|
|
|
|
|
|
|
of the outer shape. |
132
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
=head4 $polygon->area; |
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
Returns the signed area of the polygon/contour (positive if the points are in counter |
136
|
|
|
|
|
|
|
clockwise order). The area of a contour is the area of the outer shape minus the sum |
137
|
|
|
|
|
|
|
of the area of the holes. |
138
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
=head4 $polygon->centroid; |
140
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
Returns the centroid (center of gravity) of the polygon/contour. |
142
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
=head4 $polygon->isinside($point); |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
Returns true if point is inside the polygon/contour (a point is inside a contour if |
146
|
|
|
|
|
|
|
it is inside the outer polygon and not inside a hole). |
147
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
=head4 $polygon->rotate($angle,$center); |
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
Returns polygon/contour rotated $angle (in radians) around $center. |
151
|
|
|
|
|
|
|
If no center is entered, rotates around the origin. |
152
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
=head4 $polygon->move($dx,$dy); |
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
Returns polygon/contour moved $dx in x direction and $dy in y direction. |
156
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
=head4 $polygon->mirrorx($center); |
158
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
Returns polygon/contour mirrored in x direction |
160
|
|
|
|
|
|
|
with (vertical) axis of reflection through point $center. |
161
|
|
|
|
|
|
|
If no center is entered, axis is the Y-axis. |
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
=head4 $polygon->mirrory($center); |
164
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
Returns polygon/contour mirrored in y direction |
166
|
|
|
|
|
|
|
with (horizontal) axis of reflection through point $center. |
167
|
|
|
|
|
|
|
If no center is entered, axis is the X-axis. |
168
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
=head4 $polygon->mirror($axos); |
170
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
Returns polygon mirrored/contour along axis $axis (= array with 2 points defining |
172
|
|
|
|
|
|
|
axis of reflection). |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
=head4 $polygon->scale($csale,$center); |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
Returns polygon/contour scaled by a factor $scale, center of scaling is $scale. |
177
|
|
|
|
|
|
|
If no center is entered, center of scaling is the origin. |
178
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
=head4 $polygon->bbox; |
180
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
Returns the polygon's/contour's bounding box. |
182
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
=head4 $polygon->minrectangle; |
184
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
Returns the polygon's/contour's minimal (area) enclosing rectangle. |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
=head4 $polygon->convexhull; |
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
Returns a polygon representing the convex hull of the polygon/contour. |
190
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
=head4 $polygon->convexhull2; |
192
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
Returns a polygon representing the convex hull of an arbitrary set of points |
194
|
|
|
|
|
|
|
(works also on a contour, however a contour is a set of polygons and polygons |
195
|
|
|
|
|
|
|
are ordered sets of points so the method above will be faster) |
196
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
=head4 $polygon->triangulate; |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
Triangulates a polygon/contour based on Raimund Seidel's algorithm: |
200
|
|
|
|
|
|
|
'A simple and fast incremental randomized algorithm for computing trapezoidal |
201
|
|
|
|
|
|
|
decompositions and for triangulating polygons' |
202
|
|
|
|
|
|
|
Returns a list of polygons (= the triangles) |
203
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
=head4 $polygon->offset_polygon($distance); |
205
|
|
|
|
|
|
|
|
206
|
|
|
|
|
|
|
Returns reference to an array of polygons representing the original polygon |
207
|
|
|
|
|
|
|
offsetted by $distance |
208
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
=head4 $polygon->convert2gpc; |
210
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
Converts a polygon/contour to a gpc structure and returns the resulting gpc structure |
212
|
|
|
|
|
|
|
|
213
|
|
|
|
|
|
|
=head1 EXPORTS |
214
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
=head4 SegmentLength[$p1,$p2]; |
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
Returns the length of the segment (vector) p1p2 |
218
|
|
|
|
|
|
|
|
219
|
|
|
|
|
|
|
=head4 Determinant(x1,y1,x2,y2); |
220
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
Returns the determinant of the matrix with rows x1,y1 and x2,y2 which is x1*y2 - y1*x2 |
222
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
=head4 DotProduct($p1,$p2,$p3,$p4); |
224
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
Returns the vector dot product of vectors p1p2 and p3p4 |
226
|
|
|
|
|
|
|
or the dot product of p1p2 and p2p3 if $p4 is ommited from the argument list |
227
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
=head4 CrossProduct($p1,$p2,$p3); |
229
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
Returns the vector cross product of vectors p1p2 and p1p3 |
231
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
=head4 TriangleArea($p1,$p2,$p3); |
233
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
Returns the signed area of the triangle p1p2p3 |
235
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
=head4 Colinear($p1,$p2,$p3); |
237
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
Returns true if p1,p2 and p3 are colinear |
239
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
=head4 SegmentIntersection($p1,$p2,$p3,$p4); |
241
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
Returns the intersection point of segments p1p2 and p3p4, |
243
|
|
|
|
|
|
|
false if segments don't intersect |
244
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
=head4 LineIntersection($p1,$p2,$p3,$p4); |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
Returns the intersection point of lines p1p2 and p3p4, |
248
|
|
|
|
|
|
|
false if lines don't intersect (parallel lines) |
249
|
|
|
|
|
|
|
|
250
|
|
|
|
|
|
|
=head4 RayIntersection($p1,$p2,$p3,$p4); |
251
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
Returns the intersection point of rays p1p2 and p3p4, |
253
|
|
|
|
|
|
|
false if lines don't intersect (parallel rays) |
254
|
|
|
|
|
|
|
p1 (p3) is the startpoint of the ray and p2 (p4) is |
255
|
|
|
|
|
|
|
a point on the ray. |
256
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
=head4 RayLineIntersection($p1,$p2,$p3,$p4); |
258
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
Returns the intersection point of ray p1p2 and line p3p4, |
260
|
|
|
|
|
|
|
false if lines don't intersect (parallel rays) |
261
|
|
|
|
|
|
|
p1 is the startpoint of the ray and p2 is a point on the ray. |
262
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
=head4 SegmentLineIntersection($p1,$p2,$p3,$p4); |
264
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
Returns the intersection point of segment p1p2 and line p3p4, |
266
|
|
|
|
|
|
|
false if lines don't intersect (parallel rays) |
267
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
=head4 SegmentRayIntersection($p1,$p2,$p3,$p4); |
269
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
Returns the intersection point of segment p1p2 and ray p3p4, |
271
|
|
|
|
|
|
|
false if lines don't intersect (parallel rays) |
272
|
|
|
|
|
|
|
p3 is the startpoint of the ray and p4 is a point on the ray. |
273
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
=head4 Perpendicular($p1,$p2,$p3,$p4); |
275
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
Returns true if lines (segments) p1p2 and p3p4 are perpendicular |
277
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
=head4 PerpendicularFoot($p1,$p2,$p3); |
279
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
Returns the perpendicular foot of p3 on line p1p2 |
281
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
=head4 DistanceToLine($p1,$p2,$p3); |
283
|
|
|
|
|
|
|
|
284
|
|
|
|
|
|
|
Returns the perpendicular distance of p3 to line p1p2 |
285
|
|
|
|
|
|
|
|
286
|
|
|
|
|
|
|
=head4 DistanceToSegment($p1,$p2,$p3); |
287
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
Returns the distance of p3 to segment p1p2. Depending on the point's |
289
|
|
|
|
|
|
|
position, this is the distance to one of the endpoints or the |
290
|
|
|
|
|
|
|
perpendicular distance to the segment. |
291
|
|
|
|
|
|
|
|
292
|
|
|
|
|
|
|
=head4 Gpc2Polygons($gpc_contour); |
293
|
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
Converts a gpc contour structure to an array of contours and returns the array |
295
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
=head4 GpcClip($operation,$gpc_contour_1,$gpc_contour_2); |
297
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
$operation is DIFFERENCE, INTERSECTION, XOR or UNION |
299
|
|
|
|
|
|
|
$gpc_polygon_1 is the source polygon |
300
|
|
|
|
|
|
|
$gpc_polygon_2 is the clip polygon |
301
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
Returns a gpc polygon structure which is the result of the gpc clipping operation |
303
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
=head4 CircleToPoly($i,$p1,$p2,$p3); |
305
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
Converts the circle through points p1p2p3 to a polygon with i segments |
307
|
|
|
|
|
|
|
|
308
|
|
|
|
|
|
|
=head4 CircleToPoly($i,$center,$p1); |
309
|
|
|
|
|
|
|
|
310
|
|
|
|
|
|
|
Converts the circle with center through point p1 to a polygon with i segments |
311
|
|
|
|
|
|
|
|
312
|
|
|
|
|
|
|
=head4 CircleToPoly($i,$center,$radius); |
313
|
|
|
|
|
|
|
|
314
|
|
|
|
|
|
|
Converts the circle with center and radius to a polygon with i segments |
315
|
|
|
|
|
|
|
|
316
|
|
|
|
|
|
|
=head4 ArcToPoly($i,$p1,$p2,$p3); |
317
|
|
|
|
|
|
|
|
318
|
|
|
|
|
|
|
Converts the arc with begin point p1, intermediate point p2 and end point p3 |
319
|
|
|
|
|
|
|
to a (non-closed !) polygon with i segments |
320
|
|
|
|
|
|
|
|
321
|
|
|
|
|
|
|
=head4 ArcToPoly($i,$center,$p1,$p2,$direction); |
322
|
|
|
|
|
|
|
|
323
|
|
|
|
|
|
|
Converts the arc with center, begin point p1 and end point p2 to a |
324
|
|
|
|
|
|
|
(non-closed !) polygon with i segments. If direction is 0, the arc |
325
|
|
|
|
|
|
|
is traversed counter clockwise from p1 to p2, clockwise if direction is 1 |
326
|
|
|
|
|
|
|
|
327
|
|
|
|
|
|
|
=cut |
328
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
require 5.005; |
330
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
my $delta = 10 ** (-$precision); |
332
|
|
|
|
|
|
|
|
333
|
|
|
|
|
|
|
################################################################################ |
334
|
|
|
|
|
|
|
# |
335
|
|
|
|
|
|
|
# calculate length of a line segment |
336
|
|
|
|
|
|
|
# |
337
|
|
|
|
|
|
|
# args : reference to array with 2 points defining line segment |
338
|
|
|
|
|
|
|
# |
339
|
|
|
|
|
|
|
sub SegmentLength { |
340
|
16
|
|
|
16
|
0
|
56
|
my $pointsref = $_[0]; |
341
|
16
|
|
|
|
|
31
|
my @points = @$pointsref; |
342
|
16
|
50
|
|
|
|
36
|
if (@points != 2) { |
343
|
0
|
|
|
|
|
0
|
carp("Need 2 points for a segment length calculation"); |
344
|
0
|
|
|
|
|
0
|
return; |
345
|
|
|
|
|
|
|
} |
346
|
16
|
|
|
|
|
19
|
my @a = @{$points[0]}; |
|
16
|
|
|
|
|
41
|
|
347
|
16
|
|
|
|
|
17
|
my @b = @{$points[1]}; |
|
16
|
|
|
|
|
25
|
|
348
|
16
|
|
|
|
|
47
|
my $length = sqrt(DotProduct([$points[0],$points[1],$points[0],$points[1]])); |
349
|
16
|
|
|
|
|
74
|
return $length; |
350
|
|
|
|
|
|
|
} |
351
|
|
|
|
|
|
|
################################################################################ |
352
|
|
|
|
|
|
|
# |
353
|
|
|
|
|
|
|
# The determinant for the matrix | x1 y1 | |
354
|
|
|
|
|
|
|
# | x2 y2 | |
355
|
|
|
|
|
|
|
# |
356
|
|
|
|
|
|
|
# args : x1,y1,x2,y2 |
357
|
|
|
|
|
|
|
# |
358
|
|
|
|
|
|
|
sub Determinant { |
359
|
468
|
|
|
468
|
1
|
673
|
my ($x1,$y1,$x2,$y2) = @_; |
360
|
468
|
|
|
|
|
895
|
return ($x1*$y2 - $x2*$y1); |
361
|
|
|
|
|
|
|
} |
362
|
|
|
|
|
|
|
################################################################################ |
363
|
|
|
|
|
|
|
# |
364
|
|
|
|
|
|
|
# vector dot product |
365
|
|
|
|
|
|
|
# calculates dotproduct vectors p1p2 and p3p4 |
366
|
|
|
|
|
|
|
# The dot product of a and b is written as a.b and is |
367
|
|
|
|
|
|
|
# defined by a.b = |a|*|b|*cos q |
368
|
|
|
|
|
|
|
# |
369
|
|
|
|
|
|
|
# args : reference to an array with 4 points p1,p2,p3,p4 defining 2 vectors |
370
|
|
|
|
|
|
|
# a = vector p1p2 and b = vector p3p4 |
371
|
|
|
|
|
|
|
# or |
372
|
|
|
|
|
|
|
# reference to an array with 3 points p1,p2,p3 defining 2 vectors |
373
|
|
|
|
|
|
|
# a = vector p1p2 and b = vector p1p3 |
374
|
|
|
|
|
|
|
# |
375
|
|
|
|
|
|
|
sub DotProduct { |
376
|
27
|
|
|
27
|
1
|
34
|
my $pointsref = $_[0]; |
377
|
27
|
|
|
|
|
52
|
my @points = @$pointsref; |
378
|
27
|
|
|
|
|
36
|
my (@p1,@p2,@p3,@p4); |
379
|
27
|
50
|
|
|
|
47
|
if (@points == 4) { |
|
|
0
|
|
|
|
|
|
380
|
27
|
|
|
|
|
34
|
@p1 = @{$points[0]}; |
|
27
|
|
|
|
|
50
|
|
381
|
27
|
|
|
|
|
31
|
@p2 = @{$points[1]}; |
|
27
|
|
|
|
|
41
|
|
382
|
27
|
|
|
|
|
30
|
@p3 = @{$points[2]}; |
|
27
|
|
|
|
|
43
|
|
383
|
27
|
|
|
|
|
31
|
@p4 = @{$points[3]}; |
|
27
|
|
|
|
|
45
|
|
384
|
|
|
|
|
|
|
} elsif (@points == 3) { |
385
|
0
|
|
|
|
|
0
|
@p1 = @{$points[0]}; |
|
0
|
|
|
|
|
0
|
|
386
|
0
|
|
|
|
|
0
|
@p2 = @{$points[1]}; |
|
0
|
|
|
|
|
0
|
|
387
|
0
|
|
|
|
|
0
|
@p3 = @{$points[0]}; |
|
0
|
|
|
|
|
0
|
|
388
|
0
|
|
|
|
|
0
|
@p4 = @{$points[2]}; |
|
0
|
|
|
|
|
0
|
|
389
|
|
|
|
|
|
|
} else { |
390
|
0
|
|
|
|
|
0
|
carp("Need 3 or 4 points for a dot product"); |
391
|
0
|
|
|
|
|
0
|
return; |
392
|
|
|
|
|
|
|
} |
393
|
27
|
|
|
|
|
152
|
return ($p2[0]-$p1[0])*($p4[0]-$p3[0]) + ($p2[1]-$p1[1])*($p4[1]-$p3[1]); |
394
|
|
|
|
|
|
|
} |
395
|
|
|
|
|
|
|
################################################################################ |
396
|
|
|
|
|
|
|
# |
397
|
|
|
|
|
|
|
# returns vector cross product of vectors p1p2 and p1p3 |
398
|
|
|
|
|
|
|
# using Cramer's rule |
399
|
|
|
|
|
|
|
# |
400
|
|
|
|
|
|
|
# args : reference to an array with 3 points p1,p2 and p3 |
401
|
|
|
|
|
|
|
# |
402
|
|
|
|
|
|
|
sub CrossProduct { |
403
|
128
|
|
|
128
|
1
|
160
|
my $pointsref = $_[0]; |
404
|
128
|
|
|
|
|
232
|
my @points = @$pointsref; |
405
|
128
|
50
|
|
|
|
246
|
if (@points != 3) { |
406
|
0
|
|
|
|
|
0
|
carp("Need 3 points for a cross product"); |
407
|
0
|
|
|
|
|
0
|
return; |
408
|
|
|
|
|
|
|
} |
409
|
128
|
|
|
|
|
143
|
my @p1 = @{$points[0]}; |
|
128
|
|
|
|
|
303
|
|
410
|
128
|
|
|
|
|
137
|
my @p2 = @{$points[1]}; |
|
128
|
|
|
|
|
205
|
|
411
|
128
|
|
|
|
|
141
|
my @p3 = @{$points[2]}; |
|
128
|
|
|
|
|
227
|
|
412
|
128
|
|
|
|
|
339
|
my $det_p2p3 = &Determinant($p2[0], $p2[1], $p3[0], $p3[1]); |
413
|
128
|
|
|
|
|
287
|
my $det_p1p3 = &Determinant($p1[0], $p1[1], $p3[0], $p3[1]); |
414
|
128
|
|
|
|
|
254
|
my $det_p1p2 = &Determinant($p1[0], $p1[1], $p2[0], $p2[1]); |
415
|
128
|
|
|
|
|
528
|
return ($det_p2p3-$det_p1p3+$det_p1p2); |
416
|
|
|
|
|
|
|
} |
417
|
|
|
|
|
|
|
################################################################################ |
418
|
|
|
|
|
|
|
# |
419
|
|
|
|
|
|
|
# The Cramer's Rule for area of a triangle is |
420
|
|
|
|
|
|
|
# | x1 y1 1 | |
421
|
|
|
|
|
|
|
# A = 1/2 * | x2 y2 1 | |
422
|
|
|
|
|
|
|
# | x3 y3 1 | |
423
|
|
|
|
|
|
|
# Which is 'half of the cross product of vectors ab and ac. |
424
|
|
|
|
|
|
|
# The cross product of the vectors ab and ac is a vector perpendicular to the |
425
|
|
|
|
|
|
|
# plane defined by ab and bc with a magnitude equal to the area of the |
426
|
|
|
|
|
|
|
# parallelogram defined by a, b, c and ab + bc (vector sum) |
427
|
|
|
|
|
|
|
# Don't forget that: (ab x ac) = - (ac x ab) (x = cross product) |
428
|
|
|
|
|
|
|
# Which just means that if you reverse the vectors in the cross product, |
429
|
|
|
|
|
|
|
# the resulting vector points in the opposite direction |
430
|
|
|
|
|
|
|
# The direction of the resulting vector can be found with the "right hand rule" |
431
|
|
|
|
|
|
|
# This can be used to determine the order of points a, b and c: |
432
|
|
|
|
|
|
|
# clockwise or counter clockwise |
433
|
|
|
|
|
|
|
# |
434
|
|
|
|
|
|
|
# args : reference to an array with 3 points p1.p2,p3 |
435
|
|
|
|
|
|
|
# |
436
|
|
|
|
|
|
|
sub TriangleArea { |
437
|
7
|
|
|
7
|
1
|
10
|
my $pointsref = $_[0]; |
438
|
7
|
|
|
|
|
15
|
my @points = @$pointsref; |
439
|
7
|
50
|
|
|
|
16
|
if (@points != 3) { # need 3 points for a triangle ... |
440
|
0
|
|
|
|
|
0
|
carp("A triangle should have exactly 3 points"); |
441
|
0
|
|
|
|
|
0
|
return; |
442
|
|
|
|
|
|
|
} |
443
|
7
|
|
|
|
|
15
|
return CrossProduct($pointsref)/2; |
444
|
|
|
|
|
|
|
} |
445
|
|
|
|
|
|
|
################################################################################ |
446
|
|
|
|
|
|
|
# |
447
|
|
|
|
|
|
|
# Check if 3 points are colinear |
448
|
|
|
|
|
|
|
# Points are colinear if triangle area is 0 |
449
|
|
|
|
|
|
|
# Triangle area is crossproduct/2 so we can check the crossproduct instead |
450
|
|
|
|
|
|
|
# |
451
|
|
|
|
|
|
|
# args : reference to an array with 3 points p1.p2,p3 |
452
|
|
|
|
|
|
|
# |
453
|
|
|
|
|
|
|
sub Colinear { |
454
|
12
|
|
|
12
|
1
|
18
|
my $pointsref = $_[0]; |
455
|
12
|
|
|
|
|
19
|
my @points = @$pointsref; |
456
|
12
|
50
|
|
|
|
36
|
if (@points != 3) { |
457
|
0
|
|
|
|
|
0
|
carp("Colinear only checks colinearity for 3 points"); |
458
|
0
|
|
|
|
|
0
|
return; |
459
|
|
|
|
|
|
|
} |
460
|
|
|
|
|
|
|
# check the area of the triangle to find |
461
|
12
|
|
|
|
|
23
|
return (abs(CrossProduct($pointsref)) < $delta); |
462
|
|
|
|
|
|
|
} |
463
|
|
|
|
|
|
|
################################################################################ |
464
|
|
|
|
|
|
|
# |
465
|
|
|
|
|
|
|
# calculate intersection point of 2 line segments |
466
|
|
|
|
|
|
|
# returns false if segments don't intersect |
467
|
|
|
|
|
|
|
# The theory: |
468
|
|
|
|
|
|
|
# |
469
|
|
|
|
|
|
|
# Parametric representation of a line |
470
|
|
|
|
|
|
|
# if p1 (x1,y1) and p2 (x2,y2) are 2 points on a line and |
471
|
|
|
|
|
|
|
# P1 is the vector from (0,0) to (x1,y1) |
472
|
|
|
|
|
|
|
# P2 is the vector from (0,0) to (x2,y2) |
473
|
|
|
|
|
|
|
# then the parametric representation of the line is P = P1 + k (P2 - P1) |
474
|
|
|
|
|
|
|
# where k is an arbitrary scalar constant. |
475
|
|
|
|
|
|
|
# for a point on the line segement (p1,p2) value of k is between 0 and 1 |
476
|
|
|
|
|
|
|
# |
477
|
|
|
|
|
|
|
# for the 2 line segements we get |
478
|
|
|
|
|
|
|
# Pa = P1 + k (P2 - P1) |
479
|
|
|
|
|
|
|
# Pb = P3 + l (P4 - P3) |
480
|
|
|
|
|
|
|
# |
481
|
|
|
|
|
|
|
# For the intersection point Pa = Pb so we get the following equations |
482
|
|
|
|
|
|
|
# x1 + k (x2 - x1) = x3 + l (x4 - x3) |
483
|
|
|
|
|
|
|
# y1 + k (y2 - y1) = y3 + l (y4 - y3) |
484
|
|
|
|
|
|
|
# Which using Cramer's Rule results in |
485
|
|
|
|
|
|
|
# (x4 - x3)(y1 - y3) - (y4 - x3)(x1 - x3) |
486
|
|
|
|
|
|
|
# k = --------------------------------------- |
487
|
|
|
|
|
|
|
# (y4 - y3)(x2 - x1) - (x4 - x3)(y2 - y1) |
488
|
|
|
|
|
|
|
# and |
489
|
|
|
|
|
|
|
# (x2 - x1)(y1 - y3) - (y2 - y1)(x1 - x3) |
490
|
|
|
|
|
|
|
# l = --------------------------------------- |
491
|
|
|
|
|
|
|
# (y4 - y3)(x2 - x1) - (x4 - x3)(y2 - y1) |
492
|
|
|
|
|
|
|
# |
493
|
|
|
|
|
|
|
# Note that the denominators are equal. If the denominator is 9, |
494
|
|
|
|
|
|
|
# the lines are parallel. Intersection is detected by checking if |
495
|
|
|
|
|
|
|
# both k and l are between 0 and 1. |
496
|
|
|
|
|
|
|
# |
497
|
|
|
|
|
|
|
# The intersection point p5 (x5,y5) is: |
498
|
|
|
|
|
|
|
# x5 = x1 + k (x2 - x1) |
499
|
|
|
|
|
|
|
# y5 = y1 + k (y2 - y1) |
500
|
|
|
|
|
|
|
# |
501
|
|
|
|
|
|
|
# 'Touching' segments are considered as not intersecting |
502
|
|
|
|
|
|
|
# |
503
|
|
|
|
|
|
|
# args : reference to an array with 4 points p1,p2,p3,p4 |
504
|
|
|
|
|
|
|
# |
505
|
|
|
|
|
|
|
sub SegmentIntersection { |
506
|
11
|
|
|
11
|
1
|
57
|
my $pointsref = $_[0]; |
507
|
11
|
|
|
|
|
20
|
my @points = @$pointsref; |
508
|
11
|
50
|
|
|
|
30
|
if (@points != 4) { |
509
|
0
|
|
|
|
|
0
|
carp("SegmentIntersection needs 4 points"); |
510
|
0
|
|
|
|
|
0
|
return; |
511
|
|
|
|
|
|
|
} |
512
|
11
|
|
|
|
|
12
|
my @p1 = @{$points[0]}; # p1,p2 = segment 1 |
|
11
|
|
|
|
|
23
|
|
513
|
11
|
|
|
|
|
12
|
my @p2 = @{$points[1]}; |
|
11
|
|
|
|
|
17
|
|
514
|
11
|
|
|
|
|
12
|
my @p3 = @{$points[2]}; # p3,p4 = segment 2 |
|
11
|
|
|
|
|
18
|
|
515
|
11
|
|
|
|
|
12
|
my @p4 = @{$points[3]}; |
|
11
|
|
|
|
|
17
|
|
516
|
11
|
|
|
|
|
11
|
my @p5; |
517
|
11
|
|
|
|
|
31
|
my $n1 = Determinant(($p3[0]-$p1[0]),($p3[0]-$p4[0]),($p3[1]-$p1[1]),($p3[1]-$p4[1])); |
518
|
11
|
|
|
|
|
36
|
my $n2 = Determinant(($p2[0]-$p1[0]),($p3[0]-$p1[0]),($p2[1]-$p1[1]),($p3[1]-$p1[1])); |
519
|
11
|
|
|
|
|
31
|
my $d = Determinant(($p2[0]-$p1[0]),($p3[0]-$p4[0]),($p2[1]-$p1[1]),($p3[1]-$p4[1])); |
520
|
11
|
50
|
|
|
|
31
|
if (abs($d) < $delta) { |
521
|
0
|
|
|
|
|
0
|
return 0; # parallel |
522
|
|
|
|
|
|
|
} |
523
|
11
|
100
|
100
|
|
|
70
|
if (!(($n1/$d < 1) && ($n2/$d < 1) && |
|
|
|
100
|
|
|
|
|
|
|
|
66
|
|
|
|
|
524
|
|
|
|
|
|
|
($n1/$d > 0) && ($n2/$d > 0))) { |
525
|
8
|
|
|
|
|
56
|
return 0; |
526
|
|
|
|
|
|
|
} |
527
|
3
|
|
|
|
|
41
|
$p5[0] = $p1[0] + $n1/$d * ($p2[0] - $p1[0]); |
528
|
3
|
|
|
|
|
8
|
$p5[1] = $p1[1] + $n1/$d * ($p2[1] - $p1[1]); |
529
|
3
|
|
|
|
|
17
|
return \@p5; # intersection point |
530
|
|
|
|
|
|
|
} |
531
|
|
|
|
|
|
|
################################################################################ |
532
|
|
|
|
|
|
|
# |
533
|
|
|
|
|
|
|
# Intersection point of 2 lines - (almost) identical as for Segments |
534
|
|
|
|
|
|
|
# each line is defined by 2 points |
535
|
|
|
|
|
|
|
# |
536
|
|
|
|
|
|
|
# args : reference to an array with 4 points p1,p2,p3,p4 |
537
|
|
|
|
|
|
|
# |
538
|
|
|
|
|
|
|
sub LineIntersection { |
539
|
15
|
|
|
15
|
1
|
64
|
my $pointsref = $_[0]; |
540
|
15
|
|
|
|
|
29
|
my @points = @$pointsref; |
541
|
15
|
50
|
|
|
|
32
|
if (@points < 4) { |
542
|
0
|
|
|
|
|
0
|
carp("LineIntersection needs 4 points"); |
543
|
0
|
|
|
|
|
0
|
return; |
544
|
|
|
|
|
|
|
} |
545
|
15
|
|
|
|
|
20
|
my @p1 = @{$points[0]}; # p1,p2 = line 1 |
|
15
|
|
|
|
|
28
|
|
546
|
15
|
|
|
|
|
19
|
my @p2 = @{$points[1]}; |
|
15
|
|
|
|
|
21
|
|
547
|
15
|
|
|
|
|
19
|
my @p3 = @{$points[2]}; # p3,p4 = line 2 |
|
15
|
|
|
|
|
24
|
|
548
|
15
|
|
|
|
|
16
|
my @p4 = @{$points[3]}; |
|
15
|
|
|
|
|
25
|
|
549
|
15
|
|
|
|
|
18
|
my @p5; |
550
|
15
|
|
|
|
|
41
|
my $n1 = Determinant(($p3[0]-$p1[0]),($p3[0]-$p4[0]),($p3[1]-$p1[1]),($p3[1]-$p4[1])); |
551
|
15
|
|
|
|
|
47
|
my $d = Determinant(($p2[0]-$p1[0]),($p3[0]-$p4[0]),($p2[1]-$p1[1]),($p3[1]-$p4[1])); |
552
|
15
|
100
|
|
|
|
41
|
if (abs($d) < $delta) { |
553
|
1
|
|
|
|
|
15
|
return 0; # parallel |
554
|
|
|
|
|
|
|
} |
555
|
14
|
|
|
|
|
38
|
$p5[0] = $p1[0] + $n1/$d * ($p2[0] - $p1[0]); |
556
|
14
|
|
|
|
|
30
|
$p5[1] = $p1[1] + $n1/$d * ($p2[1] - $p1[1]); |
557
|
14
|
|
|
|
|
64
|
return \@p5; # intersection point |
558
|
|
|
|
|
|
|
} |
559
|
|
|
|
|
|
|
################################################################################ |
560
|
|
|
|
|
|
|
# |
561
|
|
|
|
|
|
|
# Intersection point of 2 rays |
562
|
|
|
|
|
|
|
# |
563
|
|
|
|
|
|
|
# args : reference to an array with 4 points p1,p2,p3,p4 |
564
|
|
|
|
|
|
|
# |
565
|
|
|
|
|
|
|
# Parametric representation of a ray |
566
|
|
|
|
|
|
|
# if p1 (x1,y1) is the startpoint of the ray |
567
|
|
|
|
|
|
|
# and p2 (x2,y2) are is a point on the ray then |
568
|
|
|
|
|
|
|
# P1 is the vector from (0,0) to (x1,y1) |
569
|
|
|
|
|
|
|
# P2 is the vector from (0,0) to (x2,y2) |
570
|
|
|
|
|
|
|
# then the parametric representation of the ray is P = P1 + k (P2 - P1) |
571
|
|
|
|
|
|
|
# where k is an arbitrary scalar constant. |
572
|
|
|
|
|
|
|
# for a point on the line segement (p1,p2) value of k is positive |
573
|
|
|
|
|
|
|
# |
574
|
|
|
|
|
|
|
# (A ray is often represented as a single point and a direction # 'theta' |
575
|
|
|
|
|
|
|
# in this case, one can easily define a second point as |
576
|
|
|
|
|
|
|
# x2 = x1 + cos(theta) and y2 = y2 + sin(theta) ) |
577
|
|
|
|
|
|
|
# |
578
|
|
|
|
|
|
|
# for the 2 rays we get |
579
|
|
|
|
|
|
|
# Pa = P1 + k (P2 - P1) |
580
|
|
|
|
|
|
|
# Pb = P3 + l (P4 - P3) |
581
|
|
|
|
|
|
|
# |
582
|
|
|
|
|
|
|
# Touching rays are considered as not intersectin |
583
|
|
|
|
|
|
|
# |
584
|
|
|
|
|
|
|
sub RayIntersection { |
585
|
2
|
|
|
2
|
1
|
52
|
my $pointsref = $_[0]; |
586
|
2
|
|
|
|
|
6
|
my @points = @$pointsref; |
587
|
2
|
50
|
|
|
|
5
|
if (@points != 4) { |
588
|
0
|
|
|
|
|
0
|
carp("RayIntersection needs 4 points"); |
589
|
0
|
|
|
|
|
0
|
return; |
590
|
|
|
|
|
|
|
} |
591
|
2
|
|
|
|
|
3
|
my @p1 = @{$points[0]}; # p1,p2 = segment 1 (startpoint is p1) |
|
2
|
|
|
|
|
4
|
|
592
|
2
|
|
|
|
|
3
|
my @p2 = @{$points[1]}; |
|
2
|
|
|
|
|
3
|
|
593
|
2
|
|
|
|
|
3
|
my @p3 = @{$points[2]}; # p3,p4 = segment 2 (startpoint is p3) |
|
2
|
|
|
|
|
11
|
|
594
|
2
|
|
|
|
|
1
|
my @p4 = @{$points[3]}; |
|
2
|
|
|
|
|
4
|
|
595
|
2
|
|
|
|
|
1
|
my @p5; |
596
|
2
|
|
|
|
|
8
|
my $n1 = Determinant(($p3[0]-$p1[0]),($p3[0]-$p4[0]),($p3[1]-$p1[1]),($p3[1]-$p4[1])); |
597
|
2
|
|
|
|
|
6
|
my $n2 = Determinant(($p2[0]-$p1[0]),($p3[0]-$p1[0]),($p2[1]-$p1[1]),($p3[1]-$p1[1])); |
598
|
2
|
|
|
|
|
6
|
my $d = Determinant(($p2[0]-$p1[0]),($p3[0]-$p4[0]),($p2[1]-$p1[1]),($p3[1]-$p4[1])); |
599
|
2
|
50
|
|
|
|
6
|
if (abs($d) < $delta) { |
600
|
0
|
|
|
|
|
0
|
return 0; # parallel |
601
|
|
|
|
|
|
|
} |
602
|
2
|
100
|
66
|
|
|
10
|
if (!( ($n1/$d > 0) && ($n2/$d > 0))) { |
603
|
1
|
|
|
|
|
17
|
return 0; |
604
|
|
|
|
|
|
|
} |
605
|
1
|
|
|
|
|
4
|
$p5[0] = $p1[0] + $n1/$d * ($p2[0] - $p1[0]); |
606
|
1
|
|
|
|
|
2
|
$p5[1] = $p1[1] + $n1/$d * ($p2[1] - $p1[1]); |
607
|
1
|
|
|
|
|
5
|
return \@p5; # intersection point |
608
|
|
|
|
|
|
|
} |
609
|
|
|
|
|
|
|
################################################################################ |
610
|
|
|
|
|
|
|
# |
611
|
|
|
|
|
|
|
# Intersection point of a segment and a line |
612
|
|
|
|
|
|
|
# |
613
|
|
|
|
|
|
|
# args : reference to an array with 4 points p1,p2,p3,p4 |
614
|
|
|
|
|
|
|
# |
615
|
|
|
|
|
|
|
sub SegmentLineIntersection { |
616
|
2
|
|
|
2
|
1
|
42
|
my $pointsref = $_[0]; |
617
|
2
|
|
|
|
|
3
|
my @points = @$pointsref; |
618
|
2
|
50
|
|
|
|
6
|
if (@points != 4) { |
619
|
0
|
|
|
|
|
0
|
carp("SegmentLineIntersection needs 4 points"); |
620
|
0
|
|
|
|
|
0
|
return; |
621
|
|
|
|
|
|
|
} |
622
|
2
|
|
|
|
|
2
|
my @p1 = @{$points[0]}; # p1,p2 = segment |
|
2
|
|
|
|
|
11
|
|
623
|
2
|
|
|
|
|
2
|
my @p2 = @{$points[1]}; |
|
2
|
|
|
|
|
4
|
|
624
|
2
|
|
|
|
|
2
|
my @p3 = @{$points[2]}; # p3,p4 = line |
|
2
|
|
|
|
|
3
|
|
625
|
2
|
|
|
|
|
4
|
my @p4 = @{$points[3]}; |
|
2
|
|
|
|
|
3
|
|
626
|
2
|
|
|
|
|
2
|
my @p5; |
627
|
2
|
|
|
|
|
7
|
my $n1 = Determinant(($p3[0]-$p1[0]),($p3[0]-$p4[0]),($p3[1]-$p1[1]),($p3[1]-$p4[1])); |
628
|
2
|
|
|
|
|
5
|
my $d = Determinant(($p2[0]-$p1[0]),($p3[0]-$p4[0]),($p2[1]-$p1[1]),($p3[1]-$p4[1])); |
629
|
2
|
50
|
|
|
|
6
|
if (abs($d) < $delta) { |
630
|
0
|
|
|
|
|
0
|
return 0; # parallel |
631
|
|
|
|
|
|
|
} |
632
|
2
|
100
|
66
|
|
|
11
|
if (!(($n1/$d < 1) && ($n1/$d > 0))) { |
633
|
1
|
|
|
|
|
13
|
return 0; |
634
|
|
|
|
|
|
|
} |
635
|
1
|
|
|
|
|
4
|
$p5[0] = $p1[0] + $n1/$d * ($p2[0] - $p1[0]); |
636
|
1
|
|
|
|
|
2
|
$p5[1] = $p1[1] + $n1/$d * ($p2[1] - $p1[1]); |
637
|
1
|
|
|
|
|
5
|
return \@p5; # intersection point |
638
|
|
|
|
|
|
|
} |
639
|
|
|
|
|
|
|
################################################################################ |
640
|
|
|
|
|
|
|
# |
641
|
|
|
|
|
|
|
# Intersection point of a ray and a line |
642
|
|
|
|
|
|
|
# |
643
|
|
|
|
|
|
|
# args : reference to an array with 4 points p1,p2,p3,p4 |
644
|
|
|
|
|
|
|
# |
645
|
|
|
|
|
|
|
sub RayLineIntersection { |
646
|
2
|
|
|
2
|
1
|
57
|
my $pointsref = $_[0]; |
647
|
2
|
|
|
|
|
3
|
my @points = @$pointsref; |
648
|
2
|
50
|
|
|
|
6
|
if (@points != 4) { |
649
|
0
|
|
|
|
|
0
|
carp("RayLineIntersection needs 4 points"); |
650
|
0
|
|
|
|
|
0
|
return; |
651
|
|
|
|
|
|
|
} |
652
|
2
|
|
|
|
|
3
|
my @p1 = @{$points[0]}; # p1,p2 = ray (startpoint p1) |
|
2
|
|
|
|
|
5
|
|
653
|
2
|
|
|
|
|
2
|
my @p2 = @{$points[1]}; |
|
2
|
|
|
|
|
5
|
|
654
|
2
|
|
|
|
|
2
|
my @p3 = @{$points[2]}; # p3,p4 = line |
|
2
|
|
|
|
|
4
|
|
655
|
2
|
|
|
|
|
3
|
my @p4 = @{$points[3]}; |
|
2
|
|
|
|
|
3
|
|
656
|
2
|
|
|
|
|
4
|
my @p5; |
657
|
2
|
|
|
|
|
7
|
my $n1 = Determinant(($p3[0]-$p1[0]),($p3[0]-$p4[0]),($p3[1]-$p1[1]),($p3[1]-$p4[1])); |
658
|
2
|
|
|
|
|
9
|
my $d = Determinant(($p2[0]-$p1[0]),($p3[0]-$p4[0]),($p2[1]-$p1[1]),($p3[1]-$p4[1])); |
659
|
2
|
50
|
|
|
|
7
|
if (abs($d) < $delta) { |
660
|
0
|
|
|
|
|
0
|
return 0; # parallel |
661
|
|
|
|
|
|
|
} |
662
|
2
|
100
|
|
|
|
8
|
if (!($n1/$d > 0)) { |
663
|
1
|
|
|
|
|
6
|
return 0; |
664
|
|
|
|
|
|
|
} |
665
|
1
|
|
|
|
|
3
|
$p5[0] = $p1[0] + $n1/$d * ($p2[0] - $p1[0]); |
666
|
1
|
|
|
|
|
4
|
$p5[1] = $p1[1] + $n1/$d * ($p2[1] - $p1[1]); |
667
|
1
|
|
|
|
|
5
|
return \@p5; # intersection point |
668
|
|
|
|
|
|
|
} |
669
|
|
|
|
|
|
|
################################################################################ |
670
|
|
|
|
|
|
|
# |
671
|
|
|
|
|
|
|
# Intersection point of a segment and a ray |
672
|
|
|
|
|
|
|
# |
673
|
|
|
|
|
|
|
# args : reference to an array with 4 points p1,p2,p3,p4 |
674
|
|
|
|
|
|
|
# |
675
|
|
|
|
|
|
|
sub SegmentRayIntersection { |
676
|
2
|
|
|
2
|
1
|
46
|
my $pointsref = $_[0]; |
677
|
2
|
|
|
|
|
7
|
my @points = @$pointsref; |
678
|
2
|
50
|
|
|
|
5
|
if (@points != 4) { |
679
|
0
|
|
|
|
|
0
|
carp("SegmentRayIntersection needs 4 points"); |
680
|
0
|
|
|
|
|
0
|
return; |
681
|
|
|
|
|
|
|
} |
682
|
2
|
|
|
|
|
2
|
my @p1 = @{$points[0]}; # p1,p2 = segment |
|
2
|
|
|
|
|
6
|
|
683
|
2
|
|
|
|
|
3
|
my @p2 = @{$points[1]}; |
|
2
|
|
|
|
|
5
|
|
684
|
2
|
|
|
|
|
2
|
my @p3 = @{$points[2]}; # p3,p4 = ray (startpoint p3) |
|
2
|
|
|
|
|
11
|
|
685
|
2
|
|
|
|
|
3
|
my @p4 = @{$points[3]}; |
|
2
|
|
|
|
|
2
|
|
686
|
2
|
|
|
|
|
4
|
my @p5; |
687
|
2
|
|
|
|
|
7
|
my $n1 = Determinant(($p3[0]-$p1[0]),($p3[0]-$p4[0]),($p3[1]-$p1[1]),($p3[1]-$p4[1])); |
688
|
2
|
|
|
|
|
6
|
my $n2 = Determinant(($p2[0]-$p1[0]),($p3[0]-$p1[0]),($p2[1]-$p1[1]),($p3[1]-$p1[1])); |
689
|
2
|
|
|
|
|
6
|
my $d = Determinant(($p2[0]-$p1[0]),($p3[0]-$p4[0]),($p2[1]-$p1[1]),($p3[1]-$p4[1])); |
690
|
2
|
50
|
|
|
|
7
|
if (abs($d) < $delta) { |
691
|
0
|
|
|
|
|
0
|
return 0; # parallel |
692
|
|
|
|
|
|
|
} |
693
|
2
|
100
|
33
|
|
|
23
|
if (!(($n1/$d < 1) && ($n1/$d > 0) && ($n2/$d > 0))) { |
|
|
|
66
|
|
|
|
|
694
|
1
|
|
|
|
|
6
|
return 0; |
695
|
|
|
|
|
|
|
} |
696
|
1
|
|
|
|
|
4
|
$p5[0] = $p1[0] + $n1/$d * ($p2[0] - $p1[0]); |
697
|
1
|
|
|
|
|
4
|
$p5[1] = $p1[1] + $n1/$d * ($p2[1] - $p1[1]); |
698
|
1
|
|
|
|
|
14
|
return \@p5; # intersection point |
699
|
|
|
|
|
|
|
} |
700
|
|
|
|
|
|
|
################################################################################ |
701
|
|
|
|
|
|
|
# |
702
|
|
|
|
|
|
|
# returns true if 2 lines (segments) are perpendicular |
703
|
|
|
|
|
|
|
# Lines are perpendicular if dot product is 0 |
704
|
|
|
|
|
|
|
# |
705
|
|
|
|
|
|
|
# args : reference to an array with 4 points p1,p2,p3,p4 |
706
|
|
|
|
|
|
|
# p1p2 = line 1 |
707
|
|
|
|
|
|
|
# p3p4 = line 2 |
708
|
|
|
|
|
|
|
# |
709
|
|
|
|
|
|
|
sub Perpendicular { |
710
|
2
|
|
|
2
|
1
|
5
|
my $pointsref = $_[0]; |
711
|
2
|
|
|
|
|
5
|
my @points = @$pointsref; |
712
|
2
|
50
|
|
|
|
6
|
if (@points != 4) { |
713
|
0
|
|
|
|
|
0
|
carp("Perpendicular needs 4 points defining 2 lines or segments"); |
714
|
0
|
|
|
|
|
0
|
return; |
715
|
|
|
|
|
|
|
} |
716
|
2
|
|
|
|
|
7
|
return (abs(DotProduct([$points[0],$points[1],$points[2],$points[3]])) < $delta); |
717
|
|
|
|
|
|
|
} |
718
|
|
|
|
|
|
|
################################################################################ |
719
|
|
|
|
|
|
|
# |
720
|
|
|
|
|
|
|
# Calculates the 'perpendicular foot' of a point on a line |
721
|
|
|
|
|
|
|
# |
722
|
|
|
|
|
|
|
# args: reference to array with 3 points p1,p2,p3 |
723
|
|
|
|
|
|
|
# p1p2 = line |
724
|
|
|
|
|
|
|
# p3 = point for which perpendicular foot is to be calculated |
725
|
|
|
|
|
|
|
# |
726
|
|
|
|
|
|
|
sub PerpendicularFoot { |
727
|
13
|
|
|
13
|
1
|
18
|
my $pointsref = $_[0]; |
728
|
13
|
|
|
|
|
30
|
my @points = @$pointsref; |
729
|
13
|
50
|
|
|
|
29
|
if (@points != 3) { |
730
|
0
|
|
|
|
|
0
|
carp("PerpendicularFoot needs 3 points defining a line and a point"); |
731
|
0
|
|
|
|
|
0
|
return; |
732
|
|
|
|
|
|
|
} |
733
|
13
|
|
|
|
|
22
|
my @p1 = @{$points[0]}; # p1,p2 = line |
|
13
|
|
|
|
|
27
|
|
734
|
13
|
|
|
|
|
13
|
my @p2 = @{$points[1]}; |
|
13
|
|
|
|
|
25
|
|
735
|
13
|
|
|
|
|
13
|
my @p3 = @{$points[2]}; # p3 point |
|
13
|
|
|
|
|
20
|
|
736
|
|
|
|
|
|
|
# vector penpenidular to line |
737
|
13
|
|
|
|
|
17
|
my @v; |
738
|
13
|
|
|
|
|
17
|
$v[0] = $p2[1] - $p1[1]; # y2-y1 |
739
|
13
|
|
|
|
|
20
|
$v[1] = - ($p2[0] - $p1[0]); # -(x2-x1); |
740
|
|
|
|
|
|
|
# p4 = v + p3 is a second point of the line perpendicular to p1p2 going through p3 |
741
|
13
|
|
|
|
|
15
|
my @p4; |
742
|
13
|
|
|
|
|
20
|
$p4[0] = $p3[0] + $v[0]; |
743
|
13
|
|
|
|
|
22
|
$p4[1] = $p3[1] + $v[1]; |
744
|
13
|
|
|
|
|
47
|
return LineIntersection([\@p1,\@p2,\@p3,\@p4]); |
745
|
|
|
|
|
|
|
} |
746
|
|
|
|
|
|
|
################################################################################ |
747
|
|
|
|
|
|
|
# |
748
|
|
|
|
|
|
|
# Calculate distance from point p to line segment p1p2 |
749
|
|
|
|
|
|
|
# |
750
|
|
|
|
|
|
|
# args: reference to array with 3 points: p1,p2,p3 |
751
|
|
|
|
|
|
|
# p1p2 = segment |
752
|
|
|
|
|
|
|
# p3 = point for which distance is to be calculated |
753
|
|
|
|
|
|
|
# returns distance from p3 to line segment p1p2 |
754
|
|
|
|
|
|
|
# which is the smallest value from: |
755
|
|
|
|
|
|
|
# distance p3p1 |
756
|
|
|
|
|
|
|
# distance p3p2 |
757
|
|
|
|
|
|
|
# perpendicular distance from p3 to line p1p2 |
758
|
|
|
|
|
|
|
# |
759
|
|
|
|
|
|
|
sub DistanceToSegment { |
760
|
3
|
|
|
3
|
1
|
5
|
my $pointsref = $_[0]; |
761
|
3
|
|
|
|
|
7
|
my @points = @$pointsref; |
762
|
3
|
50
|
|
|
|
7
|
if (@points < 3) { |
763
|
0
|
|
|
|
|
0
|
carp("DistanceToSegment needs 3 points defining a segment and a point"); |
764
|
0
|
|
|
|
|
0
|
return; |
765
|
|
|
|
|
|
|
} |
766
|
|
|
|
|
|
|
# the perpendicular distance is the height of the parallelogram defined |
767
|
|
|
|
|
|
|
# by the 3 points devided by the base |
768
|
|
|
|
|
|
|
# Note the this is a signed value so it can be used to check at which |
769
|
|
|
|
|
|
|
# side the point is located |
770
|
|
|
|
|
|
|
# we use dot products to find out where point is located1G/dotpro |
771
|
3
|
|
|
|
|
8
|
my $d1 = DotProduct([$points[0],$points[1],$points[0],$points[2]]); |
772
|
3
|
|
|
|
|
10
|
my $d2 = DotProduct([$points[0],$points[1],$points[0],$points[1]]); |
773
|
3
|
|
|
|
|
10
|
my $dp = CrossProduct([$points[2],$points[0],$points[1]]) / sqrt $d2; |
774
|
3
|
100
|
|
|
|
27
|
if ($d1 <= 0) { |
|
|
100
|
|
|
|
|
|
775
|
1
|
|
|
|
|
4
|
return SegmentLength([$points[2],$points[0]]); |
776
|
|
|
|
|
|
|
} elsif ($d2 <= $d1) { |
777
|
1
|
|
|
|
|
4
|
return SegmentLength([$points[2],$points[1]]); |
778
|
|
|
|
|
|
|
} else { |
779
|
1
|
|
|
|
|
6
|
return $dp; |
780
|
|
|
|
|
|
|
} |
781
|
|
|
|
|
|
|
} |
782
|
|
|
|
|
|
|
################################################################################ |
783
|
|
|
|
|
|
|
# |
784
|
|
|
|
|
|
|
# Calculate distance from point p to line p1p2 |
785
|
|
|
|
|
|
|
# |
786
|
|
|
|
|
|
|
# args: reference to array with 3 points: p1,p2,p3 |
787
|
|
|
|
|
|
|
# p1p2 = line |
788
|
|
|
|
|
|
|
# p3 = point for which distance is to be calculated |
789
|
|
|
|
|
|
|
# returns 2 numbers |
790
|
|
|
|
|
|
|
# - perpendicular distance from p3 to line p1p2 |
791
|
|
|
|
|
|
|
# - distance from p3 to line segment p1p2 |
792
|
|
|
|
|
|
|
# which is the smallest value from: |
793
|
|
|
|
|
|
|
# distance p3p1 |
794
|
|
|
|
|
|
|
# distance p3p2 |
795
|
|
|
|
|
|
|
# |
796
|
|
|
|
|
|
|
sub DistanceToLine { |
797
|
1
|
|
|
1
|
1
|
33
|
my $pointsref = $_[0]; |
798
|
1
|
|
|
|
|
3
|
my @points = @$pointsref; |
799
|
1
|
50
|
|
|
|
3
|
if (@points < 3) { |
800
|
0
|
|
|
|
|
0
|
carp("DistanceToLine needs 3 points defining a line and a point"); |
801
|
0
|
|
|
|
|
0
|
return; |
802
|
|
|
|
|
|
|
} |
803
|
|
|
|
|
|
|
# the perpendicular distance is the height of the parallelogram defined |
804
|
|
|
|
|
|
|
# by the 3 points devided by the base |
805
|
|
|
|
|
|
|
# Note the this is a signed value so it can be used to check at which |
806
|
|
|
|
|
|
|
# side the point is located |
807
|
|
|
|
|
|
|
# we use dot products to find out where point is located1G/dotpro |
808
|
1
|
|
|
|
|
4
|
my $d = DotProduct([$points[0],$points[1],$points[0],$points[1]]); |
809
|
1
|
|
|
|
|
4
|
my $dp = CrossProduct([$points[2],$points[0],$points[1]]) / sqrt $d; |
810
|
1
|
|
|
|
|
4
|
return $dp; |
811
|
|
|
|
|
|
|
} |
812
|
|
|
|
|
|
|
################################################################################ |
813
|
|
|
|
|
|
|
# |
814
|
|
|
|
|
|
|
# Initializer |
815
|
|
|
|
|
|
|
# |
816
|
|
|
|
|
|
|
sub new { |
817
|
43
|
|
|
43
|
0
|
7045
|
my $invocant = shift; |
818
|
43
|
|
33
|
|
|
171
|
my $class = ref($invocant) || $invocant; |
819
|
43
|
|
|
|
|
76
|
my $self = { @_ }; |
820
|
43
|
|
|
|
|
114
|
bless($self,$class); |
821
|
43
|
|
|
|
|
91
|
return $self; |
822
|
|
|
|
|
|
|
} |
823
|
|
|
|
|
|
|
################################################################################ |
824
|
|
|
|
|
|
|
# |
825
|
|
|
|
|
|
|
# args: reference to polygon object |
826
|
|
|
|
|
|
|
# |
827
|
|
|
|
|
|
|
sub points { |
828
|
144
|
|
|
144
|
1
|
1068
|
my Math::Geometry::Planar $self = shift; |
829
|
144
|
100
|
|
|
|
302
|
if (@_) { |
830
|
49
|
50
|
|
|
|
97
|
if ($self->get_polygons) { |
831
|
0
|
|
|
|
|
0
|
carp("Object is a contour - can't add points"); |
832
|
0
|
|
|
|
|
0
|
return; |
833
|
|
|
|
|
|
|
} else { |
834
|
|
|
|
|
|
|
# delete existing info |
835
|
49
|
|
|
|
|
94
|
$self->{points} = (); |
836
|
49
|
|
|
|
|
85
|
my $pointsref = shift; |
837
|
|
|
|
|
|
|
# normalize (a single polygon has only an outer shape |
838
|
|
|
|
|
|
|
# -> make points order counter clockwise) |
839
|
49
|
100
|
|
|
|
94
|
if (PolygonArea($pointsref) > 0) { |
840
|
29
|
|
|
|
|
58
|
$self->{points} = $pointsref; |
841
|
|
|
|
|
|
|
} else { |
842
|
20
|
|
|
|
|
22
|
$self->{points} = [reverse @{$pointsref}]; |
|
20
|
|
|
|
|
67
|
|
843
|
|
|
|
|
|
|
} |
844
|
|
|
|
|
|
|
} |
845
|
|
|
|
|
|
|
} |
846
|
144
|
|
|
|
|
362
|
return $self->{points}; |
847
|
|
|
|
|
|
|
} |
848
|
|
|
|
|
|
|
################################################################################ |
849
|
|
|
|
|
|
|
# |
850
|
|
|
|
|
|
|
# args: reference to polygon object |
851
|
|
|
|
|
|
|
# |
852
|
|
|
|
|
|
|
sub polygons { |
853
|
22
|
|
|
22
|
1
|
523
|
my Math::Geometry::Planar $self = shift; |
854
|
22
|
100
|
|
|
|
49
|
if (@_) { |
855
|
13
|
50
|
|
|
|
29
|
if ($self->points) { |
856
|
0
|
|
|
|
|
0
|
carp("Object is a polygon - can't add polygons"); |
857
|
0
|
|
|
|
|
0
|
return; |
858
|
|
|
|
|
|
|
} else { |
859
|
|
|
|
|
|
|
# delete existing info |
860
|
13
|
|
|
|
|
27
|
$self->{polygons} = (); |
861
|
13
|
|
|
|
|
29
|
my $polygons = shift; |
862
|
13
|
|
|
|
|
14
|
my @polygonrefs = @{$polygons}; |
|
13
|
|
|
|
|
41
|
|
863
|
13
|
|
|
|
|
35
|
$self->add_polygons(@polygonrefs); |
864
|
|
|
|
|
|
|
} |
865
|
|
|
|
|
|
|
} |
866
|
22
|
|
|
|
|
48
|
return $self->{polygons}; |
867
|
|
|
|
|
|
|
} |
868
|
|
|
|
|
|
|
################################################################################ |
869
|
|
|
|
|
|
|
# |
870
|
|
|
|
|
|
|
# args: none |
871
|
|
|
|
|
|
|
# returns the number of polygons in the contour |
872
|
|
|
|
|
|
|
# |
873
|
|
|
|
|
|
|
sub num_polygons { |
874
|
32
|
|
|
32
|
1
|
41
|
my Math::Geometry::Planar $self = shift; |
875
|
32
|
|
|
|
|
43
|
my $polygons = $self->{polygons}; |
876
|
32
|
100
|
|
|
|
90
|
return 0 if (! $polygons); |
877
|
13
|
|
|
|
|
14
|
return scalar @{$polygons}; |
|
13
|
|
|
|
|
45
|
|
878
|
|
|
|
|
|
|
} |
879
|
|
|
|
|
|
|
################################################################################ |
880
|
|
|
|
|
|
|
# |
881
|
|
|
|
|
|
|
# args: list of references to polygons |
882
|
|
|
|
|
|
|
# returns the number of polygons in the contour |
883
|
|
|
|
|
|
|
# |
884
|
|
|
|
|
|
|
sub add_polygons { |
885
|
23
|
|
|
23
|
1
|
82
|
my Math::Geometry::Planar $self = shift; |
886
|
23
|
50
|
|
|
|
50
|
return if (! @_); # nothing to add |
887
|
|
|
|
|
|
|
# can't add polygons to a polygon object |
888
|
23
|
50
|
|
|
|
45
|
if ($self->points) { |
889
|
0
|
|
|
|
|
0
|
carp("Object is a polygon - can't add polygons"); |
890
|
0
|
|
|
|
|
0
|
return; |
891
|
|
|
|
|
|
|
} |
892
|
|
|
|
|
|
|
# first polygon is outer polygon |
893
|
23
|
100
|
|
|
|
50
|
if (! $self->num_polygons) { |
894
|
19
|
|
|
|
|
41
|
my $outer = shift; |
895
|
|
|
|
|
|
|
# counter clockwise for outer polygon |
896
|
19
|
100
|
|
|
|
46
|
if (PolygonArea($outer) < 0) { |
897
|
12
|
|
|
|
|
20
|
push @{$self->{polygons}}, [reverse @{$outer}]; |
|
12
|
|
|
|
|
30
|
|
|
12
|
|
|
|
|
43
|
|
898
|
|
|
|
|
|
|
} else { |
899
|
7
|
|
|
|
|
10
|
push @{$self->{polygons}}, $outer; |
|
7
|
|
|
|
|
20
|
|
900
|
|
|
|
|
|
|
} |
901
|
|
|
|
|
|
|
} |
902
|
|
|
|
|
|
|
# inner polygon(s) |
903
|
23
|
|
|
|
|
78
|
while (@_) { |
904
|
|
|
|
|
|
|
# clockwise for inner polygon |
905
|
10
|
|
|
|
|
12
|
my $inner = shift; |
906
|
10
|
100
|
|
|
|
18
|
if (PolygonArea($inner) > 0) { |
907
|
3
|
|
|
|
|
83
|
push @{$self->{polygons}}, [reverse @{$inner}]; |
|
3
|
|
|
|
|
6
|
|
|
3
|
|
|
|
|
13
|
|
908
|
|
|
|
|
|
|
} else { |
909
|
7
|
|
|
|
|
11
|
push @{$self->{polygons}}, $inner; |
|
7
|
|
|
|
|
22
|
|
910
|
|
|
|
|
|
|
} |
911
|
|
|
|
|
|
|
} |
912
|
23
|
|
|
|
|
24
|
return scalar @{$self->{polygons}}; |
|
23
|
|
|
|
|
91
|
|
913
|
|
|
|
|
|
|
} |
914
|
|
|
|
|
|
|
################################################################################ |
915
|
|
|
|
|
|
|
# |
916
|
|
|
|
|
|
|
# args: list of indices |
917
|
|
|
|
|
|
|
# returns list of polygons indicated by indices |
918
|
|
|
|
|
|
|
# (list value at position n is undefined if the index at position |
919
|
|
|
|
|
|
|
# n is out of range) |
920
|
|
|
|
|
|
|
# list of all polygons indicated by indices |
921
|
|
|
|
|
|
|
# |
922
|
|
|
|
|
|
|
sub get_polygons { |
923
|
67
|
|
|
67
|
1
|
116
|
my Math::Geometry::Planar $self = shift; |
924
|
67
|
|
|
|
|
64
|
my @result; |
925
|
67
|
|
|
|
|
108
|
my $polygons = $self->{polygons}; |
926
|
67
|
100
|
|
|
|
197
|
return if (! $polygons); |
927
|
18
|
|
|
|
|
23
|
my $i = 0; |
928
|
18
|
100
|
|
|
|
36
|
if (@_) { |
929
|
6
|
|
|
|
|
14
|
while (@_) { |
930
|
7
|
|
|
|
|
9
|
my $index = int shift; |
931
|
7
|
50
|
33
|
|
|
25
|
if ($index >= 0 && $index < num_polygons($self)) { |
932
|
7
|
|
|
|
|
8
|
$result[$i] = ${$polygons}[$index]; |
|
7
|
|
|
|
|
12
|
|
933
|
|
|
|
|
|
|
} else { |
934
|
0
|
|
|
|
|
0
|
$result[$i] = undef; |
935
|
|
|
|
|
|
|
} |
936
|
7
|
|
|
|
|
20
|
$i++; |
937
|
|
|
|
|
|
|
} |
938
|
6
|
|
|
|
|
16
|
return @result; |
939
|
|
|
|
|
|
|
} else { |
940
|
12
|
|
|
|
|
23
|
return @{$polygons}; |
|
12
|
|
|
|
|
36
|
|
941
|
|
|
|
|
|
|
} |
942
|
|
|
|
|
|
|
} |
943
|
|
|
|
|
|
|
################################################################################ |
944
|
|
|
|
|
|
|
# cleanup polygon = remove colinear points |
945
|
|
|
|
|
|
|
# |
946
|
|
|
|
|
|
|
# args: reference to polygon or contour object |
947
|
|
|
|
|
|
|
# |
948
|
|
|
|
|
|
|
sub cleanup { |
949
|
2
|
|
|
2
|
1
|
9
|
my ($self) = @_; |
950
|
2
|
|
|
|
|
3
|
my $pointsref = $self->points; |
951
|
2
|
100
|
|
|
|
5
|
if ($pointsref) { # polygon object |
952
|
1
|
|
|
|
|
2
|
my @points = @$pointsref; |
953
|
1
|
|
66
|
|
|
7
|
for (my $i=0 ; $i< @points && @points > 2 ;$i++) { |
954
|
5
|
100
|
|
|
|
21
|
if (Colinear([$points[$i-2],$points[$i-1],$points[$i]])) { |
955
|
1
|
|
|
|
|
4
|
splice @points,$i-1,1; |
956
|
1
|
|
|
|
|
6
|
$i--; |
957
|
|
|
|
|
|
|
} |
958
|
|
|
|
|
|
|
} |
959
|
|
|
|
|
|
|
# replace polygon points |
960
|
1
|
|
|
|
|
4
|
$self->points([@points]); |
961
|
1
|
|
|
|
|
5
|
return [@points]; |
962
|
|
|
|
|
|
|
} else { # contour object |
963
|
1
|
|
|
|
|
3
|
my @polygonrefs = $self->get_polygons; |
964
|
1
|
|
|
|
|
4
|
for (my $j = 0; $j < @polygonrefs; $j++) { |
965
|
1
|
|
|
|
|
2
|
$pointsref = $polygonrefs[$j]; |
966
|
1
|
|
|
|
|
2
|
my @points = @$pointsref; |
967
|
1
|
|
66
|
|
|
6
|
for (my $i=0 ; $i< @points && @points > 2 ;$i++) { |
968
|
5
|
100
|
|
|
|
17
|
if (Colinear([$points[$i-2],$points[$i-1],$points[$i]])) { |
969
|
1
|
|
|
|
|
2
|
splice @points,$i-1,1; |
970
|
1
|
|
|
|
|
7
|
$i--; |
971
|
|
|
|
|
|
|
} |
972
|
|
|
|
|
|
|
} |
973
|
1
|
|
|
|
|
14
|
$polygonrefs[$j] = [@points]; |
974
|
|
|
|
|
|
|
} |
975
|
1
|
|
|
|
|
4
|
$self->polygons([@polygonrefs]); |
976
|
1
|
|
|
|
|
6
|
return [@polygonrefs]; |
977
|
|
|
|
|
|
|
} |
978
|
|
|
|
|
|
|
} |
979
|
|
|
|
|
|
|
################################################################################ |
980
|
|
|
|
|
|
|
# |
981
|
|
|
|
|
|
|
# Ah - more vector algebra |
982
|
|
|
|
|
|
|
# We consider every set of 3 subsequent points p1,p2,p3 on the polygon and calculate |
983
|
|
|
|
|
|
|
# the vector product of the vectors p1p2 and p1p3. All these products should |
984
|
|
|
|
|
|
|
# have the same sign. If the sign changes, the polygon is not convex |
985
|
|
|
|
|
|
|
# |
986
|
|
|
|
|
|
|
# make sure to remove colinear points first before calling perimeter |
987
|
|
|
|
|
|
|
# (I prefer not to include the call to cleanup) |
988
|
|
|
|
|
|
|
# |
989
|
|
|
|
|
|
|
# args: reference to polygon or contour object |
990
|
|
|
|
|
|
|
# (for a contour we only check the outer shape) |
991
|
|
|
|
|
|
|
# |
992
|
|
|
|
|
|
|
sub isconvex { |
993
|
3
|
|
|
3
|
1
|
8
|
my ($self) = @_; |
994
|
3
|
|
|
|
|
7
|
my $pointsref = $self->points; |
995
|
3
|
100
|
|
|
|
12
|
if (! $pointsref) { |
996
|
1
|
|
|
|
|
2
|
$pointsref = ($self->get_polygons(0))[0]; |
997
|
1
|
50
|
|
|
|
3
|
return if (! $pointsref); # empty object |
998
|
|
|
|
|
|
|
} |
999
|
3
|
|
|
|
|
5
|
my @points = @$pointsref; |
1000
|
3
|
100
|
|
|
|
12
|
return 1 if (@points < 5); # every poly with a less then 5 points is convex |
1001
|
2
|
|
|
|
|
3
|
my $prev = 0; |
1002
|
2
|
|
|
|
|
8
|
for (my $i = 0 ; $i < @points ; $i++) { |
1003
|
9
|
|
|
|
|
28
|
my $tmp = CrossProduct([$points[$i-2],$points[$i-1],$points[$i]]); |
1004
|
|
|
|
|
|
|
# check if sign is different from pervious one(s) |
1005
|
9
|
100
|
33
|
|
|
84
|
if ( ($prev < 0 && $tmp > 0) || |
|
|
|
100
|
|
|
|
|
|
|
|
33
|
|
|
|
|
1006
|
|
|
|
|
|
|
($prev > 0 && $tmp < 0) ) { |
1007
|
1
|
|
|
|
|
6
|
return 0; |
1008
|
|
|
|
|
|
|
} |
1009
|
8
|
|
|
|
|
24
|
$prev = $tmp; |
1010
|
|
|
|
|
|
|
} |
1011
|
1
|
|
|
|
|
5
|
return 1; |
1012
|
|
|
|
|
|
|
} |
1013
|
|
|
|
|
|
|
################################################################################ |
1014
|
|
|
|
|
|
|
# |
1015
|
|
|
|
|
|
|
# Brute force attack: |
1016
|
|
|
|
|
|
|
# just check intersection for every segment versus every other segment |
1017
|
|
|
|
|
|
|
# so for a polygon with n ponts this will take n**2 intersection calculations |
1018
|
|
|
|
|
|
|
# I added a few simple improvements: to boost speed: |
1019
|
|
|
|
|
|
|
# - don't check adjacant segments |
1020
|
|
|
|
|
|
|
# - don't check against 'previous' segments (if we checked segment x versus y, |
1021
|
|
|
|
|
|
|
# we don't need to check y versus x anymore) |
1022
|
|
|
|
|
|
|
# Results in (n-2)*(n-1)/2 - 1 checks which is close to n**2/2 for large n |
1023
|
|
|
|
|
|
|
# |
1024
|
|
|
|
|
|
|
# make sure to remove colinear points first before calling perimeter |
1025
|
|
|
|
|
|
|
# (I prefer not to include the call to cleanup) |
1026
|
|
|
|
|
|
|
# |
1027
|
|
|
|
|
|
|
# args: reference to polygon or contour object |
1028
|
|
|
|
|
|
|
# (a contour is considered to be simple if all it's shapes are simple) |
1029
|
|
|
|
|
|
|
# |
1030
|
|
|
|
|
|
|
sub IsSimplePolygon { |
1031
|
5
|
|
|
5
|
0
|
8
|
my ($pointsref) = @_; |
1032
|
5
|
|
|
|
|
10
|
my @points = @$pointsref; |
1033
|
5
|
50
|
|
|
|
11
|
return 1 if (@points < 4); # triangles are simple polygons ... |
1034
|
5
|
|
|
|
|
13
|
for (my $i = 0 ; $i < @points-2 ; $i++) { |
1035
|
|
|
|
|
|
|
# check versus all next non-adjacant edges |
1036
|
8
|
|
|
|
|
19
|
for (my $j = $i+2 ; $j < @points ; $j++) { |
1037
|
|
|
|
|
|
|
# don't check first versus last segment (adjacant) |
1038
|
11
|
100
|
100
|
|
|
73
|
next if ($i == 0 && $j == @points-1); |
1039
|
8
|
100
|
|
|
|
29
|
if (SegmentIntersection([$points[$i-1],$points[$i],$points[$j-1],$points[$j]])) { |
1040
|
2
|
|
|
|
|
13
|
return 0; |
1041
|
|
|
|
|
|
|
} |
1042
|
|
|
|
|
|
|
} |
1043
|
|
|
|
|
|
|
} |
1044
|
3
|
|
|
|
|
19
|
return 1; |
1045
|
|
|
|
|
|
|
} |
1046
|
|
|
|
|
|
|
################################################################################ |
1047
|
|
|
|
|
|
|
# |
1048
|
|
|
|
|
|
|
# Check if polyogn or contour is simple |
1049
|
|
|
|
|
|
|
sub issimple { |
1050
|
4
|
|
|
4
|
1
|
7
|
my ($self) = @_; |
1051
|
4
|
|
|
|
|
8
|
my $pointsref = $self->points; |
1052
|
4
|
100
|
|
|
|
10
|
if ($pointsref) { |
1053
|
2
|
|
|
|
|
5
|
return IsSimplePolygon($pointsref); |
1054
|
|
|
|
|
|
|
} else { |
1055
|
2
|
|
|
|
|
17
|
my @polygonrefs = $self->get_polygons; |
1056
|
2
|
|
|
|
|
5
|
my @result; |
1057
|
2
|
|
|
|
|
5
|
foreach (@polygonrefs) { |
1058
|
3
|
100
|
|
|
|
19
|
return 0 if (! IsSimplePolygon($_)); |
1059
|
|
|
|
|
|
|
} |
1060
|
1
|
|
|
|
|
7
|
return 1; |
1061
|
|
|
|
|
|
|
} |
1062
|
|
|
|
|
|
|
} |
1063
|
|
|
|
|
|
|
################################################################################ |
1064
|
|
|
|
|
|
|
# makes only sense for simple polygons |
1065
|
|
|
|
|
|
|
# make sure to remove colinear points first before calling perimeter |
1066
|
|
|
|
|
|
|
# (I prefer not to include the call to colinear) |
1067
|
|
|
|
|
|
|
# |
1068
|
|
|
|
|
|
|
# args: reference to polygon or contour object |
1069
|
|
|
|
|
|
|
# returns the perimeter of the polygon or the perimeter of the outer shape of |
1070
|
|
|
|
|
|
|
# the contour |
1071
|
|
|
|
|
|
|
# |
1072
|
|
|
|
|
|
|
sub perimeter { |
1073
|
2
|
|
|
2
|
1
|
7
|
my ($self) = @_; |
1074
|
2
|
|
|
|
|
5
|
my $pointsref = $self->points; |
1075
|
2
|
100
|
|
|
|
7
|
if (! $pointsref) { |
1076
|
1
|
|
|
|
|
4
|
$pointsref = ($self->get_polygons(0))[0]; |
1077
|
1
|
50
|
|
|
|
5
|
return if (! $pointsref); # empty object |
1078
|
|
|
|
|
|
|
} |
1079
|
2
|
|
|
|
|
90
|
my @points = @$pointsref; |
1080
|
2
|
|
|
|
|
4
|
my $perimeter = 0; |
1081
|
2
|
50
|
|
|
|
7
|
if ($pointsref) { |
1082
|
2
|
|
|
|
|
4
|
my @points = @$pointsref; |
1083
|
2
|
50
|
|
|
|
7
|
if (@points < 3) { # no perimeter for lines and points |
1084
|
0
|
|
|
|
|
0
|
carp("Can't calculate perimeter: polygon should have at least 3 points"); |
1085
|
0
|
|
|
|
|
0
|
return; |
1086
|
|
|
|
|
|
|
} |
1087
|
2
|
|
|
|
|
6
|
for (my $index=0;$index < @points; $index++) { |
1088
|
8
|
|
|
|
|
26
|
$perimeter += SegmentLength([$points[$index-1],$points[$index]]); |
1089
|
|
|
|
|
|
|
} |
1090
|
|
|
|
|
|
|
} |
1091
|
2
|
|
|
|
|
9
|
return $perimeter; |
1092
|
|
|
|
|
|
|
} |
1093
|
|
|
|
|
|
|
################################################################################ |
1094
|
|
|
|
|
|
|
# makes only sense for simple polygons |
1095
|
|
|
|
|
|
|
# make sure to remove colinear points first before calling area |
1096
|
|
|
|
|
|
|
# returns a signed value, can be used to find out whether |
1097
|
|
|
|
|
|
|
# the order of points is clockwise or counter clockwise |
1098
|
|
|
|
|
|
|
# (I prefer not to include the call to colinear) |
1099
|
|
|
|
|
|
|
# |
1100
|
|
|
|
|
|
|
# args: reference to an array of points |
1101
|
|
|
|
|
|
|
# |
1102
|
|
|
|
|
|
|
sub PolygonArea { |
1103
|
80
|
|
|
80
|
0
|
117
|
my $pointsref = $_[0]; |
1104
|
80
|
|
|
|
|
156
|
my @points = @$pointsref; |
1105
|
80
|
50
|
|
|
|
165
|
if (@points < 3) { # no area for lines and points |
1106
|
0
|
|
|
|
|
0
|
carp("Can't calculate area: polygon should have at least 3 points"); |
1107
|
0
|
|
|
|
|
0
|
return; |
1108
|
|
|
|
|
|
|
} |
1109
|
80
|
|
|
|
|
112
|
push @points,$points[0]; # provide closure |
1110
|
80
|
|
|
|
|
108
|
my $area = 0; |
1111
|
80
|
|
|
|
|
163
|
while(@points >= 2){ |
1112
|
361
|
|
|
|
|
708
|
$area += $points[0]->[0]*$points[1]->[1] - $points[1]->[0]*$points[0]->[1]; |
1113
|
361
|
|
|
|
|
860
|
shift @points; |
1114
|
|
|
|
|
|
|
} |
1115
|
80
|
|
|
|
|
289
|
return $area/2.0; |
1116
|
|
|
|
|
|
|
} |
1117
|
|
|
|
|
|
|
################################################################################ |
1118
|
|
|
|
|
|
|
# Calculates the area of a polygon or a contour |
1119
|
|
|
|
|
|
|
# Makes only sense for simple polygons |
1120
|
|
|
|
|
|
|
# Returns a signed value so it can be used to find out whether |
1121
|
|
|
|
|
|
|
# the order of points in a polygon is clockwise or counter |
1122
|
|
|
|
|
|
|
# clockwise. |
1123
|
|
|
|
|
|
|
# |
1124
|
|
|
|
|
|
|
# args: reference to polygon or contour object |
1125
|
|
|
|
|
|
|
# |
1126
|
|
|
|
|
|
|
sub area { |
1127
|
2
|
|
|
2
|
1
|
50
|
my ($self) = @_; |
1128
|
2
|
|
|
|
|
5
|
my $pointsref = $self->points; |
1129
|
2
|
|
|
|
|
22
|
my $area = 0; |
1130
|
2
|
100
|
|
|
|
7
|
if ($pointsref) { |
1131
|
1
|
|
|
|
|
3
|
$area = PolygonArea($pointsref); |
1132
|
|
|
|
|
|
|
} else { |
1133
|
1
|
|
|
|
|
4
|
my @polygonrefs = $self->get_polygons; |
1134
|
1
|
|
|
|
|
4
|
foreach (@polygonrefs) { |
1135
|
1
|
|
|
|
|
8
|
$area += PolygonArea($_); |
1136
|
|
|
|
|
|
|
} |
1137
|
|
|
|
|
|
|
} |
1138
|
2
|
|
|
|
|
9
|
return $area; |
1139
|
|
|
|
|
|
|
} |
1140
|
|
|
|
|
|
|
################################################################################ |
1141
|
|
|
|
|
|
|
# |
1142
|
|
|
|
|
|
|
# calculate the centroid of a polygon or contour |
1143
|
|
|
|
|
|
|
# (a.k.a. the center of mass a.k.a. the center of gravity) |
1144
|
|
|
|
|
|
|
# |
1145
|
|
|
|
|
|
|
# The centroid is calculated as the weighted sum of the centroids |
1146
|
|
|
|
|
|
|
# of a partition of the polygon into triangles. The centroid of a |
1147
|
|
|
|
|
|
|
# triangle is simply the average of its three vertices, i.e., it |
1148
|
|
|
|
|
|
|
# has coordinates (x1 + x2 + x3)/3 and (y1 + y2 + y3)/3. |
1149
|
|
|
|
|
|
|
# In fact, the triangulation need not be a partition, but rather |
1150
|
|
|
|
|
|
|
# can use positively and negatively oriented triangles (with positive |
1151
|
|
|
|
|
|
|
# and negative areas), as is used when computing the area of a polygon |
1152
|
|
|
|
|
|
|
# |
1153
|
|
|
|
|
|
|
# makes only sense for simple polygons |
1154
|
|
|
|
|
|
|
# make sure to remove colinear points first before calling centroid |
1155
|
|
|
|
|
|
|
# (I prefer not to include the call to cleanup) |
1156
|
|
|
|
|
|
|
# |
1157
|
|
|
|
|
|
|
# args: reference to polygon object |
1158
|
|
|
|
|
|
|
# |
1159
|
|
|
|
|
|
|
sub centroid { |
1160
|
1
|
|
|
1
|
1
|
2
|
my ($self) = @_; |
1161
|
1
|
|
|
|
|
11
|
my @triangles = $self->triangulate; |
1162
|
|
|
|
|
|
|
|
1163
|
1
|
50
|
|
|
|
4
|
if (! @triangles) { # no result from triangulation |
1164
|
0
|
|
|
|
|
0
|
carp("Nothing to calculate centroid for"); |
1165
|
0
|
|
|
|
|
0
|
return; |
1166
|
|
|
|
|
|
|
} |
1167
|
|
|
|
|
|
|
|
1168
|
1
|
|
|
|
|
3
|
my @c; |
1169
|
|
|
|
|
|
|
my $total_area; |
1170
|
|
|
|
|
|
|
# triangulate |
1171
|
1
|
|
|
|
|
2
|
foreach my $triangleref (@triangles) { |
1172
|
6
|
|
|
|
|
7
|
my @triangle = @{$triangleref->points}; |
|
6
|
|
|
|
|
14
|
|
1173
|
6
|
|
|
|
|
17
|
my $area = TriangleArea([$triangle[0],$triangle[1],$triangle[2]]); |
1174
|
|
|
|
|
|
|
# weighted centroid = area * centroid = area * sum / 3 |
1175
|
|
|
|
|
|
|
# we postpone division by 3 till we divide by total area to |
1176
|
|
|
|
|
|
|
# minimize number of calculations |
1177
|
6
|
|
|
|
|
20
|
$c[0] += ($triangle[0][0]+$triangle[1][0]+$triangle[2][0]) * $area; |
1178
|
6
|
|
|
|
|
13
|
$c[1] += ($triangle[0][1]+$triangle[1][1]+$triangle[2][1]) * $area; |
1179
|
6
|
|
|
|
|
12
|
$total_area += $area; |
1180
|
|
|
|
|
|
|
} |
1181
|
1
|
|
|
|
|
3
|
$c[0] = $c[0]/($total_area*3); |
1182
|
1
|
|
|
|
|
3
|
$c[1] = $c[1]/($total_area*3); |
1183
|
1
|
|
|
|
|
30
|
return \@c; |
1184
|
|
|
|
|
|
|
} |
1185
|
|
|
|
|
|
|
################################################################################ |
1186
|
|
|
|
|
|
|
# |
1187
|
|
|
|
|
|
|
# The winding number method has been cused here. Seems to |
1188
|
|
|
|
|
|
|
# be the most accurate one and, if well written, it matches |
1189
|
|
|
|
|
|
|
# the performance of the crossing number method. |
1190
|
|
|
|
|
|
|
# The winding number method counts the number of times a polygon |
1191
|
|
|
|
|
|
|
# winds around the point. If the result is 0, the points is outside |
1192
|
|
|
|
|
|
|
# the polygon. |
1193
|
|
|
|
|
|
|
# |
1194
|
|
|
|
|
|
|
# args: reference to polygon object |
1195
|
|
|
|
|
|
|
# reference to a point |
1196
|
|
|
|
|
|
|
# |
1197
|
|
|
|
|
|
|
sub IsInsidePolygon { |
1198
|
10
|
|
|
10
|
0
|
17
|
my ($pointsref,$pointref) = @_; |
1199
|
10
|
|
|
|
|
22
|
my @points = @$pointsref; |
1200
|
10
|
50
|
|
|
|
25
|
if (@points < 3) { # polygon should at least have 3 points ... |
1201
|
0
|
|
|
|
|
0
|
carp("Can't run inpolygon: polygon should have at least 3 points"); |
1202
|
0
|
|
|
|
|
0
|
return; |
1203
|
|
|
|
|
|
|
} |
1204
|
10
|
50
|
|
|
|
22
|
if (! $pointref) { |
1205
|
0
|
|
|
|
|
0
|
carp("Can't run inpolygon: no point entered"); |
1206
|
0
|
|
|
|
|
0
|
return; |
1207
|
|
|
|
|
|
|
} |
1208
|
10
|
|
|
|
|
19
|
my @point = @$pointref; |
1209
|
10
|
|
|
|
|
12
|
my $wn; # thw winding number counter |
1210
|
10
|
|
|
|
|
24
|
for (my $i = 0 ; $i < @points ; $i++) { |
1211
|
52
|
|
|
|
|
170
|
my $cp = CrossProduct([$points[$i-1],$points[$i],$pointref]); |
1212
|
|
|
|
|
|
|
# if colinear and in between the 2 points of the polygon |
1213
|
|
|
|
|
|
|
# segment, it's on the perimeter and considered inside |
1214
|
52
|
100
|
|
|
|
136
|
if ($cp == 0) { |
1215
|
3
|
0
|
33
|
|
|
43
|
if ( |
|
|
|
0
|
|
|
|
|
|
|
|
33
|
|
|
|
|
1216
|
|
|
|
|
|
|
((($points[$i-1][0] <= $point[0] && |
1217
|
|
|
|
|
|
|
$point[0] <= $points[$i][0])) || |
1218
|
|
|
|
|
|
|
(($points[$i-1][0] >= $point[0] && |
1219
|
|
|
|
|
|
|
$point[0] >= $points[$i][0]))) |
1220
|
|
|
|
|
|
|
&& |
1221
|
|
|
|
|
|
|
((($points[$i-1][1] <= $$pointref[1] && |
1222
|
|
|
|
|
|
|
$point[1] <= $points[$i][1])) || |
1223
|
|
|
|
|
|
|
(($points[$i-1][1] >= $point[1] && |
1224
|
|
|
|
|
|
|
$point[1] >= $points[$i][1]))) |
1225
|
|
|
|
|
|
|
) { |
1226
|
0
|
|
|
|
|
0
|
return 1; |
1227
|
|
|
|
|
|
|
} |
1228
|
|
|
|
|
|
|
} |
1229
|
52
|
100
|
|
|
|
111
|
if ($points[$i-1][1] <= $point[1]) { # start y <= P.y |
1230
|
29
|
100
|
|
|
|
98
|
if ($points[$i][1] > $point[1]) { # // an upward crossing |
1231
|
8
|
100
|
|
|
|
20
|
if ($cp > 0) { |
1232
|
|
|
|
|
|
|
# point left of edge |
1233
|
6
|
|
|
|
|
21
|
$wn++; # have a valid up intersect |
1234
|
|
|
|
|
|
|
} |
1235
|
|
|
|
|
|
|
} |
1236
|
|
|
|
|
|
|
} else { # start y > P.y (no test needed) |
1237
|
23
|
100
|
|
|
|
68
|
if ($points[$i][1] <= $point[1]) { # a downward crossing |
1238
|
8
|
100
|
|
|
|
29
|
if ($cp < 0) { |
1239
|
|
|
|
|
|
|
# point right of edge |
1240
|
2
|
|
|
|
|
8
|
$wn--; # have a valid down intersect |
1241
|
|
|
|
|
|
|
} |
1242
|
|
|
|
|
|
|
} |
1243
|
|
|
|
|
|
|
} |
1244
|
|
|
|
|
|
|
} |
1245
|
10
|
|
|
|
|
52
|
return $wn; |
1246
|
|
|
|
|
|
|
} |
1247
|
|
|
|
|
|
|
################################################################################ |
1248
|
|
|
|
|
|
|
# |
1249
|
|
|
|
|
|
|
# Check if polygon inside polygon or contour |
1250
|
|
|
|
|
|
|
# (for a contour, a point is inside when it's within the outer shape and |
1251
|
|
|
|
|
|
|
# not within one of the inner shapes (holes) ) |
1252
|
|
|
|
|
|
|
sub isinside { |
1253
|
8
|
|
|
8
|
1
|
21
|
my ($self,$pointref) = @_; |
1254
|
8
|
|
|
|
|
16
|
my $pointsref = $self->points; |
1255
|
8
|
100
|
|
|
|
35
|
if ($pointsref) { |
1256
|
2
|
|
|
|
|
7
|
return IsInsidePolygon($pointsref,$pointref); |
1257
|
|
|
|
|
|
|
} else { |
1258
|
6
|
|
|
|
|
15
|
my @polygonrefs = $self->get_polygons; |
1259
|
6
|
100
|
|
|
|
19
|
return 0 if (! IsInsidePolygon($polygonrefs[0],$pointref)); |
1260
|
4
|
|
|
|
|
5
|
my @result; |
1261
|
4
|
|
|
|
|
13
|
for (my $i = 1; $i <@polygonrefs; $i++) { |
1262
|
2
|
100
|
|
|
|
15
|
return 0 if (IsInsidePolygon($polygonrefs[$i],$pointref)); |
1263
|
|
|
|
|
|
|
} |
1264
|
3
|
|
|
|
|
13
|
return 1; |
1265
|
|
|
|
|
|
|
} |
1266
|
|
|
|
|
|
|
} |
1267
|
|
|
|
|
|
|
################################################################################ |
1268
|
|
|
|
|
|
|
# |
1269
|
|
|
|
|
|
|
# a counter clockwise rotation over an angle a is given by the formula |
1270
|
|
|
|
|
|
|
# |
1271
|
|
|
|
|
|
|
# / x2 \ / cos(a) -sin(a) \ / x1 \ |
1272
|
|
|
|
|
|
|
# | | = | | | | |
1273
|
|
|
|
|
|
|
# \ y2 / \ sin(a) cos(a) / \ y1 / |
1274
|
|
|
|
|
|
|
# |
1275
|
|
|
|
|
|
|
# args: reference to polygon object |
1276
|
|
|
|
|
|
|
# angle (in radians) |
1277
|
|
|
|
|
|
|
# reference to center point (use origin if no center point entered) |
1278
|
|
|
|
|
|
|
# |
1279
|
|
|
|
|
|
|
sub RotatePolygon { |
1280
|
1
|
|
|
1
|
0
|
3
|
my ($pointsref,$angle,$center) = @_; |
1281
|
1
|
|
|
|
|
2
|
my $xc = 0; |
1282
|
1
|
|
|
|
|
2
|
my $yc = 0; |
1283
|
1
|
50
|
|
|
|
15
|
if ($center) { |
1284
|
1
|
|
|
|
|
4
|
my @point = @$center; |
1285
|
1
|
|
|
|
|
2
|
$xc = $point[0]; |
1286
|
1
|
|
|
|
|
3
|
$yc = $point[1]; |
1287
|
|
|
|
|
|
|
} |
1288
|
1
|
50
|
|
|
|
6
|
if ($pointsref) { |
1289
|
1
|
|
|
|
|
3
|
my @points = @$pointsref; |
1290
|
1
|
|
|
|
|
3
|
my @result; |
1291
|
1
|
|
|
|
|
14
|
for (my $i = 0 ; $i < @points ; $i++) { |
1292
|
4
|
|
|
|
|
64
|
my $x = $xc + cos($angle)*($points[$i][0] - $xc) - sin($angle)*($points[$i][1] - $yc); |
1293
|
4
|
|
|
|
|
17
|
my $y = $yc + sin($angle)*($points[$i][0] - $xc) + cos($angle)*($points[$i][1] - $yc); |
1294
|
4
|
|
|
|
|
9
|
$result[$i][0] = $x; |
1295
|
4
|
|
|
|
|
15
|
$result[$i][1] = $y; |
1296
|
|
|
|
|
|
|
} |
1297
|
1
|
|
|
|
|
7
|
return [@result]; |
1298
|
|
|
|
|
|
|
} |
1299
|
|
|
|
|
|
|
} |
1300
|
|
|
|
|
|
|
################################################################################ |
1301
|
|
|
|
|
|
|
# |
1302
|
|
|
|
|
|
|
# rotate jpolygon or contour |
1303
|
|
|
|
|
|
|
# |
1304
|
|
|
|
|
|
|
sub rotate { |
1305
|
1
|
|
|
1
|
1
|
3
|
my ($self,$angle,$center) = @_; |
1306
|
1
|
|
|
|
|
5
|
my $rotate = Math::Geometry::Planar->new; |
1307
|
1
|
|
|
|
|
5
|
my $pointsref = $self->points; |
1308
|
1
|
50
|
|
|
|
6
|
if ($pointsref) { |
1309
|
1
|
|
|
|
|
5
|
$rotate->points(RotatePolygon($pointsref,$angle,$center)); |
1310
|
|
|
|
|
|
|
} else { |
1311
|
0
|
|
|
|
|
0
|
my @polygonrefs = $self->get_polygons; |
1312
|
0
|
|
|
|
|
0
|
my @result; |
1313
|
0
|
|
|
|
|
0
|
foreach (@polygonrefs) { |
1314
|
0
|
|
|
|
|
0
|
$rotate->add_polygons(RotatePolygon($_,$angle,$center)); |
1315
|
|
|
|
|
|
|
} |
1316
|
|
|
|
|
|
|
} |
1317
|
1
|
|
|
|
|
4
|
return $rotate; |
1318
|
|
|
|
|
|
|
} |
1319
|
|
|
|
|
|
|
################################################################################ |
1320
|
|
|
|
|
|
|
# |
1321
|
|
|
|
|
|
|
# move a polygon over a distance in x and y direction |
1322
|
|
|
|
|
|
|
# |
1323
|
|
|
|
|
|
|
# args: reference to polygon object |
1324
|
|
|
|
|
|
|
# X offset |
1325
|
|
|
|
|
|
|
# y offset |
1326
|
|
|
|
|
|
|
# |
1327
|
|
|
|
|
|
|
sub MovePolygon { |
1328
|
1
|
|
|
1
|
0
|
3
|
my ($pointsref,$dx,$dy) = @_; |
1329
|
1
|
50
|
|
|
|
5
|
if ($pointsref) { |
1330
|
1
|
|
|
|
|
3
|
my @points = @$pointsref; |
1331
|
1
|
|
|
|
|
7
|
for (my $i = 0 ; $i < @points ; $i++) { |
1332
|
4
|
|
|
|
|
8
|
$points[$i][0] = $points[$i][0] + $dx; |
1333
|
4
|
|
|
|
|
11
|
$points[$i][1] = $points[$i][1] + $dy; |
1334
|
|
|
|
|
|
|
} |
1335
|
1
|
|
|
|
|
6
|
return [@points]; |
1336
|
|
|
|
|
|
|
} |
1337
|
|
|
|
|
|
|
} |
1338
|
|
|
|
|
|
|
################################################################################ |
1339
|
|
|
|
|
|
|
# |
1340
|
|
|
|
|
|
|
# Move polygon or contour |
1341
|
|
|
|
|
|
|
# |
1342
|
|
|
|
|
|
|
sub move { |
1343
|
1
|
|
|
1
|
1
|
8
|
my ($self,$dx,$dy) = @_; |
1344
|
1
|
|
|
|
|
5
|
my $move = Math::Geometry::Planar->new; |
1345
|
1
|
|
|
|
|
4
|
my $pointsref = $self->points; |
1346
|
1
|
50
|
|
|
|
4
|
if ($pointsref) { |
1347
|
1
|
|
|
|
|
4
|
$move->points(MovePolygon($pointsref,$dx,$dy)); |
1348
|
|
|
|
|
|
|
} else { |
1349
|
0
|
|
|
|
|
0
|
my @polygonrefs = $self->get_polygons; |
1350
|
0
|
|
|
|
|
0
|
my @result; |
1351
|
0
|
|
|
|
|
0
|
foreach (@polygonrefs) { |
1352
|
0
|
|
|
|
|
0
|
$move->add_polygons(MovePolygon($_,$dx,$dy)); |
1353
|
|
|
|
|
|
|
} |
1354
|
|
|
|
|
|
|
} |
1355
|
1
|
|
|
|
|
5
|
return $move; |
1356
|
|
|
|
|
|
|
} |
1357
|
|
|
|
|
|
|
################################################################################ |
1358
|
|
|
|
|
|
|
# |
1359
|
|
|
|
|
|
|
# mirror in x direction - vertical axis through point referenced by $center |
1360
|
|
|
|
|
|
|
# if no center entered, use y axis |
1361
|
|
|
|
|
|
|
# |
1362
|
|
|
|
|
|
|
# args: reference to polygon object |
1363
|
|
|
|
|
|
|
# reference to center |
1364
|
|
|
|
|
|
|
# |
1365
|
|
|
|
|
|
|
sub MirrorXPolygon { |
1366
|
1
|
|
|
1
|
0
|
3
|
my ($pointsref,$center) = @_; |
1367
|
1
|
|
|
|
|
4
|
my @points = @$pointsref; |
1368
|
1
|
50
|
|
|
|
4
|
if (@points == 0) { # nothing to mirror |
1369
|
0
|
|
|
|
|
0
|
carp("Nothing to mirror ..."); |
1370
|
0
|
|
|
|
|
0
|
return; |
1371
|
|
|
|
|
|
|
} |
1372
|
1
|
|
|
|
|
20
|
my $xc = 0; |
1373
|
1
|
|
|
|
|
2
|
my $yc = 0; |
1374
|
1
|
50
|
|
|
|
4
|
if ($center) { |
1375
|
1
|
|
|
|
|
3
|
my @point = @$center; |
1376
|
1
|
|
|
|
|
2
|
$xc = $point[0]; |
1377
|
1
|
|
|
|
|
3
|
$yc = $point[1]; |
1378
|
|
|
|
|
|
|
} |
1379
|
1
|
|
|
|
|
5
|
for (my $i = 0 ; $i < @points ; $i++) { |
1380
|
4
|
|
|
|
|
12
|
$points[$i][0] = 2*$xc - $points[$i][0]; |
1381
|
|
|
|
|
|
|
} |
1382
|
1
|
|
|
|
|
5
|
return [@points]; |
1383
|
|
|
|
|
|
|
} |
1384
|
|
|
|
|
|
|
################################################################################ |
1385
|
|
|
|
|
|
|
# |
1386
|
|
|
|
|
|
|
# mirror polygon or contour in x direction |
1387
|
|
|
|
|
|
|
# (vertical axis through point referenced by $center) |
1388
|
|
|
|
|
|
|
sub mirrorx { |
1389
|
1
|
|
|
1
|
1
|
10
|
my ($self,$dx,$dy) = @_; |
1390
|
1
|
|
|
|
|
4
|
my $mirrorx = Math::Geometry::Planar->new; |
1391
|
1
|
|
|
|
|
4
|
my $pointsref = $self->points; |
1392
|
1
|
50
|
|
|
|
5
|
if ($pointsref) { |
1393
|
1
|
|
|
|
|
4
|
$mirrorx->points(MirrorXPolygon($pointsref,$dx,$dy)); |
1394
|
|
|
|
|
|
|
} else { |
1395
|
0
|
|
|
|
|
0
|
my @polygonrefs = $self->get_polygons; |
1396
|
0
|
|
|
|
|
0
|
my @result; |
1397
|
0
|
|
|
|
|
0
|
foreach (@polygonrefs) { |
1398
|
0
|
|
|
|
|
0
|
$mirrorx->add_polygons(MirrorXPolygon($_,$dx,$dy)); |
1399
|
|
|
|
|
|
|
} |
1400
|
|
|
|
|
|
|
} |
1401
|
1
|
|
|
|
|
5
|
return $mirrorx; |
1402
|
|
|
|
|
|
|
} |
1403
|
|
|
|
|
|
|
################################################################################ |
1404
|
|
|
|
|
|
|
# |
1405
|
|
|
|
|
|
|
# mirror in y direction - horizontal axis through point referenced by $center |
1406
|
|
|
|
|
|
|
# if no center entered, use x axis |
1407
|
|
|
|
|
|
|
# |
1408
|
|
|
|
|
|
|
# args: reference to polygon object |
1409
|
|
|
|
|
|
|
# reference to center |
1410
|
|
|
|
|
|
|
# |
1411
|
|
|
|
|
|
|
sub MirrorYPolygon { |
1412
|
1
|
|
|
1
|
0
|
2
|
my ($pointsref,$center) = @_; |
1413
|
1
|
|
|
|
|
4
|
my @points = @$pointsref; |
1414
|
1
|
50
|
|
|
|
16
|
if (@points == 0) { # nothing to mirror |
1415
|
0
|
|
|
|
|
0
|
carp("Nothing to mirror ..."); |
1416
|
0
|
|
|
|
|
0
|
return; |
1417
|
|
|
|
|
|
|
} |
1418
|
1
|
|
|
|
|
3
|
my $xc = 0; |
1419
|
1
|
|
|
|
|
2
|
my $yc = 0; |
1420
|
1
|
50
|
|
|
|
5
|
if ($center) { |
1421
|
1
|
|
|
|
|
4
|
my @point = @$center; |
1422
|
1
|
|
|
|
|
3
|
$xc = $point[0]; |
1423
|
1
|
|
|
|
|
2
|
$yc = $point[1]; |
1424
|
|
|
|
|
|
|
} |
1425
|
1
|
|
|
|
|
5
|
for (my $i = 0 ; $i < @points ; $i++) { |
1426
|
4
|
|
|
|
|
14
|
$points[$i][1] = 2*$yc - $points[$i][1]; |
1427
|
|
|
|
|
|
|
} |
1428
|
1
|
|
|
|
|
7
|
return [@points]; |
1429
|
|
|
|
|
|
|
} |
1430
|
|
|
|
|
|
|
################################################################################ |
1431
|
|
|
|
|
|
|
# |
1432
|
|
|
|
|
|
|
# mirror polygon or contour in x direction |
1433
|
|
|
|
|
|
|
# (vertical axis through point referenced by $center) |
1434
|
|
|
|
|
|
|
sub mirrory { |
1435
|
1
|
|
|
1
|
1
|
11
|
my ($self,$dx,$dy) = @_; |
1436
|
1
|
|
|
|
|
5
|
my $mirrory = Math::Geometry::Planar->new; |
1437
|
1
|
|
|
|
|
12
|
my $pointsref = $self->points; |
1438
|
1
|
50
|
|
|
|
4
|
if ($pointsref) { |
1439
|
1
|
|
|
|
|
5
|
$mirrory->points(MirrorYPolygon($pointsref,$dx,$dy)); |
1440
|
|
|
|
|
|
|
} else { |
1441
|
0
|
|
|
|
|
0
|
my @polygonrefs = $self->get_polygons; |
1442
|
0
|
|
|
|
|
0
|
my @result; |
1443
|
0
|
|
|
|
|
0
|
foreach (@polygonrefs) { |
1444
|
0
|
|
|
|
|
0
|
$mirrory->add_polygons(MirrorYPolygon($_,$dx,$dy)); |
1445
|
|
|
|
|
|
|
} |
1446
|
|
|
|
|
|
|
} |
1447
|
1
|
|
|
|
|
4
|
return $mirrory; |
1448
|
|
|
|
|
|
|
} |
1449
|
|
|
|
|
|
|
################################################################################ |
1450
|
|
|
|
|
|
|
# |
1451
|
|
|
|
|
|
|
# mirror around axis determined by 2 points (p1p2) |
1452
|
|
|
|
|
|
|
# |
1453
|
|
|
|
|
|
|
# args: reference to polygon object |
1454
|
|
|
|
|
|
|
# reference to array with to points defining reflection axis |
1455
|
|
|
|
|
|
|
# |
1456
|
|
|
|
|
|
|
sub MirrorPolygon { |
1457
|
1
|
|
|
1
|
0
|
3
|
my ($pointsref,$axisref) = @_; |
1458
|
1
|
|
|
|
|
3
|
my @points = @$pointsref; |
1459
|
1
|
|
|
|
|
4
|
my @axis = @$axisref; |
1460
|
1
|
50
|
|
|
|
3
|
if (@axis != 2) { # need 2 points defining axis |
1461
|
0
|
|
|
|
|
0
|
carp("Can't mirror: 2 points need to define axis"); |
1462
|
0
|
|
|
|
|
0
|
return; |
1463
|
|
|
|
|
|
|
} |
1464
|
1
|
|
|
|
|
3
|
my $p1ref = $axis[0]; |
1465
|
1
|
|
|
|
|
2
|
my $p2ref = $axis[1]; |
1466
|
1
|
|
|
|
|
3
|
my @p1 = @$p1ref; |
1467
|
1
|
|
|
|
|
2
|
my @p2 = @$p2ref; |
1468
|
1
|
50
|
|
|
|
4
|
if (@points == 0) { # nothing to mirror |
1469
|
0
|
|
|
|
|
0
|
carp("Nothing to mirror ..."); |
1470
|
0
|
|
|
|
|
0
|
return; |
1471
|
|
|
|
|
|
|
} |
1472
|
1
|
|
|
|
|
12
|
for (my $i = 0 ; $i < @points ; $i++) { |
1473
|
4
|
|
|
|
|
15
|
my $footref = PerpendicularFoot([\@p1,\@p2,$points[$i]]); |
1474
|
4
|
|
|
|
|
13
|
my @foot = @$footref; |
1475
|
4
|
|
|
|
|
13
|
$points[$i][0] = $foot[0] - ($points[$i][0] - $foot[0]); |
1476
|
4
|
|
|
|
|
17
|
$points[$i][1] = $foot[1] - ($points[$i][1] - $foot[1]); |
1477
|
|
|
|
|
|
|
} |
1478
|
1
|
|
|
|
|
7
|
return [@points]; |
1479
|
|
|
|
|
|
|
} |
1480
|
|
|
|
|
|
|
################################################################################ |
1481
|
|
|
|
|
|
|
# |
1482
|
|
|
|
|
|
|
# mirror polygon or contour around axis determined by 2 points (p1p2) |
1483
|
|
|
|
|
|
|
# |
1484
|
|
|
|
|
|
|
sub mirror { |
1485
|
1
|
|
|
1
|
1
|
10
|
my ($self,$axisref) = @_; |
1486
|
1
|
|
|
|
|
4
|
my $mirror = Math::Geometry::Planar->new; |
1487
|
1
|
|
|
|
|
5
|
my $pointsref = $self->points; |
1488
|
1
|
50
|
|
|
|
5
|
if ($pointsref) { |
1489
|
1
|
|
|
|
|
3
|
$mirror->points(MirrorPolygon($pointsref,$axisref)); |
1490
|
|
|
|
|
|
|
} else { |
1491
|
0
|
|
|
|
|
0
|
my @polygonrefs = $self->get_polygons; |
1492
|
0
|
|
|
|
|
0
|
my @result; |
1493
|
0
|
|
|
|
|
0
|
foreach (@polygonrefs) { |
1494
|
0
|
|
|
|
|
0
|
$mirror->add_polygons(MirrorPolygon($_,$axisref)); |
1495
|
|
|
|
|
|
|
} |
1496
|
|
|
|
|
|
|
} |
1497
|
1
|
|
|
|
|
5
|
return $mirror; |
1498
|
|
|
|
|
|
|
} |
1499
|
|
|
|
|
|
|
################################################################################ |
1500
|
|
|
|
|
|
|
# |
1501
|
|
|
|
|
|
|
# scale polygon from center |
1502
|
|
|
|
|
|
|
# I would choose the centroid ... |
1503
|
|
|
|
|
|
|
# |
1504
|
|
|
|
|
|
|
# args: reference to polygon object |
1505
|
|
|
|
|
|
|
# scale factor |
1506
|
|
|
|
|
|
|
# reference to center point |
1507
|
|
|
|
|
|
|
# |
1508
|
|
|
|
|
|
|
sub ScalePolygon { |
1509
|
1
|
|
|
1
|
0
|
3
|
my ($pointsref,$scale,$center) = @_; |
1510
|
1
|
|
|
|
|
2
|
my @points = @$pointsref; |
1511
|
1
|
50
|
|
|
|
5
|
if (@points == 0) { # nothing to scale |
1512
|
0
|
|
|
|
|
0
|
carp("Nothing to scale ..."); |
1513
|
0
|
|
|
|
|
0
|
return; |
1514
|
|
|
|
|
|
|
} |
1515
|
1
|
|
|
|
|
2
|
my $xc = 0; |
1516
|
1
|
|
|
|
|
2
|
my $yc = 0; |
1517
|
1
|
50
|
|
|
|
4
|
if ($center) { |
1518
|
1
|
|
|
|
|
3
|
my @point = @$center; |
1519
|
1
|
|
|
|
|
2
|
$xc = $point[0]; |
1520
|
1
|
|
|
|
|
2
|
$yc = $point[1]; |
1521
|
|
|
|
|
|
|
} |
1522
|
|
|
|
|
|
|
# subtract center, scale and add center again |
1523
|
1
|
|
|
|
|
5
|
for (my $i = 0 ; $i < @points ; $i++) { |
1524
|
4
|
|
|
|
|
9
|
$points[$i][0] = $scale * ($points[$i][0] - $xc) + $xc; |
1525
|
4
|
|
|
|
|
20
|
$points[$i][1] = $scale * ($points[$i][1] - $yc) + $yc; |
1526
|
|
|
|
|
|
|
} |
1527
|
1
|
|
|
|
|
7
|
return [@points]; |
1528
|
|
|
|
|
|
|
} |
1529
|
|
|
|
|
|
|
################################################################################ |
1530
|
|
|
|
|
|
|
# |
1531
|
|
|
|
|
|
|
# scale polygon from center |
1532
|
|
|
|
|
|
|
# I would choose the centroid ... |
1533
|
|
|
|
|
|
|
# |
1534
|
|
|
|
|
|
|
sub scale { |
1535
|
1
|
|
|
1
|
1
|
10
|
my ($self,$factor,$center) = @_; |
1536
|
1
|
|
|
|
|
5
|
my $scale = Math::Geometry::Planar->new; |
1537
|
1
|
|
|
|
|
4
|
my $pointsref = $self->points; |
1538
|
1
|
50
|
|
|
|
4
|
if ($pointsref) { |
1539
|
1
|
|
|
|
|
4
|
$scale->points(ScalePolygon($pointsref,$factor,$center)); |
1540
|
|
|
|
|
|
|
} else { |
1541
|
0
|
|
|
|
|
0
|
my @polygonrefs = $self->get_polygons; |
1542
|
0
|
|
|
|
|
0
|
my @result; |
1543
|
0
|
|
|
|
|
0
|
foreach (@polygonrefs) { |
1544
|
0
|
|
|
|
|
0
|
$scale->add_polygons(ScalePolygon($_,$factor,$center)); |
1545
|
|
|
|
|
|
|
} |
1546
|
|
|
|
|
|
|
} |
1547
|
1
|
|
|
|
|
10
|
return $scale; |
1548
|
|
|
|
|
|
|
} |
1549
|
|
|
|
|
|
|
################################################################################ |
1550
|
|
|
|
|
|
|
# |
1551
|
|
|
|
|
|
|
# The "bounding box" of a set of points is the box with horizontal |
1552
|
|
|
|
|
|
|
# and vertical edges that contains all points |
1553
|
|
|
|
|
|
|
# |
1554
|
|
|
|
|
|
|
# args: reference to array of points or a contour |
1555
|
|
|
|
|
|
|
# returns reference to array of 4 points representing bounding box |
1556
|
|
|
|
|
|
|
# |
1557
|
|
|
|
|
|
|
sub bbox { |
1558
|
1
|
|
|
1
|
1
|
9
|
my ($self) = @_; |
1559
|
1
|
|
|
|
|
3
|
my $bbox = Math::Geometry::Planar->new; |
1560
|
1
|
|
|
|
|
5
|
my $pointsref = $self->points; |
1561
|
1
|
50
|
|
|
|
4
|
if (! $pointsref) { |
1562
|
1
|
|
|
|
|
4
|
$pointsref = ($self->get_polygons(0))[0]; |
1563
|
1
|
50
|
|
|
|
4
|
return if (! $pointsref); # empty object |
1564
|
|
|
|
|
|
|
} |
1565
|
1
|
|
|
|
|
4
|
my @points = @$pointsref; |
1566
|
1
|
50
|
|
|
|
3
|
if (@points < 3) { # polygon should at least have 3 points ... |
1567
|
0
|
|
|
|
|
0
|
carp("Can't determine bbox: polygon should have at least 3 points"); |
1568
|
0
|
|
|
|
|
0
|
return; |
1569
|
|
|
|
|
|
|
} |
1570
|
1
|
|
|
|
|
3
|
my $min_x = $points[0][0]; |
1571
|
1
|
|
|
|
|
2
|
my $min_y = $points[0][1]; |
1572
|
1
|
|
|
|
|
2
|
my $max_x = $points[0][0]; |
1573
|
1
|
|
|
|
|
2
|
my $max_y = $points[0][1]; |
1574
|
1
|
|
|
|
|
18
|
for (my $i = 1 ; $i < @points ; $i++) { |
1575
|
4
|
50
|
|
|
|
9
|
$min_x = $points[$i][0] if ($points[$i][0] < $min_x); |
1576
|
4
|
50
|
|
|
|
7
|
$min_y = $points[$i][1] if ($points[$i][1] < $min_y); |
1577
|
4
|
100
|
|
|
|
9
|
$max_x = $points[$i][0] if ($points[$i][0] > $max_x); |
1578
|
4
|
100
|
|
|
|
13
|
$max_y = $points[$i][1] if ($points[$i][1] > $max_y); |
1579
|
|
|
|
|
|
|
} |
1580
|
1
|
|
|
|
|
13
|
$bbox->points([[$min_x,$min_y], |
1581
|
|
|
|
|
|
|
[$min_x,$max_y], |
1582
|
|
|
|
|
|
|
[$max_x,$max_y], |
1583
|
|
|
|
|
|
|
[$max_x,$min_y]]); |
1584
|
1
|
|
|
|
|
6
|
return $bbox; |
1585
|
|
|
|
|
|
|
} |
1586
|
|
|
|
|
|
|
################################################################################ |
1587
|
|
|
|
|
|
|
# |
1588
|
|
|
|
|
|
|
# The "minimal enclosing rectangle" of a set of points is the box with minimal area |
1589
|
|
|
|
|
|
|
# that contains all points. |
1590
|
|
|
|
|
|
|
# We'll use the rotating calipers method here which works only on convex polygons |
1591
|
|
|
|
|
|
|
# so before calling minbbox, create the convex hull first for the set of points |
1592
|
|
|
|
|
|
|
# (taking into account whether or not the set of points represents a polygon). |
1593
|
|
|
|
|
|
|
# |
1594
|
|
|
|
|
|
|
# args: reference to array of points representing a convex polygon |
1595
|
|
|
|
|
|
|
# returns reference to array of 4 points representing minimal bounding rectangle |
1596
|
|
|
|
|
|
|
# |
1597
|
|
|
|
|
|
|
sub minrectangle { |
1598
|
2
|
|
|
2
|
1
|
90
|
my ($self) = @_; |
1599
|
2
|
|
|
|
|
6
|
my $minrectangle = Math::Geometry::Planar->new; |
1600
|
2
|
|
|
|
|
5
|
my $pointsref = $self->points; |
1601
|
2
|
50
|
|
|
|
5
|
if (! $pointsref) { |
1602
|
2
|
|
|
|
|
6
|
$pointsref = ($self->get_polygons(0))[0]; |
1603
|
2
|
50
|
|
|
|
6
|
return if (! $pointsref); # empty object |
1604
|
|
|
|
|
|
|
} |
1605
|
2
|
|
|
|
|
5
|
my @points = @$pointsref; |
1606
|
2
|
50
|
|
|
|
6
|
if (@points < 3) { # polygon should at least have 3 points ... |
1607
|
0
|
|
|
|
|
0
|
carp("Can't determine minrectangle: polygon should have at least 3 points"); |
1608
|
0
|
|
|
|
|
0
|
return; |
1609
|
|
|
|
|
|
|
} |
1610
|
2
|
|
|
|
|
3
|
my $d; |
1611
|
|
|
|
|
|
|
# scan all segments and for each segment, calculate the area of the bounding |
1612
|
|
|
|
|
|
|
# box that has one side coinciding with the segment |
1613
|
2
|
|
|
|
|
2
|
my $min_area = 0; |
1614
|
2
|
|
|
|
|
3
|
my @indices; |
1615
|
2
|
|
|
|
|
6
|
for (my $i = 0 ; $i < @points ; $i++) { |
1616
|
|
|
|
|
|
|
# for each segment, find the point (vertex) at the largest perpendicular distance |
1617
|
|
|
|
|
|
|
# the opposite side of the current rectangle runs through this point |
1618
|
12
|
|
|
|
|
13
|
my $mj; # index of point at maximum distance |
1619
|
12
|
|
|
|
|
11
|
my $maxj = 0; # maximum distance (squared) |
1620
|
|
|
|
|
|
|
# Get coefficients of the implicit line equation ax + by +c = 0 |
1621
|
|
|
|
|
|
|
# Do NOT normalize since scaling by a constant |
1622
|
|
|
|
|
|
|
# is irrelevant for just comparing distances. |
1623
|
12
|
|
|
|
|
26
|
my $a = $points[$i-1][1] - $points[$i][1]; |
1624
|
12
|
|
|
|
|
25
|
my $b = $points[$i][0] - $points[$i-1][0]; |
1625
|
12
|
|
|
|
|
26
|
my $c = $points[$i-1][0] * $points[$i][1] - $points[$i][0] * $points[$i-1][1]; |
1626
|
|
|
|
|
|
|
# loop through point array testing for max distance to current segment |
1627
|
12
|
|
|
|
|
32
|
for (my $j = -1 ; $j < @points-1 ; $j++) { |
1628
|
74
|
100
|
100
|
|
|
256
|
next if ($j == $i || $j == $i-1); # exclude points of current segment |
1629
|
|
|
|
|
|
|
# just use dist squared (sqrt not needed for comparison) |
1630
|
|
|
|
|
|
|
# since the polygon is convex, all points are at the same side |
1631
|
|
|
|
|
|
|
# so we don't need to take the absolute value for dist |
1632
|
52
|
|
|
|
|
85
|
my $dist = $a * $points[$j][0] + $b * $points[$j][1] + $c; |
1633
|
52
|
100
|
|
|
|
120
|
if ($dist > $maxj) { # this point is further |
1634
|
25
|
|
|
|
|
24
|
$mj = $j; # so have a new maximum |
1635
|
25
|
|
|
|
|
56
|
$maxj = $dist; |
1636
|
|
|
|
|
|
|
} |
1637
|
|
|
|
|
|
|
} |
1638
|
|
|
|
|
|
|
# the line -bx+ay+c=0 is perpendicular to ax+by+c=0 |
1639
|
|
|
|
|
|
|
# now find index of extreme points corresponding to perpendicular line |
1640
|
|
|
|
|
|
|
# initialize to first point (note that points of current segment could |
1641
|
|
|
|
|
|
|
# be one or even both of the extreme points) |
1642
|
12
|
|
|
|
|
14
|
my $mk = 0; |
1643
|
12
|
|
|
|
|
10
|
my $ml = 0; |
1644
|
12
|
|
|
|
|
33
|
my $mink = -$b * $points[0][0] + $a * $points[0][1] + $c; |
1645
|
12
|
|
|
|
|
19
|
my $maxl = -$b * $points[0][0] + $a * $points[0][1] + $c; |
1646
|
12
|
|
|
|
|
30
|
for (my $j = 1 ; $j < @points ; $j++) { |
1647
|
|
|
|
|
|
|
# use signed dist to get extreme points |
1648
|
62
|
|
|
|
|
101
|
my $dist = -$b * $points[$j][0] + $a * $points[$j][1] + $c; |
1649
|
62
|
100
|
|
|
|
100
|
if ($dist < $mink) { # this point is further |
1650
|
15
|
|
|
|
|
19
|
$mk = $j; # so have a new maximum |
1651
|
15
|
|
|
|
|
15
|
$mink = $dist; |
1652
|
|
|
|
|
|
|
} |
1653
|
62
|
100
|
|
|
|
151
|
if ($dist > $maxl) { # this point is further |
1654
|
15
|
|
|
|
|
16
|
$ml = $j; # so have a new maximum |
1655
|
15
|
|
|
|
|
34
|
$maxl = $dist; |
1656
|
|
|
|
|
|
|
} |
1657
|
|
|
|
|
|
|
} |
1658
|
|
|
|
|
|
|
# now $maxj/sqrt(a**2+b**2) is the height of the current rectangle |
1659
|
|
|
|
|
|
|
# and (|$mink| + |$maxl|)/sqrt(a**2+b**2) is the width |
1660
|
|
|
|
|
|
|
# since area is width*height we can waste the costly sqrt function |
1661
|
12
|
|
|
|
|
28
|
my $area = abs($maxj * ($mink-$maxl)) / ($a**2 +$b**2); |
1662
|
12
|
100
|
100
|
|
|
65
|
if ($area < $min_area || ! $min_area) { |
1663
|
3
|
|
|
|
|
5
|
$min_area = $area; |
1664
|
3
|
|
|
|
|
11
|
@indices = ($i,$mj,$mk,$ml); |
1665
|
|
|
|
|
|
|
} |
1666
|
|
|
|
|
|
|
} |
1667
|
2
|
|
|
|
|
5
|
my ($i,$j,$k,$l) = @indices; |
1668
|
|
|
|
|
|
|
# Finally, get the corners of the minimum enclosing rectangle |
1669
|
2
|
|
|
|
|
11
|
my $p1 = PerpendicularFoot([$points[$i-1],$points[$i],$points[$k]]); |
1670
|
2
|
|
|
|
|
11
|
my $p2 = PerpendicularFoot([$points[$i-1],$points[$i],$points[$l]]); |
1671
|
|
|
|
|
|
|
# now we calculate the second point on the line parallel to |
1672
|
|
|
|
|
|
|
# the segment i going through the vertex j |
1673
|
2
|
|
|
|
|
12
|
my $p = [$points[$j][0]+$points[$i-1][0]-$points[$i][0], |
1674
|
|
|
|
|
|
|
$points[$j][1]+$points[$i-1][1]-$points[$i][1]]; |
1675
|
2
|
|
|
|
|
9
|
my $p3 = PerpendicularFoot([$points[$j],$p,$points[$l]]); |
1676
|
2
|
|
|
|
|
10
|
my $p4 = PerpendicularFoot([$points[$j],$p,$points[$k]]); |
1677
|
2
|
|
|
|
|
13
|
$minrectangle->points([$p1,$p2,$p3,$p4]); |
1678
|
2
|
|
|
|
|
13
|
return $minrectangle; |
1679
|
|
|
|
|
|
|
} |
1680
|
|
|
|
|
|
|
################################################################################ |
1681
|
|
|
|
|
|
|
# |
1682
|
|
|
|
|
|
|
# triangulate polygon or contour |
1683
|
|
|
|
|
|
|
# |
1684
|
|
|
|
|
|
|
# args: polygon or contour object |
1685
|
|
|
|
|
|
|
# returns a reference to an array triangles |
1686
|
|
|
|
|
|
|
# |
1687
|
|
|
|
|
|
|
sub triangulate { |
1688
|
2
|
|
|
2
|
1
|
18
|
my ($self) = @_; |
1689
|
2
|
|
|
|
|
6
|
my $pointsref = $self->points; |
1690
|
2
|
|
|
|
|
4
|
my @triangles; |
1691
|
2
|
100
|
|
|
|
7
|
if ($pointsref) { |
1692
|
1
|
|
|
|
|
2
|
@triangles = @{TriangulatePolygon([$pointsref])}; |
|
1
|
|
|
|
|
4
|
|
1693
|
|
|
|
|
|
|
} else { |
1694
|
1
|
|
|
|
|
4
|
my $polygonrefs = $self->polygons; |
1695
|
1
|
50
|
|
|
|
5
|
if ($polygonrefs) { |
1696
|
1
|
|
|
|
|
2
|
@triangles = @{TriangulatePolygon($polygonrefs)}; |
|
1
|
|
|
|
|
6
|
|
1697
|
|
|
|
|
|
|
} |
1698
|
|
|
|
|
|
|
} |
1699
|
2
|
|
|
|
|
7
|
my @result; |
1700
|
2
|
|
|
|
|
7
|
foreach (@triangles) { |
1701
|
14
|
|
|
|
|
44
|
my $triangle = Math::Geometry::Planar->new; |
1702
|
14
|
|
|
|
|
33
|
$triangle->points($_); |
1703
|
14
|
|
|
|
|
27
|
push @result,$triangle; |
1704
|
|
|
|
|
|
|
} |
1705
|
2
|
|
|
|
|
17
|
return @result; |
1706
|
|
|
|
|
|
|
} |
1707
|
|
|
|
|
|
|
################################################################################ |
1708
|
|
|
|
|
|
|
# |
1709
|
|
|
|
|
|
|
# convexhull using the Melkman algorithm |
1710
|
|
|
|
|
|
|
# (the set of input points represent a polygon and are thus ordered |
1711
|
|
|
|
|
|
|
# |
1712
|
|
|
|
|
|
|
# args: reference to ordered array of points representing a polygon |
1713
|
|
|
|
|
|
|
# or contour (for a contour, we calculate the hull for the |
1714
|
|
|
|
|
|
|
# outer shape) |
1715
|
|
|
|
|
|
|
# returns a reference to an array of the convex hull vertices |
1716
|
|
|
|
|
|
|
# |
1717
|
|
|
|
|
|
|
sub convexhull { |
1718
|
1
|
|
|
1
|
1
|
9
|
my ($self) = @_; |
1719
|
1
|
|
|
|
|
4
|
my $pointsref = $self->points; |
1720
|
1
|
50
|
|
|
|
6
|
if (! $pointsref) { |
1721
|
0
|
|
|
|
|
0
|
$pointsref = ($self->get_polygons(0))[0]; |
1722
|
0
|
0
|
|
|
|
0
|
return if (! $pointsref); # empty object |
1723
|
|
|
|
|
|
|
} |
1724
|
1
|
|
|
|
|
8
|
my @points = @$pointsref; |
1725
|
1
|
50
|
|
|
|
5
|
return ([@points]) if (@points < 5); # need at least 5 points |
1726
|
|
|
|
|
|
|
# initialize a deque D[] from bottom to top so that the |
1727
|
|
|
|
|
|
|
# 1st tree vertices of V[] are a counterclockwise triangle |
1728
|
1
|
|
|
|
|
3
|
my @result; |
1729
|
1
|
|
|
|
|
2
|
my $bot = @points-2; |
1730
|
1
|
|
|
|
|
2
|
my $top = $bot+3; # initial bottom and top deque indices |
1731
|
1
|
|
|
|
|
2
|
$result[$bot] = $points[2]; # 3rd vertex is at both bot and top |
1732
|
1
|
|
|
|
|
3
|
$result[$top] = $points[2]; # 3rd vertex is at both bot and top |
1733
|
1
|
50
|
|
|
|
6
|
if (CrossProduct([$points[0], $points[1], $points[2]]) > 0) { |
1734
|
0
|
|
|
|
|
0
|
$result[$bot+1] = $points[0]; |
1735
|
0
|
|
|
|
|
0
|
$result[$bot+2] = $points[1]; # ccw vertices are: 2,0,1,2 |
1736
|
|
|
|
|
|
|
} else { |
1737
|
1
|
|
|
|
|
14
|
$result[$bot+1] = $points[1]; |
1738
|
1
|
|
|
|
|
4
|
$result[$bot+2] = $points[0]; # ccw vertices are: 2,1,0,2 |
1739
|
|
|
|
|
|
|
} |
1740
|
|
|
|
|
|
|
|
1741
|
|
|
|
|
|
|
# compute the hull on the deque D[] |
1742
|
1
|
|
|
|
|
6
|
for (my $i=3; $i < @points; $i++) { # process the rest of vertices |
1743
|
|
|
|
|
|
|
# test if next vertex is inside the deque hull |
1744
|
4
|
100
|
66
|
|
|
15
|
if ((CrossProduct([$result[$bot], $result[$bot+1], $points[$i]]) > 0) && |
1745
|
|
|
|
|
|
|
(CrossProduct([$result[$top-1], $result[$top], $points[$i]]) > 0) ) { |
1746
|
1
|
|
|
|
|
3
|
last; # skip an interior vertex |
1747
|
|
|
|
|
|
|
} |
1748
|
|
|
|
|
|
|
|
1749
|
|
|
|
|
|
|
# incrementally add an exterior vertex to the deque hull |
1750
|
|
|
|
|
|
|
# get the rightmost tangent at the deque bot |
1751
|
3
|
|
|
|
|
17
|
while (CrossProduct([$result[$bot], $result[$bot+1], $points[$i]]) <= 0) { |
1752
|
4
|
|
|
|
|
17
|
++$bot; # remove bot of deque |
1753
|
|
|
|
|
|
|
} |
1754
|
3
|
|
|
|
|
10
|
$result[--$bot] = $points[$i]; # insert $points[i] at bot of deque |
1755
|
|
|
|
|
|
|
|
1756
|
|
|
|
|
|
|
# get the leftmost tangent at the deque top |
1757
|
3
|
|
|
|
|
11
|
while (CrossProduct([$result[$top-1], $result[$top], $points[$i]]) <= 0) { |
1758
|
1
|
|
|
|
|
6
|
--$top; # pop top of deque |
1759
|
|
|
|
|
|
|
} |
1760
|
3
|
|
|
|
|
14
|
$result[++$top] = $points[$i]; #/ push $points[i] onto top of deque |
1761
|
|
|
|
|
|
|
} |
1762
|
|
|
|
|
|
|
|
1763
|
|
|
|
|
|
|
# transcribe deque D[] to the output hull array H[] |
1764
|
1
|
|
|
|
|
3
|
my @returnval; |
1765
|
1
|
|
|
|
|
16
|
for (my $h = 0; $h <= ($top-$bot-1); $h++) { |
1766
|
4
|
|
|
|
|
13
|
$returnval[$h] = $result[$bot + $h]; |
1767
|
|
|
|
|
|
|
} |
1768
|
1
|
|
|
|
|
8
|
my $hull = Math::Geometry::Planar->new; |
1769
|
1
|
|
|
|
|
6
|
$hull->points([@returnval]); |
1770
|
1
|
|
|
|
|
6
|
return $hull; |
1771
|
|
|
|
|
|
|
} |
1772
|
|
|
|
|
|
|
################################################################################ |
1773
|
|
|
|
|
|
|
# |
1774
|
|
|
|
|
|
|
# convexhull using Andrew's monotone chain 2D convex hull algorithm |
1775
|
|
|
|
|
|
|
# returns a reference to an array of the convex hull vertices |
1776
|
|
|
|
|
|
|
# |
1777
|
|
|
|
|
|
|
# args: reference to array of points (doesn't really need to be a polygon) |
1778
|
|
|
|
|
|
|
# (also works for a contour - however, since a contour should consist |
1779
|
|
|
|
|
|
|
# of polygons - which are ordered sets of points - the algorithm |
1780
|
|
|
|
|
|
|
# above will be faster) |
1781
|
|
|
|
|
|
|
# returns a reference to an array of the convex hull vertices |
1782
|
|
|
|
|
|
|
# |
1783
|
|
|
|
|
|
|
sub convexhull2 { |
1784
|
1
|
|
|
1
|
1
|
9
|
my ($self) = @_; |
1785
|
1
|
|
|
|
|
4
|
my $pointsref = $self->points; |
1786
|
1
|
50
|
|
|
|
4
|
if (! $pointsref) { |
1787
|
0
|
|
|
|
|
0
|
$pointsref = ($self->get_polygons(0))[0]; |
1788
|
0
|
0
|
|
|
|
0
|
return if (! $pointsref); # empty object |
1789
|
|
|
|
|
|
|
} |
1790
|
1
|
|
|
|
|
4
|
my @points = @$pointsref; |
1791
|
1
|
50
|
|
|
|
6
|
return ([@points]) if (@points < 5); # need at least 5 points |
1792
|
|
|
|
|
|
|
# first, sort the points by increasing x and y-coordinates |
1793
|
1
|
|
|
|
|
12
|
@points = sort ByXY (@points); |
1794
|
|
|
|
|
|
|
# Get the indices of points with min x-coord and min|max y-coord |
1795
|
1
|
|
|
|
|
2
|
my @hull; |
1796
|
1
|
|
|
|
|
2
|
my $bot = 0; |
1797
|
1
|
|
|
|
|
2
|
my $top = -1; |
1798
|
1
|
|
|
|
|
3
|
my $minmin = 0; |
1799
|
1
|
|
|
|
|
3
|
my $minmax; |
1800
|
1
|
|
|
|
|
2
|
my $xmin = $points[0][0]; |
1801
|
1
|
|
|
|
|
5
|
for (my $i = 1 ; $i < @points ; $i++) { |
1802
|
2
|
100
|
|
|
|
8
|
if ($points[$i][0] != $xmin) { |
1803
|
1
|
|
|
|
|
10
|
$minmax = $i - 1; |
1804
|
|
|
|
|
|
|
last |
1805
|
1
|
|
|
|
|
3
|
} |
1806
|
|
|
|
|
|
|
} |
1807
|
1
|
50
|
|
|
|
3
|
if ($minmax == @points-1) { # degenerate case: all x-coords == xmin |
1808
|
0
|
|
|
|
|
0
|
$hull[++$top] = $points[$minmin]; |
1809
|
0
|
0
|
|
|
|
0
|
if ($points[$minmax][1] != $points[$minmin][1]) { # a nontrivial segment |
1810
|
0
|
|
|
|
|
0
|
$hull[$==$top] = $points[$minmax]; |
1811
|
0
|
|
|
|
|
0
|
return [@points]; |
1812
|
|
|
|
|
|
|
} |
1813
|
|
|
|
|
|
|
} |
1814
|
|
|
|
|
|
|
|
1815
|
|
|
|
|
|
|
# Get the indices of points with max x-coord and min|max y-coord |
1816
|
1
|
|
|
|
|
3
|
my $maxmin = 0; |
1817
|
1
|
|
|
|
|
3
|
my $maxmax = @points - 1; |
1818
|
1
|
|
|
|
|
4
|
my $xmax = $points[@points-1][0]; |
1819
|
1
|
|
|
|
|
5
|
for (my $i = @points - 2 ; $i >= 0 ; $i--) { |
1820
|
1
|
50
|
|
|
|
6
|
if ($points[$i][0] != $xmax) { |
1821
|
1
|
|
|
|
|
3
|
$maxmin = $i + 1; |
1822
|
1
|
|
|
|
|
2
|
last; |
1823
|
|
|
|
|
|
|
} |
1824
|
|
|
|
|
|
|
} |
1825
|
|
|
|
|
|
|
|
1826
|
|
|
|
|
|
|
# Compute the lower hull on the stack @lower |
1827
|
1
|
|
|
|
|
3
|
$hull[++$top] = $points[$minmin]; # push minmin point onto stack |
1828
|
1
|
|
|
|
|
1
|
my $i = $minmax; |
1829
|
1
|
|
|
|
|
4
|
while (++$i <= $maxmin) { |
1830
|
|
|
|
|
|
|
# the lower line joins points[minmin] with points[maxmin] |
1831
|
8
|
100
|
100
|
|
|
23
|
if (CrossProduct([$points[$minmin],$points[$maxmin],$points[$i]]) >= 0 && $i < $maxmin) { |
1832
|
3
|
|
|
|
|
10
|
next; # ignore points[i] above or on the lower line |
1833
|
|
|
|
|
|
|
} |
1834
|
5
|
|
|
|
|
17
|
while ($top > 0) { # there are at least 2 points on the stack |
1835
|
|
|
|
|
|
|
# test if points[i] is left of the line at the stack top |
1836
|
6
|
100
|
|
|
|
21
|
if (CrossProduct([$hull[$top-1], $hull[$top], $points[$i]]) > 0) { |
1837
|
4
|
|
|
|
|
6
|
last; # points[i] is a new hull vertex |
1838
|
|
|
|
|
|
|
} else { |
1839
|
2
|
|
|
|
|
6
|
$top--; |
1840
|
|
|
|
|
|
|
} |
1841
|
|
|
|
|
|
|
} |
1842
|
5
|
|
|
|
|
16
|
$hull[++$top] = $points[$i]; # push points[i] onto stack |
1843
|
|
|
|
|
|
|
} |
1844
|
|
|
|
|
|
|
|
1845
|
|
|
|
|
|
|
# Next, compute the upper hull on the stack above the bottom hull |
1846
|
1
|
50
|
|
|
|
6
|
if ($maxmax != $maxmin) { # if distinct xmax points |
1847
|
0
|
|
|
|
|
0
|
$hull[++$top] = $points[$maxmax]; # push maxmax point onto stack |
1848
|
|
|
|
|
|
|
} |
1849
|
1
|
|
|
|
|
2
|
$bot = $top; |
1850
|
1
|
|
|
|
|
11
|
$i = $maxmin; |
1851
|
1
|
|
|
|
|
40
|
while (--$i >= $minmax) { |
1852
|
|
|
|
|
|
|
# the upper line joins points[maxmax] with points[minmax] |
1853
|
8
|
100
|
100
|
|
|
25
|
if (CrossProduct([$points[$maxmax],$points[$minmax],$points[$i]]) >= 0 && $i > $minmax) { |
1854
|
4
|
|
|
|
|
11
|
next; # ignore points[i] below or on the upper line |
1855
|
|
|
|
|
|
|
} |
1856
|
4
|
|
|
|
|
12
|
while ($top > $bot) { # at least 2 points on the upper stack |
1857
|
|
|
|
|
|
|
# test if points[i] is left of the line at the stack top |
1858
|
4
|
100
|
|
|
|
27
|
if (CrossProduct([$hull[$top-1],$hull[$top],$points[$i]]) > 0) { |
1859
|
2
|
|
|
|
|
3
|
last; # points[i] is a new hull vertex |
1860
|
|
|
|
|
|
|
} else { |
1861
|
2
|
|
|
|
|
7
|
$top--; |
1862
|
|
|
|
|
|
|
} |
1863
|
|
|
|
|
|
|
} |
1864
|
4
|
|
|
|
|
11
|
$hull[++$top] = $points[$i]; # push points[i] onto stack |
1865
|
|
|
|
|
|
|
} |
1866
|
1
|
|
|
|
|
5
|
$#hull = $top; |
1867
|
1
|
50
|
|
|
|
4
|
if ($minmax == $minmin) { |
1868
|
0
|
|
|
|
|
0
|
shift @hull; # remove joining endpoint from stack |
1869
|
|
|
|
|
|
|
} |
1870
|
1
|
|
|
|
|
6
|
my $hull = Math::Geometry::Planar->new; |
1871
|
1
|
|
|
|
|
6
|
$hull->points([@hull]); |
1872
|
1
|
|
|
|
|
7
|
return $hull; |
1873
|
|
|
|
|
|
|
} |
1874
|
|
|
|
|
|
|
################################################################################ |
1875
|
|
|
|
|
|
|
# |
1876
|
|
|
|
|
|
|
# Offset polygons |
1877
|
|
|
|
|
|
|
# |
1878
|
|
|
|
|
|
|
sub offset_polygon { |
1879
|
0
|
|
|
0
|
1
|
0
|
my ($self,$offset,$canvas) = @_; |
1880
|
0
|
|
|
|
|
0
|
my $offset_polygons; |
1881
|
0
|
|
|
|
|
0
|
my $pointsref = $self->points; |
1882
|
0
|
0
|
|
|
|
0
|
if ($pointsref) { |
1883
|
0
|
|
|
|
|
0
|
return [OffsetPolygon($pointsref,$offset,$canvas)]; |
1884
|
|
|
|
|
|
|
} else { |
1885
|
0
|
|
|
|
|
0
|
carp("Can't offset contours - only polygons"); |
1886
|
0
|
|
|
|
|
0
|
return; |
1887
|
|
|
|
|
|
|
} |
1888
|
|
|
|
|
|
|
} |
1889
|
|
|
|
|
|
|
################################################################################ |
1890
|
|
|
|
|
|
|
# |
1891
|
|
|
|
|
|
|
# Sorting function to surt points first by X coordinate, then by Y coordinate |
1892
|
|
|
|
|
|
|
# |
1893
|
|
|
|
|
|
|
sub ByXY { |
1894
|
22
|
|
|
22
|
0
|
31
|
my @p1 = @$a; |
1895
|
22
|
|
|
|
|
26
|
my @p2 = @$b; |
1896
|
22
|
|
|
|
|
25
|
my $result = $p1[0] <=> $p2[0]; |
1897
|
22
|
100
|
|
|
|
42
|
if ($result){ |
1898
|
19
|
|
|
|
|
29
|
return $result; |
1899
|
|
|
|
|
|
|
} else { |
1900
|
3
|
|
|
|
|
8
|
return $p1[1] <=> $p2[1]; |
1901
|
|
|
|
|
|
|
} |
1902
|
|
|
|
|
|
|
} |
1903
|
|
|
|
|
|
|
################################################################################ |
1904
|
|
|
|
|
|
|
# |
1905
|
|
|
|
|
|
|
# convert polygon/contour to gpc contour |
1906
|
|
|
|
|
|
|
# |
1907
|
|
|
|
|
|
|
sub convert2gpc { |
1908
|
5
|
|
|
5
|
1
|
27
|
my ($self,$dx,$dy) = @_; |
1909
|
5
|
|
|
|
|
6
|
my @polygons; |
1910
|
5
|
|
|
|
|
11
|
my $pointsref = $self->points; |
1911
|
5
|
100
|
|
|
|
13
|
if ($pointsref) { |
1912
|
3
|
|
|
|
|
4
|
push @polygons,$pointsref; |
1913
|
|
|
|
|
|
|
} else { |
1914
|
2
|
|
|
|
|
7
|
@polygons = $self->get_polygons; |
1915
|
|
|
|
|
|
|
} |
1916
|
5
|
|
|
|
|
14
|
foreach (@polygons) { |
1917
|
8
|
|
|
|
|
8
|
my @points = @{$_}; |
|
8
|
|
|
|
|
15
|
|
1918
|
8
|
50
|
|
|
|
25
|
if (@points < 3) { # need at least 3 points |
1919
|
0
|
|
|
|
|
0
|
carp("Can't convert to gpc structure: polygon should have at least 3 points"); |
1920
|
0
|
|
|
|
|
0
|
return; |
1921
|
|
|
|
|
|
|
} |
1922
|
|
|
|
|
|
|
} |
1923
|
5
|
|
|
|
|
38
|
my $contour = Math::Geometry::Planar::GPC::new_gpc_polygon(); |
1924
|
5
|
|
|
|
|
14
|
Math::Geometry::Planar::GPC::gpc_polygon_num_contours_set($contour,scalar(@polygons)); |
1925
|
|
|
|
|
|
|
# array for hole pointers |
1926
|
5
|
|
|
|
|
21
|
my $hole_array = Math::Geometry::Planar::GPC::int_array(scalar(@polygons)); |
1927
|
5
|
|
|
|
|
23
|
Math::Geometry::Planar::GPC::gpc_polygon_hole_set($contour,$hole_array); |
1928
|
5
|
|
|
|
|
20
|
my $vlist = Math::Geometry::Planar::GPC::gpc_vertex_list_array(scalar(@polygons)); |
1929
|
5
|
|
|
|
|
472
|
for (my $i = 0; $i < @polygons; $i++) { |
1930
|
8
|
100
|
|
|
|
21
|
if ($i == 0) { |
1931
|
5
|
|
|
|
|
11
|
Math::Geometry::Planar::GPC::int_set($hole_array,$i,0); |
1932
|
|
|
|
|
|
|
} else { |
1933
|
3
|
|
|
|
|
19
|
Math::Geometry::Planar::GPC::int_set($hole_array,$i,1); |
1934
|
|
|
|
|
|
|
} |
1935
|
8
|
|
|
|
|
11
|
my @points = @{$polygons[$i]}; |
|
8
|
|
|
|
|
20
|
|
1936
|
8
|
|
|
|
|
8
|
my @gpc_vertexlist; |
1937
|
8
|
|
|
|
|
12
|
foreach my $vertex (@points) { |
1938
|
32
|
|
|
|
|
76
|
my $v = Math::Geometry::Planar::GPC::new_gpc_vertex(); |
1939
|
32
|
|
|
|
|
76
|
Math::Geometry::Planar::GPC::gpc_vertex_x_set($v,$$vertex[0]); |
1940
|
32
|
|
|
|
|
47
|
Math::Geometry::Planar::GPC::gpc_vertex_y_set($v,$$vertex[1]); |
1941
|
32
|
|
|
|
|
57
|
push @gpc_vertexlist,$v; |
1942
|
|
|
|
|
|
|
} |
1943
|
8
|
|
|
|
|
22
|
my $va = create_gpc_vertex_array(@gpc_vertexlist); |
1944
|
8
|
|
|
|
|
31
|
my $vl = Math::Geometry::Planar::GPC::new_gpc_vertex_list(); |
1945
|
8
|
|
|
|
|
18
|
Math::Geometry::Planar::GPC::gpc_vertex_list_vertex_set($vl,$va); |
1946
|
8
|
|
|
|
|
18
|
Math::Geometry::Planar::GPC::gpc_vertex_list_num_vertices_set($vl,scalar(@points)); |
1947
|
8
|
|
|
|
|
53
|
Math::Geometry::Planar::GPC::gpc_vertex_list_set($vlist,$i,$vl); |
1948
|
|
|
|
|
|
|
} |
1949
|
5
|
|
|
|
|
15
|
Math::Geometry::Planar::GPC::gpc_polygon_contour_set($contour,$vlist); |
1950
|
5
|
|
|
|
|
23
|
return $contour; |
1951
|
|
|
|
|
|
|
} |
1952
|
|
|
|
|
|
|
################################################################################ |
1953
|
|
|
|
|
|
|
# |
1954
|
|
|
|
|
|
|
# convert gpc object to a set of contours |
1955
|
|
|
|
|
|
|
# A gpc contour object can consist of multiple outer shapes each having holes, |
1956
|
|
|
|
|
|
|
# |
1957
|
|
|
|
|
|
|
sub Gpc2Polygons { |
1958
|
6
|
|
|
6
|
1
|
31
|
my ($gpc) = @_; |
1959
|
6
|
|
|
|
|
7
|
my @result; # array with contours |
1960
|
|
|
|
|
|
|
my @inner; # array holding the inner polygons |
1961
|
0
|
|
|
|
|
0
|
my @outer; # array holding the outer polygons |
1962
|
6
|
|
|
|
|
14
|
my $num_contours = Math::Geometry::Planar::GPC::gpc_polygon_num_contours_get($gpc); |
1963
|
6
|
|
|
|
|
19
|
my $contour = Math::Geometry::Planar::GPC::gpc_polygon_contour_get($gpc); |
1964
|
6
|
|
|
|
|
16
|
my $hole_array = Math::Geometry::Planar::GPC::gpc_polygon_hole_get($gpc); |
1965
|
|
|
|
|
|
|
# for each shape of the gpc object |
1966
|
6
|
|
|
|
|
20
|
for (my $i = 0 ; $i < $num_contours ; $i++) { |
1967
|
10
|
|
|
|
|
18
|
my @polygon; |
1968
|
|
|
|
|
|
|
# get the hole flag |
1969
|
10
|
|
|
|
|
22
|
my $hole = Math::Geometry::Planar::GPC::int_get($hole_array,$i); |
1970
|
|
|
|
|
|
|
# get the vertices |
1971
|
10
|
|
|
|
|
27
|
my $vl = Math::Geometry::Planar::GPC::gpc_vertex_list_get($contour,$i); |
1972
|
10
|
|
|
|
|
23
|
my $num_vertices = Math::Geometry::Planar::GPC::gpc_vertex_list_num_vertices_get($vl); |
1973
|
10
|
|
|
|
|
27
|
my $va = Math::Geometry::Planar::GPC::gpc_vertex_list_vertex_get($vl); |
1974
|
10
|
|
|
|
|
25
|
for (my $j = 0 ; $j < $num_vertices ; $j++) { |
1975
|
60
|
|
|
|
|
143
|
my $v = Math::Geometry::Planar::GPC::gpc_vertex_get($va,$j); |
1976
|
60
|
|
|
|
|
115
|
my $x = Math::Geometry::Planar::GPC::gpc_vertex_x_get($v); |
1977
|
60
|
|
|
|
|
95
|
my $y = Math::Geometry::Planar::GPC::gpc_vertex_y_get($v); |
1978
|
60
|
|
|
|
|
198
|
push @polygon,[$x,$y]; |
1979
|
|
|
|
|
|
|
} |
1980
|
|
|
|
|
|
|
# create lists of inner and outer shapes |
1981
|
10
|
100
|
|
|
|
19
|
if ($hole) { |
1982
|
2
|
|
|
|
|
7
|
push @inner,[@polygon]; |
1983
|
|
|
|
|
|
|
} else { |
1984
|
8
|
|
|
|
|
44
|
push @outer,[@polygon]; |
1985
|
|
|
|
|
|
|
} |
1986
|
|
|
|
|
|
|
} |
1987
|
|
|
|
|
|
|
# shortcut: if there is only one outer shape, we're done |
1988
|
6
|
100
|
|
|
|
13
|
if (@outer == 1) { |
1989
|
4
|
|
|
|
|
13
|
my $obj = Math::Geometry::Planar->new; |
1990
|
4
|
|
|
|
|
13
|
$obj->add_polygons(@outer,@inner); |
1991
|
4
|
|
|
|
|
6
|
push @result,$obj; |
1992
|
|
|
|
|
|
|
} else { |
1993
|
2
|
|
|
|
|
6
|
foreach (@outer) { |
1994
|
|
|
|
|
|
|
# create contour for each outer shape |
1995
|
4
|
|
|
|
|
16
|
my $obj = Math::Geometry::Planar->new; |
1996
|
4
|
|
|
|
|
14
|
$obj->polygons([$_]); |
1997
|
4
|
|
|
|
|
9
|
push @result,$obj; |
1998
|
|
|
|
|
|
|
# if an inner shape has at least one point inside this |
1999
|
|
|
|
|
|
|
# outer shape, it belongs to this outer shape (so all |
2000
|
|
|
|
|
|
|
# points are inside it) |
2001
|
4
|
|
|
|
|
7
|
my $i = 0; |
2002
|
4
|
|
|
|
|
13
|
while ($i < @inner) { |
2003
|
3
|
|
|
|
|
5
|
my @polygon = @{$inner[$i]}; |
|
3
|
|
|
|
|
8
|
|
2004
|
3
|
100
|
|
|
|
13
|
if ($obj->isinside($polygon[0])) { |
2005
|
2
|
|
|
|
|
5
|
$obj->add_polygons($inner[$i]); |
2006
|
2
|
|
|
|
|
10
|
splice @inner,$i,1; |
2007
|
|
|
|
|
|
|
} else { |
2008
|
1
|
|
|
|
|
4
|
$i++; |
2009
|
|
|
|
|
|
|
} |
2010
|
|
|
|
|
|
|
} |
2011
|
|
|
|
|
|
|
} |
2012
|
|
|
|
|
|
|
} |
2013
|
6
|
|
|
|
|
34
|
return @result; |
2014
|
|
|
|
|
|
|
} |
2015
|
|
|
|
|
|
|
################################################################################ |
2016
|
|
|
|
|
|
|
# |
2017
|
|
|
|
|
|
|
# gpc polygon clipping operatins |
2018
|
|
|
|
|
|
|
# |
2019
|
|
|
|
|
|
|
sub GpcClip { |
2020
|
6
|
|
|
6
|
1
|
305
|
my ($op,$gpc_poly_1,$gpc_poly_2) = @_; |
2021
|
6
|
|
|
|
|
22
|
my $result = Math::Geometry::Planar::GPC::new_gpc_polygon(); |
2022
|
|
|
|
|
|
|
SWITCH: { |
2023
|
6
|
100
|
|
|
|
8
|
($op eq "DIFFERENCE") && do { |
|
6
|
|
|
|
|
19
|
|
2024
|
2
|
|
|
|
|
69
|
Math::Geometry::Planar::GPC::gpc_polygon_clip(0,$gpc_poly_1,$gpc_poly_2,$result); |
2025
|
2
|
|
|
|
|
12
|
return $result; |
2026
|
|
|
|
|
|
|
}; |
2027
|
4
|
100
|
|
|
|
11
|
($op eq "INTERSECTION") && do { |
2028
|
1
|
|
|
|
|
12
|
Math::Geometry::Planar::GPC::gpc_polygon_clip(1,$gpc_poly_1,$gpc_poly_2,$result); |
2029
|
1
|
|
|
|
|
4
|
return $result; |
2030
|
|
|
|
|
|
|
}; |
2031
|
3
|
100
|
|
|
|
8
|
($op eq "XOR") && do { |
2032
|
1
|
|
|
|
|
20
|
Math::Geometry::Planar::GPC::gpc_polygon_clip(2,$gpc_poly_1,$gpc_poly_2,$result); |
2033
|
1
|
|
|
|
|
4
|
return $result; |
2034
|
|
|
|
|
|
|
}; |
2035
|
2
|
50
|
|
|
|
5
|
($op eq "UNION") && do { |
2036
|
2
|
|
|
|
|
26
|
Math::Geometry::Planar::GPC::gpc_polygon_clip(3,$gpc_poly_1,$gpc_poly_2,$result); |
2037
|
2
|
|
|
|
|
6
|
return $result; |
2038
|
|
|
|
|
|
|
}; |
2039
|
0
|
|
|
|
|
0
|
return; |
2040
|
|
|
|
|
|
|
} |
2041
|
|
|
|
|
|
|
} |
2042
|
|
|
|
|
|
|
############################################################################### |
2043
|
|
|
|
|
|
|
# |
2044
|
|
|
|
|
|
|
# create gpc vertex array pointer |
2045
|
|
|
|
|
|
|
# |
2046
|
|
|
|
|
|
|
sub create_gpc_vertex_array { |
2047
|
8
|
|
|
8
|
0
|
13
|
my $len = scalar(@_); |
2048
|
8
|
|
|
|
|
22
|
my $va = Math::Geometry::Planar::GPC::gpc_vertex_array($len); |
2049
|
8
|
|
|
|
|
17
|
for (my $i=0; $i<$len; $i++) { |
2050
|
32
|
|
|
|
|
35
|
my $val = shift; |
2051
|
32
|
|
|
|
|
75
|
Math::Geometry::Planar::GPC::gpc_vertex_set($va,$i,$val); |
2052
|
|
|
|
|
|
|
} |
2053
|
8
|
|
|
|
|
12
|
return $va; |
2054
|
|
|
|
|
|
|
} |
2055
|
|
|
|
|
|
|
################################################################################ |
2056
|
|
|
|
|
|
|
# |
2057
|
|
|
|
|
|
|
my $pi = atan2(1,1) * 4; |
2058
|
|
|
|
|
|
|
# |
2059
|
|
|
|
|
|
|
################################################################################ |
2060
|
|
|
|
|
|
|
# |
2061
|
|
|
|
|
|
|
# convert a circle to a polygon |
2062
|
|
|
|
|
|
|
# arguments: first argument is the number of segments, |
2063
|
|
|
|
|
|
|
# the other arguments are: |
2064
|
|
|
|
|
|
|
# p1,p2,p3 : 3 points on the circle |
2065
|
|
|
|
|
|
|
# or |
2066
|
|
|
|
|
|
|
# center,p1 : center and a point on the circle |
2067
|
|
|
|
|
|
|
# or |
2068
|
|
|
|
|
|
|
# center,radius : the center and the radius of the circle |
2069
|
|
|
|
|
|
|
# |
2070
|
|
|
|
|
|
|
sub CircleToPoly { |
2071
|
3
|
|
|
3
|
1
|
346
|
my @args = @_; |
2072
|
3
|
|
|
|
|
5
|
my @result; |
2073
|
3
|
|
|
|
|
3
|
my ($segments,$p1,$p2,$p3,$center,$radius); |
2074
|
3
|
100
|
|
|
|
13
|
if (@args == 4) { # 3 points |
|
|
50
|
|
|
|
|
|
2075
|
1
|
|
|
|
|
5
|
($segments,$p1,$p2,$p3) = @args; |
2076
|
1
|
|
|
|
|
5
|
$center = CalcCenter($p1,$p2,$p3); |
2077
|
1
|
|
|
|
|
6
|
$radius = SegmentLength([$p1,$center]); |
2078
|
|
|
|
|
|
|
} elsif (@args == 3) { |
2079
|
2
|
100
|
|
|
|
6
|
if (ref $args[2]) { # center + 1 point |
2080
|
1
|
|
|
|
|
3
|
($segments,$center,$p1) = @args; |
2081
|
1
|
|
|
|
|
4
|
$radius = SegmentLength([$p1,$center]); |
2082
|
|
|
|
|
|
|
} else { # center + radius |
2083
|
1
|
|
|
|
|
3
|
($segments,$center,$radius) = @args; |
2084
|
|
|
|
|
|
|
} |
2085
|
|
|
|
|
|
|
} else { |
2086
|
0
|
|
|
|
|
0
|
return; |
2087
|
|
|
|
|
|
|
} |
2088
|
3
|
|
|
|
|
10
|
my $angle = ($pi * 2) / $segments; |
2089
|
3
|
|
|
|
|
11
|
for (my $i = 0 ; $i < $segments ; $i++) { |
2090
|
24
|
|
|
|
|
68
|
push @result, [${$center}[0] + $radius * cos($angle * $i), |
|
24
|
|
|
|
|
114
|
|
2091
|
24
|
|
|
|
|
26
|
${$center}[1] + $radius * sin($angle * $i)] |
2092
|
|
|
|
|
|
|
} |
2093
|
3
|
|
|
|
|
9
|
my $poly = Math::Geometry::Planar->new; |
2094
|
3
|
|
|
|
|
21
|
$poly->points([@result]); |
2095
|
3
|
|
|
|
|
15
|
return $poly; |
2096
|
|
|
|
|
|
|
} |
2097
|
|
|
|
|
|
|
################################################################################ |
2098
|
|
|
|
|
|
|
# |
2099
|
|
|
|
|
|
|
# convert an arc to a polygon |
2100
|
|
|
|
|
|
|
# arguments: first argument is the number of segments, |
2101
|
|
|
|
|
|
|
# the other arguments are: |
2102
|
|
|
|
|
|
|
# p1,p2,p3 : startpoint, intermediate point, endpoint |
2103
|
|
|
|
|
|
|
# or |
2104
|
|
|
|
|
|
|
# $center,p1,p2,$dir : center, startpoint, endpoint, direction |
2105
|
|
|
|
|
|
|
# direction 0 counter clockwise |
2106
|
|
|
|
|
|
|
# 1 clockwise |
2107
|
|
|
|
|
|
|
# Note: the return value is a set of points, NOT a closed polygon !!! |
2108
|
|
|
|
|
|
|
# |
2109
|
|
|
|
|
|
|
sub ArcToPoly { |
2110
|
3
|
|
|
3
|
1
|
262
|
my @args = @_; |
2111
|
3
|
|
|
|
|
4
|
my @result; |
2112
|
3
|
|
|
|
|
5
|
my ($segments,$p1,$p2,$p3,$center,$direction); |
2113
|
0
|
|
|
|
|
0
|
my ($radius,$angle); |
2114
|
0
|
|
|
|
|
0
|
my ($start_angle, $end_angle); |
2115
|
3
|
100
|
|
|
|
11
|
if (@args == 4) { # 3 points |
|
|
50
|
|
|
|
|
|
2116
|
1
|
|
|
|
|
3
|
($segments,$p1,$p2,$p3) = @args; |
2117
|
1
|
|
|
|
|
3
|
$center = CalcCenter($p1,$p2,$p3); |
2118
|
1
|
|
|
|
|
5
|
$radius = SegmentLength([$p1,$center]); |
2119
|
|
|
|
|
|
|
# calculate start and end angles |
2120
|
1
|
|
|
|
|
6
|
$start_angle = CalcAngle($center,$p1); |
2121
|
1
|
|
|
|
|
4
|
my $mid_angle = CalcAngle($center,$p2); |
2122
|
1
|
|
|
|
|
4
|
$end_angle = CalcAngle($center,$p3); |
2123
|
1
|
0
|
33
|
|
|
16
|
if ( (($mid_angle < $start_angle) && ($start_angle < $end_angle)) || |
|
|
|
0
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
2124
|
|
|
|
|
|
|
(($start_angle < $end_angle) && ($end_angle < $mid_angle)) || |
2125
|
|
|
|
|
|
|
(($end_angle < $mid_angle) && ($mid_angle < $start_angle)) ) { |
2126
|
1
|
|
|
|
|
3
|
$direction = 1; |
2127
|
|
|
|
|
|
|
} |
2128
|
1
|
|
|
|
|
3
|
$angle = $end_angle - $start_angle; |
2129
|
|
|
|
|
|
|
} elsif (@args == 5) { # center, begin, end, direction |
2130
|
2
|
|
|
|
|
5
|
($segments,$center,$p1,$p3,$direction) = @args; |
2131
|
2
|
|
|
|
|
6
|
$radius = SegmentLength([$p1,$center]); |
2132
|
|
|
|
|
|
|
# calculate start and end angles |
2133
|
2
|
|
|
|
|
6
|
$start_angle = CalcAngle($center,$p1); |
2134
|
2
|
|
|
|
|
5
|
$end_angle = CalcAngle($center,$p3); |
2135
|
2
|
|
|
|
|
3
|
$angle = $end_angle - $start_angle; |
2136
|
|
|
|
|
|
|
} else { |
2137
|
0
|
|
|
|
|
0
|
return; |
2138
|
|
|
|
|
|
|
} |
2139
|
|
|
|
|
|
|
|
2140
|
3
|
100
|
|
|
|
7
|
if ($direction) { # clockwise |
2141
|
2
|
100
|
|
|
|
7
|
if ($angle > 0) { |
2142
|
1
|
|
|
|
|
3
|
$angle = $angle - ($pi * 2); |
2143
|
|
|
|
|
|
|
} |
2144
|
|
|
|
|
|
|
} else { |
2145
|
1
|
50
|
|
|
|
5
|
if ($angle < 0) { |
2146
|
1
|
|
|
|
|
3
|
$angle = $angle + ($pi * 2); |
2147
|
|
|
|
|
|
|
} |
2148
|
|
|
|
|
|
|
} |
2149
|
3
|
|
|
|
|
4
|
$angle = $angle / $segments; |
2150
|
|
|
|
|
|
|
|
2151
|
3
|
|
|
|
|
4
|
push @result,$p1; # start point |
2152
|
3
|
|
|
|
|
14
|
for (my $i = 1 ; $i < $segments ; $i++) { |
2153
|
11
|
|
|
|
|
30
|
push @result, [${$center}[0] + $radius * cos($start_angle + $angle * $i), |
|
11
|
|
|
|
|
48
|
|
2154
|
11
|
|
|
|
|
12
|
${$center}[1] + $radius * sin($start_angle + $angle * $i)] |
2155
|
|
|
|
|
|
|
} |
2156
|
3
|
|
|
|
|
5
|
push @result,$p3; # end point |
2157
|
3
|
|
|
|
|
13
|
return [@result]; |
2158
|
|
|
|
|
|
|
} |
2159
|
|
|
|
|
|
|
################################################################################ |
2160
|
|
|
|
|
|
|
# |
2161
|
|
|
|
|
|
|
# Calculate the center of a circle going through 3 points |
2162
|
|
|
|
|
|
|
# |
2163
|
|
|
|
|
|
|
sub CalcCenter { |
2164
|
2
|
|
|
2
|
0
|
6
|
my ($p1_ref, $p2_ref, $p3_ref) = @_; |
2165
|
2
|
|
|
|
|
4
|
my ($x1,$y1) = @{$p1_ref}; |
|
2
|
|
|
|
|
4
|
|
2166
|
2
|
|
|
|
|
5
|
my ($x2,$y2) = @{$p2_ref}; |
|
2
|
|
|
|
|
6
|
|
2167
|
2
|
|
|
|
|
4
|
my ($x3,$y3) = @{$p3_ref}; |
|
2
|
|
|
|
|
4
|
|
2168
|
|
|
|
|
|
|
# calculate midpoints of line segments p1p2 p2p3 |
2169
|
2
|
|
|
|
|
6
|
my $u1 = ($x1 + $x2)/2; |
2170
|
2
|
|
|
|
|
6
|
my $v1 = ($y1 + $y2)/2; |
2171
|
2
|
|
|
|
|
3
|
my $u2 = ($x2 + $x3)/2; |
2172
|
2
|
|
|
|
|
3
|
my $v2 = ($y2 + $y3)/2; |
2173
|
|
|
|
|
|
|
# linear equations y = a + bx |
2174
|
2
|
|
|
|
|
4
|
my ($a1,$a2); |
2175
|
0
|
|
|
|
|
0
|
my ($b1,$b2); |
2176
|
|
|
|
|
|
|
# intersect (center) coordinates |
2177
|
0
|
|
|
|
|
0
|
my ($xi,$yi); |
2178
|
|
|
|
|
|
|
# slope of perpendicular = -1/slope |
2179
|
2
|
50
|
|
|
|
6
|
if ($y1 != $y2) { |
2180
|
2
|
|
|
|
|
5
|
$b1 = - ($x1 - $x2)/($y1 - $y2); |
2181
|
2
|
|
|
|
|
6
|
$a1 = $v1 - $b1 * $u1; |
2182
|
|
|
|
|
|
|
} else { |
2183
|
0
|
|
|
|
|
0
|
$xi = $u1; |
2184
|
|
|
|
|
|
|
} |
2185
|
2
|
50
|
|
|
|
5
|
if ($y2 != $y3) { |
2186
|
2
|
|
|
|
|
4
|
$b2 = - ($x2 - $x3)/($y2 - $y3); |
2187
|
2
|
|
|
|
|
6
|
$a2 = $v2 - $b2 * $u2; |
2188
|
|
|
|
|
|
|
} else { |
2189
|
0
|
|
|
|
|
0
|
$xi = $u2; |
2190
|
|
|
|
|
|
|
} |
2191
|
|
|
|
|
|
|
# parallel lines (colinear is also parallel) |
2192
|
2
|
50
|
33
|
|
|
33
|
return if ($b1 == $b2 || (!$b1 && !$b2)); |
|
|
|
33
|
|
|
|
|
2193
|
2
|
50
|
|
|
|
15
|
$xi = - ($a1 - $a2)/($b1 - $b2) if (!$xi); |
2194
|
2
|
50
|
|
|
|
6
|
$yi = $a1 + $b1 * $xi if ($b1); |
2195
|
2
|
50
|
|
|
|
7
|
$yi = $a2 + $b2 * $xi if ($b1); |
2196
|
2
|
|
|
|
|
7
|
return [($xi,$yi)]; |
2197
|
|
|
|
|
|
|
} |
2198
|
|
|
|
|
|
|
################################################################################ |
2199
|
|
|
|
|
|
|
# |
2200
|
|
|
|
|
|
|
# calculate angel of vector p1p2 |
2201
|
|
|
|
|
|
|
# |
2202
|
|
|
|
|
|
|
sub CalcAngle { |
2203
|
7
|
|
|
7
|
0
|
9
|
my ($p1_ref,$p2_ref) = @_; |
2204
|
7
|
|
|
|
|
9
|
my ($x1,$y1) = @{$p1_ref}; |
|
7
|
|
|
|
|
13
|
|
2205
|
7
|
|
|
|
|
7
|
my ($x2,$y2) = @{$p2_ref}; |
|
7
|
|
|
|
|
12
|
|
2206
|
7
|
50
|
66
|
|
|
33
|
return 0 if ($y1 == $y2 && $x1 == $x2); |
2207
|
7
|
50
|
66
|
|
|
24
|
return 0 if ($y1 == $y2 && $x1 < $x2); |
2208
|
7
|
100
|
66
|
|
|
27
|
return $pi if ($y1 == $y2 && $x1 > $x2); |
2209
|
4
|
100
|
66
|
|
|
23
|
return $pi/2 if ($x1 == $x2 && $y1 < $y2); |
2210
|
1
|
50
|
33
|
|
|
9
|
return ($pi *3)/2 if ($x1 == $x2 && $y1 > $y2); |
2211
|
0
|
|
|
|
|
0
|
my $angle = atan2($y2-$y1,$x2-$x1); |
2212
|
0
|
|
|
|
|
0
|
return $angle; |
2213
|
|
|
|
|
|
|
} |
2214
|
|
|
|
|
|
|
################################################################################ |
2215
|
|
|
|
|
|
|
# |
2216
|
|
|
|
|
|
|
# This program is an implementation of a fast polygon |
2217
|
|
|
|
|
|
|
# triangulation algorithm based on the paper "A simple and fast |
2218
|
|
|
|
|
|
|
# incremental randomized algorithm for computing trapezoidal |
2219
|
|
|
|
|
|
|
# decompositions and for triangulating polygons" by Raimund Seidel. |
2220
|
|
|
|
|
|
|
# |
2221
|
|
|
|
|
|
|
# The algorithm handles simple polygons with holes. The input is |
2222
|
|
|
|
|
|
|
# specified as contours. The outermost contour is anti-clockwise, while |
2223
|
|
|
|
|
|
|
# all the inner contours must be clockwise. No point should be repeated |
2224
|
|
|
|
|
|
|
# in the input. A sample input file 'data_1' is provided. |
2225
|
|
|
|
|
|
|
# |
2226
|
|
|
|
|
|
|
# The output is a reference to a list of triangles. Each triangle |
2227
|
|
|
|
|
|
|
# is ar reference to an array fo three points, each point is a reference |
2228
|
|
|
|
|
|
|
# to an array holdign the x and y coordinates of the point. |
2229
|
|
|
|
|
|
|
# The number of output triangles produced for a polygon with n points is, |
2230
|
|
|
|
|
|
|
# (n - 2) + 2*(#holes) |
2231
|
|
|
|
|
|
|
# |
2232
|
|
|
|
|
|
|
# The program is a translation to perl of the C program written by |
2233
|
|
|
|
|
|
|
# Narkhede A. and Manocha D., Fast polygon triangulation algorithm based |
2234
|
|
|
|
|
|
|
# on Seidel's Algorithm, UNC-CH, 1994. |
2235
|
|
|
|
|
|
|
# Note that in this perl version, there are no statically allocated arrays |
2236
|
|
|
|
|
|
|
# so the only limit is the amount of (virtual) memory available. |
2237
|
|
|
|
|
|
|
# |
2238
|
|
|
|
|
|
|
# See also: |
2239
|
|
|
|
|
|
|
# |
2240
|
|
|
|
|
|
|
# R. Seidel |
2241
|
|
|
|
|
|
|
# "A simple and Fast Randomized Algorithm for Computing Trapezoidal |
2242
|
|
|
|
|
|
|
# Decompositions and for Triangulating Polygons" |
2243
|
|
|
|
|
|
|
# "Computational Geometry Theory & Applications" |
2244
|
|
|
|
|
|
|
# Number = 1, Year 1991, Volume 1, Pages 51-64 |
2245
|
|
|
|
|
|
|
# |
2246
|
|
|
|
|
|
|
# J. O'Rourke |
2247
|
|
|
|
|
|
|
# "Computational Geometry in {C}" |
2248
|
|
|
|
|
|
|
# Cambridge University Press - 1994 |
2249
|
|
|
|
|
|
|
# |
2250
|
|
|
|
|
|
|
# Input specified as a contour with the restrictions mentioned above: |
2251
|
|
|
|
|
|
|
# - first polygon is the outer shape and must be anti-clockwise. |
2252
|
|
|
|
|
|
|
# - next polygons are inner shapels (holes) must be clockwise. |
2253
|
|
|
|
|
|
|
# - Inner and outer shapes must be simple . |
2254
|
|
|
|
|
|
|
# |
2255
|
|
|
|
|
|
|
# Every contour is specified by giving all its points in order. No |
2256
|
|
|
|
|
|
|
# point shoud be repeated. i.e. if the outer contour is a square, |
2257
|
|
|
|
|
|
|
# only the four distinct endpoints shopudl be specified in order. |
2258
|
|
|
|
|
|
|
# |
2259
|
|
|
|
|
|
|
# Returns a reference to an array holding the triangles. |
2260
|
|
|
|
|
|
|
# |
2261
|
|
|
|
|
|
|
|
2262
|
|
|
|
|
|
|
my $C_EPS = 1e-10; # tolerance value: Used for making |
2263
|
|
|
|
|
|
|
# all decisions about collinearity or |
2264
|
|
|
|
|
|
|
# left/right of segment. Decrease |
2265
|
|
|
|
|
|
|
# this value if the input points are |
2266
|
|
|
|
|
|
|
# spaced very close together |
2267
|
|
|
|
|
|
|
|
2268
|
|
|
|
|
|
|
my $INFINITY = 1<<29; |
2269
|
|
|
|
|
|
|
|
2270
|
|
|
|
|
|
|
my $TRUE = 1; |
2271
|
|
|
|
|
|
|
my $FALSE = 0; |
2272
|
|
|
|
|
|
|
|
2273
|
|
|
|
|
|
|
my $T_X = 1; |
2274
|
|
|
|
|
|
|
my $T_Y = 2; |
2275
|
|
|
|
|
|
|
my $T_SINK = 3; |
2276
|
|
|
|
|
|
|
|
2277
|
|
|
|
|
|
|
my $ST_VALID = 1; |
2278
|
|
|
|
|
|
|
my $ST_INVALID = 2; |
2279
|
|
|
|
|
|
|
|
2280
|
|
|
|
|
|
|
my $FIRSTPT = 1; |
2281
|
|
|
|
|
|
|
my $LASTPT = 2; |
2282
|
|
|
|
|
|
|
|
2283
|
|
|
|
|
|
|
my $S_LEFT = 1; |
2284
|
|
|
|
|
|
|
my $S_RIGHT = 2; |
2285
|
|
|
|
|
|
|
|
2286
|
|
|
|
|
|
|
my $SP_SIMPLE_LRUP = 1; # for splitting trapezoids |
2287
|
|
|
|
|
|
|
my $SP_SIMPLE_LRDN = 2; |
2288
|
|
|
|
|
|
|
my $SP_2UP_2DN = 3; |
2289
|
|
|
|
|
|
|
my $SP_2UP_LEFT = 4; |
2290
|
|
|
|
|
|
|
my $SP_2UP_RIGHT = 5; |
2291
|
|
|
|
|
|
|
my $SP_2DN_LEFT = 6; |
2292
|
|
|
|
|
|
|
my $SP_2DN_RIGHT = 7; |
2293
|
|
|
|
|
|
|
my $SP_NOSPLIT = -1; |
2294
|
|
|
|
|
|
|
|
2295
|
|
|
|
|
|
|
my $TRI_LHS = 1; |
2296
|
|
|
|
|
|
|
my $TRI_RHS = 2; |
2297
|
|
|
|
|
|
|
my $TR_FROM_UP = 1; # for traverse-direction |
2298
|
|
|
|
|
|
|
my $TR_FROM_DN = 2; |
2299
|
|
|
|
|
|
|
|
2300
|
|
|
|
|
|
|
my $choose_idx = 1; |
2301
|
|
|
|
|
|
|
my @permute; |
2302
|
|
|
|
|
|
|
my $q_idx; |
2303
|
|
|
|
|
|
|
my $tr_idx; |
2304
|
|
|
|
|
|
|
my @qs; # Query structure |
2305
|
|
|
|
|
|
|
my @tr; # Trapezoid structure |
2306
|
|
|
|
|
|
|
my @seg; # Segment table |
2307
|
|
|
|
|
|
|
|
2308
|
|
|
|
|
|
|
my @mchain; # Table to hold all the monotone |
2309
|
|
|
|
|
|
|
# polygons . Each monotone polygon |
2310
|
|
|
|
|
|
|
# is a circularly linked list |
2311
|
|
|
|
|
|
|
my @vert; # chain init. information. This |
2312
|
|
|
|
|
|
|
# is used to decide which |
2313
|
|
|
|
|
|
|
# monotone polygon to split if |
2314
|
|
|
|
|
|
|
# there are several other |
2315
|
|
|
|
|
|
|
# polygons touching at the same |
2316
|
|
|
|
|
|
|
# vertex |
2317
|
|
|
|
|
|
|
my @mon; # contains position of any vertex in |
2318
|
|
|
|
|
|
|
# the monotone chain for the polygon |
2319
|
|
|
|
|
|
|
my @visited; |
2320
|
|
|
|
|
|
|
my @op; # contains the resulting list of triangles |
2321
|
|
|
|
|
|
|
# and their vertex number |
2322
|
|
|
|
|
|
|
my ($chain_idx, $op_idx, $mon_idx); |
2323
|
|
|
|
|
|
|
|
2324
|
|
|
|
|
|
|
sub TriangulatePolygon { |
2325
|
|
|
|
|
|
|
|
2326
|
2
|
|
|
2
|
0
|
4
|
$choose_idx = 1; |
2327
|
2
|
|
|
|
|
27
|
@seg = (); |
2328
|
2
|
|
|
|
|
34
|
@mchain = (); |
2329
|
2
|
|
|
|
|
20
|
@vert = (); |
2330
|
2
|
|
|
|
|
33
|
@mon = (); |
2331
|
2
|
|
|
|
|
6
|
@visited = (); |
2332
|
2
|
|
|
|
|
7
|
@op = (); |
2333
|
|
|
|
|
|
|
|
2334
|
2
|
|
|
|
|
3
|
my ($polygonrefs) = @_; |
2335
|
2
|
|
|
|
|
3
|
my @polygons = @{$polygonrefs}; |
|
2
|
|
|
|
|
6
|
|
2336
|
|
|
|
|
|
|
|
2337
|
2
|
|
|
|
|
6
|
my $ccount = 0; |
2338
|
2
|
|
|
|
|
3
|
my $i = 1; |
2339
|
2
|
|
|
|
|
8
|
while ($ccount < @polygons) { |
2340
|
3
|
|
|
|
|
5
|
my @vertexarray = @{$polygons[$ccount]}; |
|
3
|
|
|
|
|
16
|
|
2341
|
3
|
|
|
|
|
6
|
my $npoints = @vertexarray; |
2342
|
3
|
|
|
|
|
7
|
my $first = $i; |
2343
|
3
|
|
|
|
|
5
|
my $last = $first + $npoints - 1; |
2344
|
3
|
|
|
|
|
9
|
for (my $j = 0; $j < $npoints; $j++, $i++) { |
2345
|
16
|
|
|
|
|
16
|
my @vertex = @{$vertexarray[$j]}; |
|
16
|
|
|
|
|
31
|
|
2346
|
16
|
|
|
|
|
45
|
$seg[$i]{v0}{x} = $vertex[0]; |
2347
|
16
|
|
|
|
|
29
|
$seg[$i]{v0}{y} = $vertex[1]; |
2348
|
16
|
100
|
|
|
|
44
|
if ($i == $last) { |
|
|
100
|
|
|
|
|
|
2349
|
3
|
|
|
|
|
11
|
$seg[$i]{next} = $first; |
2350
|
3
|
|
|
|
|
7
|
$seg[$i]{prev} = $i-1; |
2351
|
3
|
|
|
|
|
5
|
my %tmp = %{$seg[$i]{v0}}; |
|
3
|
|
|
|
|
17
|
|
2352
|
3
|
|
|
|
|
8
|
$seg[$i-1]{v1} = \%tmp; |
2353
|
|
|
|
|
|
|
} elsif ($i == $first) { |
2354
|
3
|
|
|
|
|
7
|
$seg[$i]{next} = $i+1; |
2355
|
3
|
|
|
|
|
8
|
$seg[$i]{prev} = $last; |
2356
|
3
|
|
|
|
|
5
|
my %tmp = %{$seg[$i]{v0}}; |
|
3
|
|
|
|
|
17
|
|
2357
|
3
|
|
|
|
|
11
|
$seg[$last]{v1} = \%tmp; |
2358
|
|
|
|
|
|
|
} else { |
2359
|
10
|
|
|
|
|
15
|
$seg[$i]{prev} = $i-1; |
2360
|
10
|
|
|
|
|
15
|
$seg[$i]{next} = $i+1; |
2361
|
10
|
|
|
|
|
10
|
my %tmp = %{$seg[$i]{v0}}; |
|
10
|
|
|
|
|
28
|
|
2362
|
10
|
|
|
|
|
23
|
$seg[$i-1]{v1} = \%tmp; |
2363
|
|
|
|
|
|
|
} |
2364
|
16
|
|
|
|
|
50
|
$seg[$i]{is_inserted} = $FALSE; |
2365
|
|
|
|
|
|
|
} |
2366
|
3
|
|
|
|
|
10
|
$ccount++; |
2367
|
|
|
|
|
|
|
} |
2368
|
|
|
|
|
|
|
|
2369
|
2
|
|
|
|
|
4
|
my $n = $i-1; |
2370
|
|
|
|
|
|
|
|
2371
|
2
|
|
|
|
|
14
|
_generate_random_ordering($n); |
2372
|
2
|
|
|
|
|
9
|
_construct_trapezoids($n); |
2373
|
2
|
|
|
|
|
10
|
my $nmonpoly = _monotonate_trapezoids($n); |
2374
|
2
|
|
|
|
|
7
|
my $ntriangles = _triangulate_monotone_polygons($n, $nmonpoly); |
2375
|
|
|
|
|
|
|
# now get the coordinates for all the triangles |
2376
|
2
|
|
|
|
|
5
|
my @result; |
2377
|
2
|
|
|
|
|
16
|
for (my $i = 0; $i < $ntriangles; $i++) { |
2378
|
14
|
|
|
|
|
13
|
my @vertices = @{$op[$i]}; |
|
14
|
|
|
|
|
29
|
|
2379
|
14
|
|
|
|
|
99
|
my $triangle = [[$seg[$vertices[0]]{v0}{x},$seg[$vertices[0]]{v0}{y}], |
2380
|
|
|
|
|
|
|
[$seg[$vertices[1]]{v0}{x},$seg[$vertices[1]]{v0}{y}], |
2381
|
|
|
|
|
|
|
[$seg[$vertices[2]]{v0}{x},$seg[$vertices[2]]{v0}{y}]]; |
2382
|
14
|
|
|
|
|
52
|
push @result,$triangle; |
2383
|
|
|
|
|
|
|
} |
2384
|
2
|
|
|
|
|
15
|
return [@result];; |
2385
|
|
|
|
|
|
|
} |
2386
|
|
|
|
|
|
|
|
2387
|
|
|
|
|
|
|
# Generate a random permutation of the segments 1..n |
2388
|
|
|
|
|
|
|
sub _generate_random_ordering { |
2389
|
2
|
|
|
2
|
|
5
|
@permute = (); |
2390
|
2
|
|
|
|
|
3
|
my ($n) = @_; |
2391
|
2
|
|
|
|
|
3
|
my @input; |
2392
|
2
|
|
|
|
|
5
|
for (my $i = 1 ; $i <= $n ; $i++) { |
2393
|
16
|
|
|
|
|
31
|
$input[$i] = $i; |
2394
|
|
|
|
|
|
|
} |
2395
|
2
|
|
|
|
|
3
|
my $i = 1; |
2396
|
2
|
|
|
|
|
8
|
for (my $i = 1 ; $i <= $n ; $i++) { |
2397
|
16
|
|
|
|
|
99
|
my $m = int rand($#input) + 1; |
2398
|
16
|
|
|
|
|
25
|
$permute[$i] = $input[$m]; |
2399
|
16
|
|
|
|
|
44
|
splice @input,$m,1; |
2400
|
|
|
|
|
|
|
} |
2401
|
|
|
|
|
|
|
} |
2402
|
|
|
|
|
|
|
|
2403
|
|
|
|
|
|
|
# Return the next segment in the generated random ordering of all the |
2404
|
|
|
|
|
|
|
# segments in S |
2405
|
|
|
|
|
|
|
sub _choose_segment { |
2406
|
16
|
|
|
16
|
|
50
|
return $permute[$choose_idx++]; |
2407
|
|
|
|
|
|
|
} |
2408
|
|
|
|
|
|
|
|
2409
|
|
|
|
|
|
|
# Return a new node to be added into the query tree |
2410
|
|
|
|
|
|
|
sub _newnode { |
2411
|
92
|
|
|
92
|
|
157
|
return $q_idx++; |
2412
|
|
|
|
|
|
|
} |
2413
|
|
|
|
|
|
|
|
2414
|
|
|
|
|
|
|
# Return a free trapezoid |
2415
|
|
|
|
|
|
|
sub _newtrap { |
2416
|
47
|
|
|
47
|
|
112
|
$tr[$tr_idx]{lseg} = -1; |
2417
|
47
|
|
|
|
|
60
|
$tr[$tr_idx]{rseg} = -1; |
2418
|
47
|
|
|
|
|
72
|
$tr[$tr_idx]{state} = $ST_VALID; |
2419
|
|
|
|
|
|
|
# next statements added to prevent 'uninitialized' warnings |
2420
|
47
|
|
|
|
|
79
|
$tr[$tr_idx]{d0} = 0; |
2421
|
47
|
|
|
|
|
57
|
$tr[$tr_idx]{d1} = 0; |
2422
|
47
|
|
|
|
|
66
|
$tr[$tr_idx]{u0} = 0; |
2423
|
47
|
|
|
|
|
59
|
$tr[$tr_idx]{u1} = 0; |
2424
|
47
|
|
|
|
|
118
|
$tr[$tr_idx]{usave} = 0; |
2425
|
47
|
|
|
|
|
63
|
$tr[$tr_idx]{uside} = 0; |
2426
|
47
|
|
|
|
|
87
|
return $tr_idx++; |
2427
|
|
|
|
|
|
|
} |
2428
|
|
|
|
|
|
|
|
2429
|
|
|
|
|
|
|
# Floating point number comparison |
2430
|
|
|
|
|
|
|
sub _fp_equal { |
2431
|
312
|
|
|
312
|
|
416
|
my ($X, $Y, $POINTS) = @_; |
2432
|
312
|
|
|
|
|
311
|
my ($tX, $tY); |
2433
|
312
|
|
|
|
|
1039
|
$tX = sprintf("%.${POINTS}g", $X); |
2434
|
312
|
|
|
|
|
695
|
$tY = sprintf("%.${POINTS}g", $Y); |
2435
|
312
|
|
|
|
|
1575
|
return $tX eq $tY; |
2436
|
|
|
|
|
|
|
} |
2437
|
|
|
|
|
|
|
|
2438
|
|
|
|
|
|
|
# Return the maximum of the two points |
2439
|
|
|
|
|
|
|
sub _max { |
2440
|
2
|
|
|
2
|
|
4
|
my ($v0_ref, $v1_ref) = @_; |
2441
|
2
|
|
|
|
|
3
|
my %v0 = %{$v0_ref}; |
|
2
|
|
|
|
|
9
|
|
2442
|
2
|
|
|
|
|
4
|
my %v1 = %{$v1_ref}; |
|
2
|
|
|
|
|
14
|
|
2443
|
2
|
100
|
|
|
|
14
|
if ($v0{y} > $v1{y} + $C_EPS) { |
|
|
50
|
|
|
|
|
|
2444
|
1
|
|
|
|
|
9
|
return \%v0; |
2445
|
|
|
|
|
|
|
} elsif (_fp_equal($v0{y}, $v1{y}, $precision)) { |
2446
|
0
|
0
|
|
|
|
0
|
if ($v0{x} > $v1{x} + $C_EPS) { |
2447
|
0
|
|
|
|
|
0
|
return \%v0; |
2448
|
|
|
|
|
|
|
} else { |
2449
|
0
|
|
|
|
|
0
|
return \%v1; |
2450
|
|
|
|
|
|
|
} |
2451
|
|
|
|
|
|
|
} else { |
2452
|
1
|
|
|
|
|
6
|
return \%v1; |
2453
|
|
|
|
|
|
|
} |
2454
|
|
|
|
|
|
|
} |
2455
|
|
|
|
|
|
|
|
2456
|
|
|
|
|
|
|
# Return the minimum of the two points |
2457
|
|
|
|
|
|
|
sub _min { |
2458
|
2
|
|
|
2
|
|
5
|
my ($v0_ref, $v1_ref) = @_; |
2459
|
2
|
|
|
|
|
4
|
my %v0 = %{$v0_ref}; |
|
2
|
|
|
|
|
7
|
|
2460
|
2
|
|
|
|
|
4
|
my %v1 = %{$v1_ref}; |
|
2
|
|
|
|
|
5
|
|
2461
|
2
|
100
|
|
|
|
14
|
if ($v0{y} < $v1{y} - $C_EPS) { |
|
|
50
|
|
|
|
|
|
2462
|
1
|
|
|
|
|
11
|
return \%v0; |
2463
|
|
|
|
|
|
|
} elsif (_fp_equal($v0{y}, $v1{y}, $precision)) { |
2464
|
0
|
0
|
|
|
|
0
|
if ($v0{x} < $v1{x}) { |
2465
|
0
|
|
|
|
|
0
|
return \%v0; |
2466
|
|
|
|
|
|
|
} else { |
2467
|
0
|
|
|
|
|
0
|
return \%v1; |
2468
|
|
|
|
|
|
|
} |
2469
|
|
|
|
|
|
|
} else { |
2470
|
1
|
|
|
|
|
7
|
return \%v1; |
2471
|
|
|
|
|
|
|
} |
2472
|
|
|
|
|
|
|
} |
2473
|
|
|
|
|
|
|
|
2474
|
|
|
|
|
|
|
sub _greater_than { |
2475
|
154
|
|
|
154
|
|
186
|
my ($v0_ref, $v1_ref) = @_; |
2476
|
154
|
|
|
|
|
153
|
my %v0 = %{$v0_ref}; |
|
154
|
|
|
|
|
413
|
|
2477
|
154
|
|
|
|
|
210
|
my %v1 = %{$v1_ref}; |
|
154
|
|
|
|
|
324
|
|
2478
|
154
|
100
|
|
|
|
554
|
if ($v0{y} > $v1{y} + $C_EPS) { |
|
|
100
|
|
|
|
|
|
2479
|
61
|
|
|
|
|
247
|
return 1; |
2480
|
|
|
|
|
|
|
} elsif ($v0{y} < $v1{y} - $C_EPS) { |
2481
|
54
|
|
|
|
|
196
|
return 0; |
2482
|
|
|
|
|
|
|
} else { |
2483
|
39
|
|
|
|
|
178
|
return ($v0{x} > $v1{x}); |
2484
|
|
|
|
|
|
|
} |
2485
|
|
|
|
|
|
|
} |
2486
|
|
|
|
|
|
|
|
2487
|
|
|
|
|
|
|
sub _equal_to { |
2488
|
134
|
|
|
134
|
|
182
|
my ($v0_ref, $v1_ref) = @_; |
2489
|
134
|
|
|
|
|
137
|
my %v0 = %{$v0_ref}; |
|
134
|
|
|
|
|
352
|
|
2490
|
134
|
|
|
|
|
172
|
my %v1 = %{$v1_ref}; |
|
134
|
|
|
|
|
291
|
|
2491
|
134
|
|
100
|
|
|
304
|
return ( _fp_equal($v0{y}, $v1{y}, $precision) && |
2492
|
|
|
|
|
|
|
_fp_equal($v0{x}, $v1{x}, $precision) ); |
2493
|
|
|
|
|
|
|
} |
2494
|
|
|
|
|
|
|
|
2495
|
|
|
|
|
|
|
sub _greater_than_equal_to { |
2496
|
88
|
|
|
88
|
|
121
|
my ($v0_ref, $v1_ref) = @_; |
2497
|
88
|
|
|
|
|
90
|
my %v0 = %{$v0_ref}; |
|
88
|
|
|
|
|
260
|
|
2498
|
88
|
|
|
|
|
115
|
my %v1 = %{$v1_ref}; |
|
88
|
|
|
|
|
200
|
|
2499
|
88
|
100
|
|
|
|
313
|
if ($v0{y} > $v1{y} + $C_EPS) { |
|
|
100
|
|
|
|
|
|
2500
|
24
|
|
|
|
|
93
|
return 1; |
2501
|
|
|
|
|
|
|
} elsif ($v0{y} < $v1{y} - $C_EPS) { |
2502
|
7
|
|
|
|
|
34
|
return 0; |
2503
|
|
|
|
|
|
|
} else { |
2504
|
57
|
|
|
|
|
262
|
return ($v0{x} >= $v1{x}); |
2505
|
|
|
|
|
|
|
} |
2506
|
|
|
|
|
|
|
} |
2507
|
|
|
|
|
|
|
|
2508
|
|
|
|
|
|
|
sub _less_than { |
2509
|
32
|
|
|
32
|
|
43
|
my ($v0_ref, $v1_ref) = @_; |
2510
|
32
|
|
|
|
|
39
|
my %v0 = %{$v0_ref}; |
|
32
|
|
|
|
|
115
|
|
2511
|
32
|
|
|
|
|
45
|
my %v1 = %{$v1_ref}; |
|
32
|
|
|
|
|
91
|
|
2512
|
32
|
100
|
|
|
|
126
|
if ($v0{y} < $v1{y} - $C_EPS) { |
|
|
100
|
|
|
|
|
|
2513
|
5
|
|
|
|
|
17
|
return 1; |
2514
|
|
|
|
|
|
|
} elsif ($v0{y} > $v1{y} + $C_EPS) { |
2515
|
10
|
|
|
|
|
28
|
return 0; |
2516
|
|
|
|
|
|
|
} else { |
2517
|
17
|
|
|
|
|
74
|
return ($v0{x} < $v1{x}); |
2518
|
|
|
|
|
|
|
} |
2519
|
|
|
|
|
|
|
} |
2520
|
|
|
|
|
|
|
|
2521
|
|
|
|
|
|
|
# Initilialise the query structure (Q) and the trapezoid table (T) |
2522
|
|
|
|
|
|
|
# when the first segment is added to start the trapezoidation. The |
2523
|
|
|
|
|
|
|
# query-tree starts out with 4 trapezoids, one S-node and 2 Y-nodes |
2524
|
|
|
|
|
|
|
# |
2525
|
|
|
|
|
|
|
# 4 |
2526
|
|
|
|
|
|
|
# ----------------------------------- |
2527
|
|
|
|
|
|
|
# \ |
2528
|
|
|
|
|
|
|
# 1 \ 2 |
2529
|
|
|
|
|
|
|
# \ |
2530
|
|
|
|
|
|
|
# ----------------------------------- |
2531
|
|
|
|
|
|
|
# 3 |
2532
|
|
|
|
|
|
|
# |
2533
|
|
|
|
|
|
|
|
2534
|
|
|
|
|
|
|
sub _init_query_structure { |
2535
|
2
|
|
|
2
|
|
5
|
my ($segnum) = @_; |
2536
|
|
|
|
|
|
|
|
2537
|
2
|
|
|
|
|
4
|
my ($i1,$i2,$i3,$i4,$i5,$i6,$i7,$root); |
2538
|
0
|
|
|
|
|
0
|
my ($t1,$t2,$t3,$t4); |
2539
|
|
|
|
|
|
|
|
2540
|
2
|
|
|
|
|
52
|
@qs = (); |
2541
|
2
|
|
|
|
|
60
|
@tr = (); |
2542
|
|
|
|
|
|
|
|
2543
|
2
|
|
|
|
|
5
|
$q_idx = $tr_idx = 1; |
2544
|
|
|
|
|
|
|
|
2545
|
2
|
|
|
|
|
7
|
$i1 = _newnode(); |
2546
|
2
|
|
|
|
|
6
|
$qs[$i1]{nodetype} = $T_Y; |
2547
|
|
|
|
|
|
|
|
2548
|
2
|
|
|
|
|
3
|
my %tmpmax = %{_max($seg[$segnum]{v0}, $seg[$segnum]{v1})}; # root |
|
2
|
|
|
|
|
13
|
|
2549
|
2
|
|
|
|
|
14
|
$qs[$i1]{yval} = {x => $tmpmax{x} , y => $tmpmax{y}}; |
2550
|
2
|
|
|
|
|
3
|
$root = $i1; |
2551
|
|
|
|
|
|
|
|
2552
|
2
|
|
|
|
|
4
|
$qs[$i1]{right} = $i2 = _newnode(); |
2553
|
2
|
|
|
|
|
7
|
$qs[$i2]{nodetype} = $T_SINK; |
2554
|
2
|
|
|
|
|
4
|
$qs[$i2]{parent} = $i1; |
2555
|
|
|
|
|
|
|
|
2556
|
2
|
|
|
|
|
5
|
$qs[$i1]{left} = $i3 = _newnode(); |
2557
|
2
|
|
|
|
|
5
|
$qs[$i3]{nodetype} = $T_Y; |
2558
|
2
|
|
|
|
|
5
|
my %tmpmin = %{_min($seg[$segnum]{v0}, $seg[$segnum]{v1})}; # root |
|
2
|
|
|
|
|
8
|
|
2559
|
2
|
|
|
|
|
17
|
$qs[$i3]{yval} = {x => $tmpmin{x} , y => $tmpmin{y}}; |
2560
|
2
|
|
|
|
|
4
|
$qs[$i3]{parent} = $i1; |
2561
|
|
|
|
|
|
|
|
2562
|
2
|
|
|
|
|
5
|
$qs[$i3]{left} = $i4 = _newnode(); |
2563
|
2
|
|
|
|
|
5
|
$qs[$i4]{nodetype} = $T_SINK; |
2564
|
2
|
|
|
|
|
3
|
$qs[$i4]{parent} = $i3; |
2565
|
|
|
|
|
|
|
|
2566
|
2
|
|
|
|
|
10
|
$qs[$i3]{right} = $i5 = _newnode(); |
2567
|
2
|
|
|
|
|
6
|
$qs[$i5]{nodetype} = $T_X; |
2568
|
2
|
|
|
|
|
4
|
$qs[$i5]{segnum} = $segnum; |
2569
|
2
|
|
|
|
|
3
|
$qs[$i5]{parent} = $i3; |
2570
|
|
|
|
|
|
|
|
2571
|
2
|
|
|
|
|
4
|
$qs[$i5]{left} = $i6 = _newnode(); |
2572
|
2
|
|
|
|
|
11
|
$qs[$i6]{nodetype} = $T_SINK; |
2573
|
2
|
|
|
|
|
3
|
$qs[$i6]{parent} = $i5; |
2574
|
|
|
|
|
|
|
|
2575
|
2
|
|
|
|
|
4
|
$qs[$i5]{right} = $i7 = _newnode(); |
2576
|
2
|
|
|
|
|
5
|
$qs[$i7]{nodetype} = $T_SINK; |
2577
|
2
|
|
|
|
|
3
|
$qs[$i7]{parent} = $i5; |
2578
|
|
|
|
|
|
|
|
2579
|
2
|
|
|
|
|
6
|
$t1 = _newtrap(); # middle left |
2580
|
2
|
|
|
|
|
4
|
$t2 = _newtrap(); # middle right |
2581
|
2
|
|
|
|
|
4
|
$t3 = _newtrap(); # bottom-most |
2582
|
2
|
|
|
|
|
6
|
$t4 = _newtrap(); # topmost |
2583
|
|
|
|
|
|
|
|
2584
|
2
|
|
|
|
|
14
|
$tr[$t1]{hi} = {x => $qs[$i1]{yval}{x} , y => $qs[$i1]{yval}{y}}; |
2585
|
2
|
|
|
|
|
12
|
$tr[$t2]{hi} = {x => $qs[$i1]{yval}{x} , y => $qs[$i1]{yval}{y}}; |
2586
|
2
|
|
|
|
|
14
|
$tr[$t4]{lo} = {x => $qs[$i1]{yval}{x} , y => $qs[$i1]{yval}{y}}; |
2587
|
2
|
|
|
|
|
8
|
$tr[$t1]{lo} = {x => $qs[$i3]{yval}{x} , y => $qs[$i3]{yval}{y}}; |
2588
|
2
|
|
|
|
|
10
|
$tr[$t2]{lo} = {x => $qs[$i3]{yval}{x} , y => $qs[$i3]{yval}{y}}; |
2589
|
2
|
|
|
|
|
16
|
$tr[$t3]{hi} = {x => $qs[$i3]{yval}{x} , y => $qs[$i3]{yval}{y}}; |
2590
|
2
|
|
|
|
|
6
|
$tr[$t4]{hi} = {x => $INFINITY , y => $INFINITY}; |
2591
|
2
|
|
|
|
|
8
|
$tr[$t3]{lo} = {x => -1 * $INFINITY , y => -1 * $INFINITY}; |
2592
|
2
|
|
|
|
|
5
|
$tr[$t1]{rseg} = $tr[$t2]{lseg} = $segnum; |
2593
|
2
|
|
|
|
|
5
|
$tr[$t1]{u0} = $tr[$t2]{u0} = $t4; |
2594
|
2
|
|
|
|
|
4
|
$tr[$t1]{d0} = $tr[$t2]{d0} = $t3; |
2595
|
2
|
|
|
|
|
6
|
$tr[$t4]{d0} = $tr[$t3]{u0} = $t1; |
2596
|
2
|
|
|
|
|
4
|
$tr[$t4]{d1} = $tr[$t3]{u1} = $t2; |
2597
|
|
|
|
|
|
|
|
2598
|
2
|
|
|
|
|
5
|
$tr[$t1]{sink} = $i6; |
2599
|
2
|
|
|
|
|
4
|
$tr[$t2]{sink} = $i7; |
2600
|
2
|
|
|
|
|
4
|
$tr[$t3]{sink} = $i4; |
2601
|
2
|
|
|
|
|
3
|
$tr[$t4]{sink} = $i2; |
2602
|
|
|
|
|
|
|
|
2603
|
2
|
|
|
|
|
6
|
$tr[$t1]{state} = $tr[$t2]{state} = $ST_VALID; |
2604
|
2
|
|
|
|
|
4
|
$tr[$t3]{state} = $tr[$t4]{state} = $ST_VALID; |
2605
|
|
|
|
|
|
|
|
2606
|
2
|
|
|
|
|
4
|
$qs[$i2]{trnum} = $t4; |
2607
|
2
|
|
|
|
|
11
|
$qs[$i4]{trnum} = $t3; |
2608
|
2
|
|
|
|
|
4
|
$qs[$i6]{trnum} = $t1; |
2609
|
2
|
|
|
|
|
3
|
$qs[$i7]{trnum} = $t2; |
2610
|
|
|
|
|
|
|
|
2611
|
2
|
|
|
|
|
5
|
$seg[$segnum]{is_inserted} = $TRUE; |
2612
|
2
|
|
|
|
|
8
|
return $root; |
2613
|
|
|
|
|
|
|
} |
2614
|
|
|
|
|
|
|
|
2615
|
|
|
|
|
|
|
# Update the roots stored for each of the endpoints of the segment. |
2616
|
|
|
|
|
|
|
# This is done to speed up the location-query for the endpoint when |
2617
|
|
|
|
|
|
|
# the segment is inserted into the trapezoidation subsequently |
2618
|
|
|
|
|
|
|
# |
2619
|
|
|
|
|
|
|
sub _find_new_roots { |
2620
|
32
|
|
|
32
|
|
42
|
my ($segnum) = @_; |
2621
|
|
|
|
|
|
|
|
2622
|
32
|
100
|
|
|
|
99
|
return if ($seg[$segnum]{is_inserted}); |
2623
|
|
|
|
|
|
|
|
2624
|
14
|
|
|
|
|
35
|
$seg[$segnum]{root0} = _locate_endpoint($seg[$segnum]{v0}, $seg[$segnum]{v1}, $seg[$segnum]{root0}); |
2625
|
14
|
|
|
|
|
55
|
$seg[$segnum]{root0} = $tr[$seg[$segnum]{root0}]{sink}; |
2626
|
|
|
|
|
|
|
|
2627
|
14
|
|
|
|
|
37
|
$seg[$segnum]{root1} = _locate_endpoint($seg[$segnum]{v1}, $seg[$segnum]{v0}, $seg[$segnum]{root1}); |
2628
|
14
|
|
|
|
|
72
|
$seg[$segnum]{root1} = $tr[$seg[$segnum]{root1}]{sink}; |
2629
|
|
|
|
|
|
|
} |
2630
|
|
|
|
|
|
|
|
2631
|
|
|
|
|
|
|
# Main routine to perform trapezoidation |
2632
|
|
|
|
|
|
|
sub _construct_trapezoids { |
2633
|
2
|
|
|
2
|
|
4
|
my ($nseg) = @_; # |
2634
|
|
|
|
|
|
|
|
2635
|
|
|
|
|
|
|
# Add the first segment and get the query structure and trapezoid |
2636
|
|
|
|
|
|
|
# list initialised |
2637
|
|
|
|
|
|
|
|
2638
|
2
|
|
|
|
|
7
|
my $root = _init_query_structure(_choose_segment()); |
2639
|
|
|
|
|
|
|
|
2640
|
2
|
|
|
|
|
8
|
for (my $i = 1 ; $i <= $nseg; $i++) { |
2641
|
16
|
|
|
|
|
45
|
$seg[$i]{root0} = $seg[$i]{root1} = $root; |
2642
|
|
|
|
|
|
|
} |
2643
|
2
|
|
|
|
|
13
|
for (my $h = 1; $h <= _math_logstar_n($nseg); $h++) { |
2644
|
4
|
|
|
|
|
15
|
for (my $i = _math_N($nseg, $h -1) + 1; $i <= _math_N($nseg, $h); $i++) { |
2645
|
10
|
|
|
|
|
20
|
_add_segment(_choose_segment()); |
2646
|
|
|
|
|
|
|
} |
2647
|
|
|
|
|
|
|
# Find a new root for each of the segment endpoints |
2648
|
4
|
|
|
|
|
12
|
for (my $i = 1; $i <= $nseg; $i++) { |
2649
|
32
|
|
|
|
|
55
|
_find_new_roots($i); |
2650
|
|
|
|
|
|
|
} |
2651
|
|
|
|
|
|
|
} |
2652
|
2
|
|
|
|
|
7
|
for (my $i = _math_N($nseg, _math_logstar_n($nseg)) + 1; $i <= $nseg; $i++) { |
2653
|
4
|
|
|
|
|
7
|
_add_segment(_choose_segment()); |
2654
|
|
|
|
|
|
|
} |
2655
|
|
|
|
|
|
|
} |
2656
|
|
|
|
|
|
|
|
2657
|
|
|
|
|
|
|
# Add in the new segment into the trapezoidation and update Q and T |
2658
|
|
|
|
|
|
|
# structures. First locate the two endpoints of the segment in the |
2659
|
|
|
|
|
|
|
# Q-structure. Then start from the topmost trapezoid and go down to |
2660
|
|
|
|
|
|
|
# the lower trapezoid dividing all the trapezoids in between . |
2661
|
|
|
|
|
|
|
# |
2662
|
|
|
|
|
|
|
|
2663
|
|
|
|
|
|
|
sub _add_segment { |
2664
|
14
|
|
|
14
|
|
20
|
my ($segnum) = @_; |
2665
|
|
|
|
|
|
|
|
2666
|
14
|
|
|
|
|
14
|
my ($tu, $tl, $sk, $tfirst, $tlast, $tnext); |
2667
|
0
|
|
|
|
|
0
|
my ($tfirstr, $tlastr, $tfirstl, $tlastl); |
2668
|
0
|
|
|
|
|
0
|
my ($i1, $i2, $t, $t1, $t2, $tn); |
2669
|
14
|
|
|
|
|
17
|
my $tritop = 0; |
2670
|
14
|
|
|
|
|
15
|
my $tribot = 0; |
2671
|
14
|
|
|
|
|
14
|
my $is_swapped = 0; |
2672
|
14
|
|
|
|
|
16
|
my $tmptriseg; |
2673
|
14
|
|
|
|
|
16
|
my %s = %{$seg[$segnum]}; |
|
14
|
|
|
|
|
79
|
|
2674
|
|
|
|
|
|
|
|
2675
|
14
|
100
|
|
|
|
48
|
if (_greater_than($s{v1}, $s{v0})) { # Get higher vertex in v0 |
2676
|
7
|
|
|
|
|
10
|
my %tmp; |
2677
|
7
|
|
|
|
|
8
|
%tmp = %{$s{v0}}; |
|
7
|
|
|
|
|
23
|
|
2678
|
7
|
|
|
|
|
33
|
$s{v0} = {x => $s{v1}{x} , y => $s{v1}{y}}; |
2679
|
7
|
|
|
|
|
21
|
$s{v1} = {x => $tmp{x} , y => $tmp{y}}; |
2680
|
7
|
|
|
|
|
11
|
my $tmp = $s{root0}; |
2681
|
7
|
|
|
|
|
10
|
$s{root0} = $s{root1}; |
2682
|
7
|
|
|
|
|
8
|
$s{root1} = $tmp; |
2683
|
7
|
|
|
|
|
16
|
$is_swapped = 1; |
2684
|
|
|
|
|
|
|
} |
2685
|
|
|
|
|
|
|
|
2686
|
14
|
100
|
|
|
|
42
|
if (($is_swapped) ? !_inserted($segnum, $LASTPT) : |
|
|
100
|
|
|
|
|
|
2687
|
|
|
|
|
|
|
!_inserted($segnum, $FIRSTPT)) { # insert v0 in the tree |
2688
|
8
|
|
|
|
|
8
|
my $tmp_d; |
2689
|
|
|
|
|
|
|
|
2690
|
8
|
|
|
|
|
23
|
$tu = _locate_endpoint($s{v0}, $s{v1}, $s{root0}); |
2691
|
8
|
|
|
|
|
22
|
$tl = _newtrap(); # tl is the new lower trapezoid |
2692
|
8
|
|
|
|
|
13
|
$tr[$tl]{state} = $ST_VALID; |
2693
|
8
|
|
|
|
|
13
|
my %tmp = %{$tr[$tu]}; |
|
8
|
|
|
|
|
84
|
|
2694
|
8
|
|
|
|
|
16
|
my %tmphi = %{$tmp{hi}}; |
|
8
|
|
|
|
|
27
|
|
2695
|
8
|
|
|
|
|
16
|
my %tmplo = %{$tmp{lo}}; |
|
8
|
|
|
|
|
23
|
|
2696
|
8
|
|
|
|
|
17
|
$tr[$tl] = \%tmp; |
2697
|
8
|
|
|
|
|
37
|
$tr[$tl]{hi} = {x => $tmphi{x} , y => $tmphi{y}}; |
2698
|
8
|
|
|
|
|
25
|
$tr[$tl]{lo} = {x => $tmplo{x} , y => $tmplo{y}}; |
2699
|
8
|
|
|
|
|
26
|
$tr[$tu]{lo} = {x => $s{v0}{x} , y => $s{v0}{y}}; |
2700
|
8
|
|
|
|
|
30
|
$tr[$tl]{hi} = {x => $s{v0}{x} , y => $s{v0}{y}}; |
2701
|
8
|
|
|
|
|
18
|
$tr[$tu]{d0} = $tl; |
2702
|
8
|
|
|
|
|
14
|
$tr[$tu]{d1} = 0; |
2703
|
8
|
|
|
|
|
13
|
$tr[$tl]{u0} = $tu; |
2704
|
8
|
|
|
|
|
11
|
$tr[$tl]{u1} = 0; |
2705
|
|
|
|
|
|
|
|
2706
|
8
|
100
|
66
|
|
|
42
|
if ((($tmp_d = $tr[$tl]{d0}) > 0) && ($tr[$tmp_d]{u0} == $tu)) { |
2707
|
7
|
|
|
|
|
12
|
$tr[$tmp_d]{u0} = $tl; |
2708
|
|
|
|
|
|
|
} |
2709
|
8
|
50
|
66
|
|
|
39
|
if ((($tmp_d = $tr[$tl]{d0}) > 0) && ($tr[$tmp_d]{u1} == $tu)) { |
2710
|
0
|
|
|
|
|
0
|
$tr[$tmp_d]{u1} = $tl; |
2711
|
|
|
|
|
|
|
} |
2712
|
|
|
|
|
|
|
|
2713
|
8
|
100
|
66
|
|
|
37
|
if ((($tmp_d = $tr[$tl]{d1}) > 0) && ($tr[$tmp_d]{u0} == $tu)) { |
2714
|
4
|
|
|
|
|
7
|
$tr[$tmp_d]{u0} = $tl; |
2715
|
|
|
|
|
|
|
} |
2716
|
8
|
50
|
66
|
|
|
32
|
if ((($tmp_d = $tr[$tl]{d1}) > 0) && ($tr[$tmp_d]{u1} == $tu)) { |
2717
|
0
|
|
|
|
|
0
|
$tr[$tmp_d]{u1} = $tl; |
2718
|
|
|
|
|
|
|
} |
2719
|
|
|
|
|
|
|
|
2720
|
|
|
|
|
|
|
# Now update the query structure and obtain the sinks for the |
2721
|
|
|
|
|
|
|
# two trapezoids |
2722
|
|
|
|
|
|
|
|
2723
|
8
|
|
|
|
|
17
|
$i1 = _newnode(); # Upper trapezoid sink |
2724
|
8
|
|
|
|
|
16
|
$i2 = _newnode(); # Lower trapezoid sink |
2725
|
8
|
|
|
|
|
14
|
$sk = $tr[$tu]{sink}; |
2726
|
|
|
|
|
|
|
|
2727
|
8
|
|
|
|
|
14
|
$qs[$sk]{nodetype} = $T_Y; |
2728
|
8
|
|
|
|
|
32
|
$qs[$sk]{yval} = {x => $s{v0}{x} , y=> $s{v0}{y}}; |
2729
|
8
|
|
|
|
|
14
|
$qs[$sk]{segnum} = $segnum; # not really reqd ... maybe later |
2730
|
8
|
|
|
|
|
18
|
$qs[$sk]{left} = $i2; |
2731
|
8
|
|
|
|
|
10
|
$qs[$sk]{right} = $i1; |
2732
|
|
|
|
|
|
|
|
2733
|
8
|
|
|
|
|
20
|
$qs[$i1]{nodetype} = $T_SINK; |
2734
|
8
|
|
|
|
|
22
|
$qs[$i1]{trnum} = $tu; |
2735
|
8
|
|
|
|
|
12
|
$qs[$i1]{parent} = $sk; |
2736
|
|
|
|
|
|
|
|
2737
|
8
|
|
|
|
|
16
|
$qs[$i2]{nodetype} = $T_SINK; |
2738
|
8
|
|
|
|
|
17
|
$qs[$i2]{trnum} = $tl; |
2739
|
8
|
|
|
|
|
18
|
$qs[$i2]{parent} = $sk; |
2740
|
|
|
|
|
|
|
|
2741
|
8
|
|
|
|
|
13
|
$tr[$tu]{sink} = $i1; |
2742
|
8
|
|
|
|
|
11
|
$tr[$tl]{sink} = $i2; |
2743
|
8
|
|
|
|
|
23
|
$tfirst = $tl; |
2744
|
|
|
|
|
|
|
} else { # v0 already present |
2745
|
|
|
|
|
|
|
# Get the topmost intersecting trapezoid |
2746
|
6
|
|
|
|
|
17
|
$tfirst = _locate_endpoint($s{v0}, $s{v1}, $s{root0}); |
2747
|
6
|
|
|
|
|
19
|
$tritop = 1; |
2748
|
|
|
|
|
|
|
} |
2749
|
|
|
|
|
|
|
|
2750
|
|
|
|
|
|
|
|
2751
|
14
|
100
|
|
|
|
44
|
if (($is_swapped) ? !_inserted($segnum, $FIRSTPT) : |
|
|
100
|
|
|
|
|
|
2752
|
|
|
|
|
|
|
!_inserted($segnum, $LASTPT)) { # insert v1 in the tree |
2753
|
4
|
|
|
|
|
8
|
my $tmp_d; |
2754
|
|
|
|
|
|
|
|
2755
|
4
|
|
|
|
|
11
|
$tu = _locate_endpoint($s{v1}, $s{v0}, $s{root1}); |
2756
|
4
|
|
|
|
|
13
|
$tl = _newtrap(); # tl is the new lower trapezoid |
2757
|
4
|
|
|
|
|
9
|
$tr[$tl]{state} = $ST_VALID; |
2758
|
4
|
|
|
|
|
5
|
my %tmp = %{$tr[$tu]}; |
|
4
|
|
|
|
|
27
|
|
2759
|
4
|
|
|
|
|
8
|
my %tmphi = %{$tmp{hi}}; |
|
4
|
|
|
|
|
13
|
|
2760
|
4
|
|
|
|
|
6
|
my %tmplo = %{$tmp{lo}}; |
|
4
|
|
|
|
|
10
|
|
2761
|
4
|
|
|
|
|
9
|
$tr[$tl] = \%tmp; |
2762
|
4
|
|
|
|
|
19
|
$tr[$tl]{hi} = {x => $tmphi{x} , y => $tmphi{y}}; |
2763
|
4
|
|
|
|
|
12
|
$tr[$tl]{lo} = {x => $tmplo{x} , y => $tmplo{y}}; |
2764
|
4
|
|
|
|
|
15
|
$tr[$tu]{lo} = {x => $s{v1}{x} , y => $s{v1}{y}}; |
2765
|
4
|
|
|
|
|
15
|
$tr[$tl]{hi} = {x => $s{v1}{x} , y => $s{v1}{y}}; |
2766
|
4
|
|
|
|
|
9
|
$tr[$tu]{d0} = $tl; |
2767
|
4
|
|
|
|
|
7
|
$tr[$tu]{d1} = 0; |
2768
|
4
|
|
|
|
|
7
|
$tr[$tl]{u0} = $tu; |
2769
|
4
|
|
|
|
|
6
|
$tr[$tl]{u1} = 0; |
2770
|
|
|
|
|
|
|
|
2771
|
4
|
100
|
66
|
|
|
24
|
if ((($tmp_d = $tr[$tl]{d0}) > 0) && ($tr[$tmp_d]{u0} == $tu)) { |
2772
|
3
|
|
|
|
|
6
|
$tr[$tmp_d]{u0} = $tl; |
2773
|
|
|
|
|
|
|
} |
2774
|
4
|
50
|
66
|
|
|
25
|
if ((($tmp_d = $tr[$tl]{d0}) > 0) && ($tr[$tmp_d]{u1} == $tu)) { |
2775
|
0
|
|
|
|
|
0
|
$tr[$tmp_d]{u1} = $tl; |
2776
|
|
|
|
|
|
|
} |
2777
|
|
|
|
|
|
|
|
2778
|
4
|
100
|
66
|
|
|
33
|
if ((($tmp_d = $tr[$tl]{d1}) > 0) && ($tr[$tmp_d]{u0} == $tu)) { |
2779
|
2
|
|
|
|
|
3
|
$tr[$tmp_d]{u0} = $tl; |
2780
|
|
|
|
|
|
|
} |
2781
|
4
|
50
|
66
|
|
|
23
|
if ((($tmp_d = $tr[$tl]{d1}) > 0) && ($tr[$tmp_d]{u1} == $tu)) { |
2782
|
0
|
|
|
|
|
0
|
$tr[$tmp_d]{u1} = $tl; |
2783
|
|
|
|
|
|
|
} |
2784
|
|
|
|
|
|
|
|
2785
|
|
|
|
|
|
|
# Now update the query structure and obtain the sinks for the |
2786
|
|
|
|
|
|
|
# two trapezoids |
2787
|
|
|
|
|
|
|
|
2788
|
4
|
|
|
|
|
11
|
$i1 = _newnode(); # Upper trapezoid sink |
2789
|
4
|
|
|
|
|
8
|
$i2 = _newnode(); # Lower trapezoid sink |
2790
|
4
|
|
|
|
|
7
|
$sk = $tr[$tu]{sink}; |
2791
|
|
|
|
|
|
|
|
2792
|
4
|
|
|
|
|
7
|
$qs[$sk]{nodetype} = $T_Y; |
2793
|
4
|
|
|
|
|
15
|
$qs[$sk]{yval} = {x => $s{v1}{x} , y => $s{v1}{y}}; |
2794
|
4
|
|
|
|
|
8
|
$qs[$sk]{segnum} = $segnum; # not really reqd ... maybe later |
2795
|
4
|
|
|
|
|
7
|
$qs[$sk]{left} = $i2; |
2796
|
4
|
|
|
|
|
7
|
$qs[$sk]{right} = $i1; |
2797
|
|
|
|
|
|
|
|
2798
|
4
|
|
|
|
|
9
|
$qs[$i1]{nodetype} = $T_SINK; |
2799
|
4
|
|
|
|
|
6
|
$qs[$i1]{trnum} = $tu; |
2800
|
4
|
|
|
|
|
5
|
$qs[$i1]{parent} = $sk; |
2801
|
|
|
|
|
|
|
|
2802
|
4
|
|
|
|
|
9
|
$qs[$i2]{nodetype} = $T_SINK; |
2803
|
4
|
|
|
|
|
9
|
$qs[$i2]{trnum} = $tl; |
2804
|
4
|
|
|
|
|
6
|
$qs[$i2]{parent} = $sk; |
2805
|
|
|
|
|
|
|
|
2806
|
4
|
|
|
|
|
6
|
$tr[$tu]{sink} = $i1; |
2807
|
4
|
|
|
|
|
5
|
$tr[$tl]{sink} = $i2; |
2808
|
4
|
|
|
|
|
9
|
$tlast = $tu; |
2809
|
|
|
|
|
|
|
} else { # v1 already present |
2810
|
|
|
|
|
|
|
# Get the lowermost intersecting trapezoid |
2811
|
10
|
|
|
|
|
26
|
$tlast = _locate_endpoint($s{v1}, $s{v0}, $s{root1}); |
2812
|
10
|
|
|
|
|
30
|
$tribot = 1; |
2813
|
|
|
|
|
|
|
} |
2814
|
|
|
|
|
|
|
|
2815
|
|
|
|
|
|
|
# Thread the segment into the query tree creating a new X-node |
2816
|
|
|
|
|
|
|
# First, split all the trapezoids which are intersected by s into |
2817
|
|
|
|
|
|
|
# two |
2818
|
|
|
|
|
|
|
|
2819
|
14
|
|
|
|
|
27
|
$t = $tfirst; # topmost trapezoid |
2820
|
|
|
|
|
|
|
|
2821
|
14
|
|
100
|
|
|
58
|
while (($t > 0) && |
2822
|
|
|
|
|
|
|
_greater_than_equal_to($tr[$t]{lo}, $tr[$tlast]{lo})) { |
2823
|
|
|
|
|
|
|
# traverse from top to bot |
2824
|
27
|
|
|
|
|
33
|
my ($t_sav, $tn_sav); |
2825
|
27
|
|
|
|
|
44
|
$sk = $tr[$t]{sink}; |
2826
|
27
|
|
|
|
|
47
|
$i1 = _newnode(); # left trapezoid sink |
2827
|
27
|
|
|
|
|
49
|
$i2 = _newnode(); # right trapezoid sink |
2828
|
|
|
|
|
|
|
|
2829
|
27
|
|
|
|
|
41
|
$qs[$sk]{nodetype} = $T_X; |
2830
|
27
|
|
|
|
|
45
|
$qs[$sk]{segnum} = $segnum; |
2831
|
27
|
|
|
|
|
43
|
$qs[$sk]{left} = $i1; |
2832
|
27
|
|
|
|
|
38
|
$qs[$sk]{right} = $i2; |
2833
|
|
|
|
|
|
|
|
2834
|
27
|
|
|
|
|
90
|
$qs[$i1]{nodetype} = $T_SINK; # left trapezoid (use existing one) |
2835
|
27
|
|
|
|
|
36
|
$qs[$i1]{trnum} = $t; |
2836
|
27
|
|
|
|
|
41
|
$qs[$i1]{parent} = $sk; |
2837
|
|
|
|
|
|
|
|
2838
|
27
|
|
|
|
|
59
|
$qs[$i2]{nodetype} = $T_SINK; # right trapezoid (allocate new) |
2839
|
27
|
|
|
|
|
45
|
$qs[$i2]{trnum} = $tn = _newtrap(); |
2840
|
27
|
|
|
|
|
136
|
$tr[$tn]{state} = $ST_VALID; |
2841
|
27
|
|
|
|
|
36
|
$qs[$i2]{parent} = $sk; |
2842
|
|
|
|
|
|
|
|
2843
|
27
|
100
|
|
|
|
53
|
if ($t == $tfirst) { |
2844
|
14
|
|
|
|
|
21
|
$tfirstr = $tn; |
2845
|
|
|
|
|
|
|
} |
2846
|
27
|
100
|
|
|
|
64
|
if (_equal_to($tr[$t]{lo}, $tr[$tlast]{lo})) { |
2847
|
14
|
|
|
|
|
18
|
$tlastr = $tn; |
2848
|
|
|
|
|
|
|
} |
2849
|
|
|
|
|
|
|
|
2850
|
27
|
|
|
|
|
41
|
my %tmp = %{$tr[$t]}; |
|
27
|
|
|
|
|
220
|
|
2851
|
27
|
|
|
|
|
54
|
my %tmphi = %{$tmp{hi}}; |
|
27
|
|
|
|
|
89
|
|
2852
|
27
|
|
|
|
|
40
|
my %tmplo = %{$tmp{lo}}; |
|
27
|
|
|
|
|
68
|
|
2853
|
27
|
|
|
|
|
47
|
$tr[$tn] = \%tmp; |
2854
|
27
|
|
|
|
|
118
|
$tr[$tn]{hi} = {x => $tmphi{x} , y => $tmphi{y}}; |
2855
|
27
|
|
|
|
|
86
|
$tr[$tn]{lo} = {x => $tmplo{x} , y => $tmplo{y}}; |
2856
|
27
|
|
|
|
|
40
|
$tr[$t]{sink} = $i1; |
2857
|
27
|
|
|
|
|
36
|
$tr[$tn]{sink} = $i2; |
2858
|
27
|
|
|
|
|
27
|
$t_sav = $t; |
2859
|
27
|
|
|
|
|
30
|
$tn_sav = $tn; |
2860
|
|
|
|
|
|
|
|
2861
|
|
|
|
|
|
|
# error |
2862
|
|
|
|
|
|
|
|
2863
|
27
|
50
|
33
|
|
|
199
|
if (($tr[$t]{d0} <= 0) && ($tr[$t]{d1} <= 0)) { # case cannot arise |
|
|
100
|
66
|
|
|
|
|
|
|
50
|
33
|
|
|
|
|
2864
|
0
|
|
|
|
|
0
|
print "add_segment: error\n"; |
2865
|
|
|
|
|
|
|
|
2866
|
|
|
|
|
|
|
# only one trapezoid below. partition t into two and make the |
2867
|
|
|
|
|
|
|
# two resulting trapezoids t and tn as the upper neighbours of |
2868
|
|
|
|
|
|
|
# the sole lower trapezoid |
2869
|
|
|
|
|
|
|
|
2870
|
|
|
|
|
|
|
} elsif (($tr[$t]{d0} > 0) && ($tr[$t]{d1} <= 0)) { # Only one trapezoid below |
2871
|
17
|
100
|
66
|
|
|
80
|
if (($tr[$t]{u0} > 0) && ($tr[$t]{u1} > 0)) { # continuation of a chain from abv. |
2872
|
8
|
100
|
|
|
|
19
|
if ($tr[$t]{usave} > 0) { # three upper neighbours |
2873
|
1
|
50
|
|
|
|
5
|
if ($tr[$t]{uside} == $S_LEFT) { |
2874
|
1
|
|
|
|
|
3
|
$tr[$tn]{u0} = $tr[$t]{u1}; |
2875
|
1
|
|
|
|
|
3
|
$tr[$t]{u1} = -1; |
2876
|
1
|
|
|
|
|
2
|
$tr[$tn]{u1} = $tr[$t]{usave}; |
2877
|
|
|
|
|
|
|
|
2878
|
1
|
|
|
|
|
3
|
$tr[$tr[$t]{u0}]{d0} = $t; |
2879
|
1
|
|
|
|
|
4
|
$tr[$tr[$tn]{u0}]{d0} = $tn; |
2880
|
1
|
|
|
|
|
3
|
$tr[$tr[$tn]{u1}]{d0} = $tn; |
2881
|
|
|
|
|
|
|
} else { # intersects in the right |
2882
|
0
|
|
|
|
|
0
|
$tr[$tn]{u1} = -1; |
2883
|
0
|
|
|
|
|
0
|
$tr[$tn]{u0} = $tr[$t]{u1}; |
2884
|
0
|
|
|
|
|
0
|
$tr[$t]{u1} = $tr[$t]{u0}; |
2885
|
0
|
|
|
|
|
0
|
$tr[$t]{u0} = $tr[$t]{usave}; |
2886
|
|
|
|
|
|
|
|
2887
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{u0}]{d0} = $t; |
2888
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{u1}]{d0} = $t; |
2889
|
0
|
|
|
|
|
0
|
$tr[$tr[$tn]{u0}]{d0} = $tn; |
2890
|
|
|
|
|
|
|
} |
2891
|
|
|
|
|
|
|
|
2892
|
1
|
|
|
|
|
3
|
$tr[$t]{usave} = $tr[$tn]{usave} = 0; |
2893
|
|
|
|
|
|
|
} else { # No usave.... simple case |
2894
|
7
|
|
|
|
|
14
|
$tr[$tn]{u0} = $tr[$t]{u1}; |
2895
|
7
|
|
|
|
|
12
|
$tr[$t]{u1} = $tr[$tn]{u1} = -1; |
2896
|
7
|
|
|
|
|
13
|
$tr[$tr[$tn]{u0}]{d0} = $tn; |
2897
|
|
|
|
|
|
|
} |
2898
|
|
|
|
|
|
|
} else { # fresh seg. or upward cusp |
2899
|
9
|
|
|
|
|
21
|
my $tmp_u = $tr[$t]{u0}; |
2900
|
9
|
|
|
|
|
11
|
my ($td0, $td1); |
2901
|
9
|
100
|
66
|
|
|
40
|
if ((($td0 = $tr[$tmp_u]{d0}) > 0) && |
2902
|
|
|
|
|
|
|
(($td1 = $tr[$tmp_u]{d1}) > 0)) { # upward cusp |
2903
|
3
|
100
|
66
|
|
|
18
|
if (($tr[$td0]{rseg} > 0) && |
2904
|
|
|
|
|
|
|
!_is_left_of($tr[$td0]{rseg}, $s{v1})) { |
2905
|
1
|
|
|
|
|
4
|
$tr[$t]{u0} = $tr[$t]{u1} = $tr[$tn]{u1} = -1; |
2906
|
1
|
|
|
|
|
5
|
$tr[$tr[$tn]{u0}]{d1} = $tn; |
2907
|
|
|
|
|
|
|
} else { # cusp going leftwards |
2908
|
2
|
|
|
|
|
8
|
$tr[$tn]{u0} = $tr[$tn]{u1} = $tr[$t]{u1} = -1; |
2909
|
2
|
|
|
|
|
5
|
$tr[$tr[$t]{u0}]{d0} = $t; |
2910
|
|
|
|
|
|
|
} |
2911
|
|
|
|
|
|
|
} else { # fresh segment |
2912
|
6
|
|
|
|
|
12
|
$tr[$tr[$t]{u0}]{d0} = $t; |
2913
|
6
|
|
|
|
|
15
|
$tr[$tr[$t]{u0}]{d1} = $tn; |
2914
|
|
|
|
|
|
|
} |
2915
|
|
|
|
|
|
|
} |
2916
|
|
|
|
|
|
|
|
2917
|
17
|
100
|
100
|
|
|
58
|
if (_fp_equal($tr[$t]{lo}{y}, $tr[$tlast]{lo}{y}, $precision) && |
|
|
|
100
|
|
|
|
|
2918
|
|
|
|
|
|
|
_fp_equal($tr[$t]{lo}{x}, $tr[$tlast]{lo}{x}, $precision) && $tribot) { |
2919
|
|
|
|
|
|
|
# bottom forms a triangle |
2920
|
|
|
|
|
|
|
|
2921
|
3
|
100
|
|
|
|
8
|
if ($is_swapped) { |
2922
|
1
|
|
|
|
|
4
|
$tmptriseg = $seg[$segnum]{prev}; |
2923
|
|
|
|
|
|
|
} else { |
2924
|
2
|
|
|
|
|
5
|
$tmptriseg = $seg[$segnum]{next}; |
2925
|
|
|
|
|
|
|
} |
2926
|
|
|
|
|
|
|
|
2927
|
3
|
50
|
33
|
|
|
19
|
if (($tmptriseg > 0) && _is_left_of($tmptriseg, $s{v0})) { # L-R downward cusp |
2928
|
3
|
|
|
|
|
12
|
$tr[$tr[$t]{d0}]{u0} = $t; |
2929
|
3
|
|
|
|
|
10
|
$tr[$tn]{d0} = $tr[$tn]{d1} = -1; |
2930
|
|
|
|
|
|
|
} else { # R-L downward cusp |
2931
|
0
|
|
|
|
|
0
|
$tr[$tr[$tn]{d0}]{u1} = $tn; |
2932
|
0
|
|
|
|
|
0
|
$tr[$t]{d0} = $tr[$t]{d1} = -1; |
2933
|
|
|
|
|
|
|
} |
2934
|
|
|
|
|
|
|
} else { |
2935
|
14
|
100
|
66
|
|
|
82
|
if (($tr[$tr[$t]{d0}]{u0} > 0) && ($tr[$tr[$t]{d0}]{u1} > 0)) { |
2936
|
3
|
100
|
|
|
|
11
|
if ($tr[$tr[$t]{d0}]{u0} == $t) { # passes thru LHS |
2937
|
1
|
|
|
|
|
4
|
$tr[$tr[$t]{d0}]{usave} = $tr[$tr[$t]{d0}]{u1}; |
2938
|
1
|
|
|
|
|
5
|
$tr[$tr[$t]{d0}]{uside} = $S_LEFT; |
2939
|
|
|
|
|
|
|
} else { |
2940
|
2
|
|
|
|
|
7
|
$tr[$tr[$t]{d0}]{usave} = $tr[$tr[$t]{d0}]{u0}; |
2941
|
2
|
|
|
|
|
4
|
$tr[$tr[$t]{d0}]{uside} = $S_RIGHT; |
2942
|
|
|
|
|
|
|
} |
2943
|
|
|
|
|
|
|
} |
2944
|
14
|
|
|
|
|
26
|
$tr[$tr[$t]{d0}]{u0} = $t; |
2945
|
14
|
|
|
|
|
28
|
$tr[$tr[$t]{d0}]{u1} = $tn; |
2946
|
|
|
|
|
|
|
} |
2947
|
|
|
|
|
|
|
|
2948
|
17
|
|
|
|
|
39
|
$t = $tr[$t]{d0}; |
2949
|
|
|
|
|
|
|
|
2950
|
|
|
|
|
|
|
} elsif (($tr[$t]{d0} <= 0) && ($tr[$t]{d1} > 0)) { # Only one trapezoid below |
2951
|
0
|
0
|
0
|
|
|
0
|
if (($tr[$t]{u0} > 0) && ($tr[$t]{u1} > 0)) { # continuation of a chain from abv. |
2952
|
0
|
0
|
|
|
|
0
|
if ($tr[$t]{usave} > 0) { # three upper neighbours |
2953
|
0
|
0
|
|
|
|
0
|
if ($tr[$t]{uside} == $S_LEFT) { |
2954
|
0
|
|
|
|
|
0
|
$tr[$tn]{u0} = $tr[$t]{u1}; |
2955
|
0
|
|
|
|
|
0
|
$tr[$t]{u1} = -1; |
2956
|
0
|
|
|
|
|
0
|
$tr[$tn]{u1} = $tr[$t]{usave}; |
2957
|
|
|
|
|
|
|
|
2958
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{u0}]{d0} = $t; |
2959
|
0
|
|
|
|
|
0
|
$tr[$tr[$tn]{u0}]{d0} = $tn; |
2960
|
0
|
|
|
|
|
0
|
$tr[$tr[$tn]{u1}]{d0} = $tn; |
2961
|
|
|
|
|
|
|
} else { # intersects in the right |
2962
|
0
|
|
|
|
|
0
|
$tr[$tn]{u1} = -1; |
2963
|
0
|
|
|
|
|
0
|
$tr[$tn]{u0} = $tr[$t]{u1}; |
2964
|
0
|
|
|
|
|
0
|
$tr[$t]{u1} = $tr[$t]{u0}; |
2965
|
0
|
|
|
|
|
0
|
$tr[$t]{u0} = $tr[$t]{usave}; |
2966
|
|
|
|
|
|
|
|
2967
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{u0}]{d0} = $t; |
2968
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{u1}]{d0} = $t; |
2969
|
0
|
|
|
|
|
0
|
$tr[$tr[$tn]{u0}]{d0} = $tn; |
2970
|
|
|
|
|
|
|
} |
2971
|
|
|
|
|
|
|
|
2972
|
0
|
|
|
|
|
0
|
$tr[$t]{usave} = $tr[$tn]{usave} = 0; |
2973
|
|
|
|
|
|
|
|
2974
|
|
|
|
|
|
|
} else { # No usave.... simple case |
2975
|
0
|
|
|
|
|
0
|
$tr[$tn]{u0} = $tr[$t]{u1}; |
2976
|
0
|
|
|
|
|
0
|
$tr[$t]{u1} = $tr[$tn]{u1} = -1; |
2977
|
0
|
|
|
|
|
0
|
$tr[$tr[$tn]{u0}]{d0} = $tn; |
2978
|
|
|
|
|
|
|
} |
2979
|
|
|
|
|
|
|
} else { # fresh seg. or upward cusp |
2980
|
0
|
|
|
|
|
0
|
my $tmp_u = $tr[$t]{u0}; |
2981
|
0
|
|
|
|
|
0
|
my ($td0,$td1); |
2982
|
0
|
0
|
0
|
|
|
0
|
if ((($td0 = $tr[$tmp_u]{d0}) > 0) && |
2983
|
|
|
|
|
|
|
(($td1 = $tr[$tmp_u]{d1}) > 0)) { # upward cusp |
2984
|
0
|
0
|
0
|
|
|
0
|
if (($tr[$td0]{rseg} > 0) && |
2985
|
|
|
|
|
|
|
!_is_left_of($tr[$td0]{rseg}, $s{v1})) { |
2986
|
0
|
|
|
|
|
0
|
$tr[$t]{u0} = $tr[$t]{u1} = $tr[$tn]{u1} = -1; |
2987
|
0
|
|
|
|
|
0
|
$tr[$tr[$tn]{u0}]{d1} = $tn; |
2988
|
|
|
|
|
|
|
} else { |
2989
|
0
|
|
|
|
|
0
|
$tr[$tn]{u0} = $tr[$tn]{u1} = $tr[$t]{u1} = -1; |
2990
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{u0}]{d0} = $t; |
2991
|
|
|
|
|
|
|
} |
2992
|
|
|
|
|
|
|
} else { # fresh segment |
2993
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{u0}]{d0} = $t; |
2994
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{u0}]{d1} = $tn; |
2995
|
|
|
|
|
|
|
} |
2996
|
|
|
|
|
|
|
} |
2997
|
|
|
|
|
|
|
|
2998
|
0
|
0
|
0
|
|
|
0
|
if (_fp_equaL($tr[$t]{lo}{y}, $tr[$tlast]{lo}{y}, $precision) && |
|
|
|
0
|
|
|
|
|
2999
|
|
|
|
|
|
|
_fp_equal($tr[$t]{lo}{x}, $tr[$tlast]{lo}{x}, $precision) && $tribot) { |
3000
|
|
|
|
|
|
|
# bottom forms a triangle |
3001
|
0
|
|
|
|
|
0
|
my $tmpseg; |
3002
|
|
|
|
|
|
|
|
3003
|
0
|
0
|
|
|
|
0
|
if ($is_swapped) { |
3004
|
0
|
|
|
|
|
0
|
$tmptriseg = $seg[$segnum]{prev}; |
3005
|
|
|
|
|
|
|
} else { |
3006
|
0
|
|
|
|
|
0
|
$tmptriseg = $seg[$segnum]{next}; |
3007
|
|
|
|
|
|
|
} |
3008
|
|
|
|
|
|
|
|
3009
|
0
|
0
|
0
|
|
|
0
|
if (($tmpseg > 0) && _is_left_of($tmpseg, $s{v0})) { |
3010
|
|
|
|
|
|
|
# L-R downward cusp |
3011
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{d1}]{u0} = $t; |
3012
|
0
|
|
|
|
|
0
|
$tr[$tn]{d0} = $tr[$tn]{d1} = -1; |
3013
|
|
|
|
|
|
|
} else { |
3014
|
|
|
|
|
|
|
# R-L downward cusp |
3015
|
0
|
|
|
|
|
0
|
$tr[$tr[$tn]{d1}]{u1} = $tn; |
3016
|
0
|
|
|
|
|
0
|
$tr[$t]{d0} = $tr[$t]{d1} = -1; |
3017
|
|
|
|
|
|
|
} |
3018
|
|
|
|
|
|
|
} else { |
3019
|
0
|
0
|
0
|
|
|
0
|
if (($tr[$tr[$t]{d1}]{u0} > 0) && ($tr[$tr[$t]{d1}]{u1} > 0)) { |
3020
|
0
|
0
|
|
|
|
0
|
if ($tr[$tr[$t]{d1}]{u0} == $t) { # passes thru LHS |
3021
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{d1}]{usave} = $tr[$tr[$t]{d1}]{u1}; |
3022
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{d1}]{uside} = $S_LEFT; |
3023
|
|
|
|
|
|
|
} else { |
3024
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{d1}]{usave} = $tr[$tr[$t]{d1}]{u0}; |
3025
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{d1}]{uside} = $S_RIGHT; |
3026
|
|
|
|
|
|
|
} |
3027
|
|
|
|
|
|
|
} |
3028
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{d1}]{u0} = $t; |
3029
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{d1}]{u1} = $tn; |
3030
|
|
|
|
|
|
|
} |
3031
|
|
|
|
|
|
|
|
3032
|
0
|
|
|
|
|
0
|
$t = $tr[$t]{d1}; |
3033
|
|
|
|
|
|
|
|
3034
|
|
|
|
|
|
|
# two trapezoids below. Find out which one is intersected by |
3035
|
|
|
|
|
|
|
# this segment and proceed down that one |
3036
|
|
|
|
|
|
|
|
3037
|
|
|
|
|
|
|
} else { |
3038
|
10
|
|
|
|
|
24
|
my $tmpseg = $tr[$tr[$t]{d0}]{rseg}; |
3039
|
10
|
|
|
|
|
15
|
my ($y0,$yt); |
3040
|
0
|
|
|
|
|
0
|
my %tmppt; |
3041
|
0
|
|
|
|
|
0
|
my ($tnext, $i_d0, $i_d1); |
3042
|
|
|
|
|
|
|
|
3043
|
10
|
|
|
|
|
11
|
$i_d0 = $i_d1 = $FALSE; |
3044
|
10
|
50
|
|
|
|
29
|
if (_fp_equal($tr[$t]{lo}{y}, $s{v0}{y}, $precision)) { |
3045
|
0
|
0
|
|
|
|
0
|
if ($tr[$t]{lo}{x} > $s{v0}{x}) { |
3046
|
0
|
|
|
|
|
0
|
$i_d0 = $TRUE; |
3047
|
|
|
|
|
|
|
} else { |
3048
|
0
|
|
|
|
|
0
|
$i_d1 = $TRUE; |
3049
|
|
|
|
|
|
|
} |
3050
|
|
|
|
|
|
|
} else { |
3051
|
10
|
|
|
|
|
28
|
$tmppt{y} = $y0 = $tr[$t]{lo}{y}; |
3052
|
10
|
|
|
|
|
32
|
$yt = ($y0 - $s{v0}{y})/($s{v1}{y} - $s{v0}{y}); |
3053
|
10
|
|
|
|
|
32
|
$tmppt{x} = $s{v0}{x} + $yt * ($s{v1}{x} - $s{v0}{x}); |
3054
|
|
|
|
|
|
|
|
3055
|
10
|
100
|
|
|
|
43
|
if (_less_than(\%tmppt, $tr[$t]{lo})) { |
3056
|
2
|
|
|
|
|
5
|
$i_d0 = $TRUE; |
3057
|
|
|
|
|
|
|
} else { |
3058
|
8
|
|
|
|
|
13
|
$i_d1 = $TRUE; |
3059
|
|
|
|
|
|
|
} |
3060
|
|
|
|
|
|
|
} |
3061
|
|
|
|
|
|
|
|
3062
|
|
|
|
|
|
|
# check continuity from the top so that the lower-neighbour |
3063
|
|
|
|
|
|
|
# values are properly filled for the upper trapezoid |
3064
|
|
|
|
|
|
|
|
3065
|
10
|
100
|
66
|
|
|
67
|
if (($tr[$t]{u0} > 0) && ($tr[$t]{u1} > 0)) { # continuation of a chain from abv. |
3066
|
8
|
100
|
|
|
|
18
|
if ($tr[$t]{usave} > 0) { # three upper neighbours |
3067
|
2
|
50
|
|
|
|
8
|
if ($tr[$t]{uside} == $S_LEFT) { |
3068
|
0
|
|
|
|
|
0
|
$tr[$tn]{u0} = $tr[$t]{u1}; |
3069
|
0
|
|
|
|
|
0
|
$tr[$t]{u1} = -1; |
3070
|
0
|
|
|
|
|
0
|
$tr[$tn]{u1} = $tr[$t]{usave}; |
3071
|
|
|
|
|
|
|
|
3072
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{u0}]{d0} = $t; |
3073
|
0
|
|
|
|
|
0
|
$tr[$tr[$tn]{u0}]{d0} = $tn; |
3074
|
0
|
|
|
|
|
0
|
$tr[$tr[$tn]{u1}]{d0} = $tn; |
3075
|
|
|
|
|
|
|
} else { # intersects in the right |
3076
|
2
|
|
|
|
|
5
|
$tr[$tn]{u1} = -1; |
3077
|
2
|
|
|
|
|
4
|
$tr[$tn]{u0} = $tr[$t]{u1}; |
3078
|
2
|
|
|
|
|
4
|
$tr[$t]{u1} = $tr[$t]{u0}; |
3079
|
2
|
|
|
|
|
4
|
$tr[$t]{u0} = $tr[$t]{usave}; |
3080
|
|
|
|
|
|
|
|
3081
|
2
|
|
|
|
|
5
|
$tr[$tr[$t]{u0}]{d0} = $t; |
3082
|
2
|
|
|
|
|
4
|
$tr[$tr[$t]{u1}]{d0} = $t; |
3083
|
2
|
|
|
|
|
4
|
$tr[$tr[$tn]{u0}]{d0} = $tn; |
3084
|
|
|
|
|
|
|
} |
3085
|
|
|
|
|
|
|
|
3086
|
2
|
|
|
|
|
4
|
$tr[$t]{usave} = $tr[$tn]{usave} = 0; |
3087
|
|
|
|
|
|
|
} else { # No usave.... simple case |
3088
|
6
|
|
|
|
|
13
|
$tr[$tn]{u0} = $tr[$t]{u1}; |
3089
|
6
|
|
|
|
|
11
|
$tr[$tn]{u1} = -1; |
3090
|
6
|
|
|
|
|
7
|
$tr[$t]{u1} = -1; |
3091
|
6
|
|
|
|
|
12
|
$tr[$tr[$tn]{u0}]{d0} = $tn; |
3092
|
|
|
|
|
|
|
} |
3093
|
|
|
|
|
|
|
} else { # fresh seg. or upward cusp |
3094
|
2
|
|
|
|
|
5
|
my $tmp_u = $tr[$t]{u0}; |
3095
|
2
|
|
|
|
|
5
|
my ($td0, $td1); |
3096
|
2
|
50
|
33
|
|
|
13
|
if ((($td0 = $tr[$tmp_u]{d0}) > 0) && |
3097
|
|
|
|
|
|
|
(($td1 = $tr[$tmp_u]{d1}) > 0)) { # upward cusp |
3098
|
0
|
0
|
0
|
|
|
0
|
if (($tr[$td0]{rseg} > 0) && |
3099
|
|
|
|
|
|
|
!_is_left_of($tr[$td0]{rseg}, $s{v1})) { |
3100
|
0
|
|
|
|
|
0
|
$tr[$t]{u0} = $tr[$t]{u1} = $tr[$tn]{u1} = -1; |
3101
|
0
|
|
|
|
|
0
|
$tr[$tr[$tn]{u0}]{d1} = $tn; |
3102
|
|
|
|
|
|
|
} else { |
3103
|
0
|
|
|
|
|
0
|
$tr[$tn]{u0} = $tr[$tn]{u1} = $tr[$t]{u1} = -1; |
3104
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{u0}]{d0} = $t; |
3105
|
|
|
|
|
|
|
} |
3106
|
|
|
|
|
|
|
} else { # fresh segment |
3107
|
2
|
|
|
|
|
6
|
$tr[$tr[$t]{u0}]{d0} = $t; |
3108
|
2
|
|
|
|
|
6
|
$tr[$tr[$t]{u0}]{d1} = $tn; |
3109
|
|
|
|
|
|
|
} |
3110
|
|
|
|
|
|
|
} |
3111
|
|
|
|
|
|
|
|
3112
|
10
|
100
|
66
|
|
|
33
|
if (_fp_equal($tr[$t]{lo}{y}, $tr[$tlast]{lo}{y}, $precision) && |
|
|
100
|
66
|
|
|
|
|
3113
|
|
|
|
|
|
|
_fp_equal($tr[$t]{lo}{x}, $tr[$tlast]{lo}{x}, $precision) && $tribot) { |
3114
|
|
|
|
|
|
|
# this case arises only at the lowest trapezoid.. i.e. |
3115
|
|
|
|
|
|
|
# tlast, if the lower endpoint of the segment is |
3116
|
|
|
|
|
|
|
# already inserted in the structure |
3117
|
|
|
|
|
|
|
|
3118
|
7
|
|
|
|
|
24
|
$tr[$tr[$t]{d0}]{u0} = $t; |
3119
|
7
|
|
|
|
|
12
|
$tr[$tr[$t]{d0}]{u1} = -1; |
3120
|
7
|
|
|
|
|
11
|
$tr[$tr[$t]{d1}]{u0} = $tn; |
3121
|
7
|
|
|
|
|
12
|
$tr[$tr[$t]{d1}]{u1} = -1; |
3122
|
|
|
|
|
|
|
|
3123
|
7
|
|
|
|
|
12
|
$tr[$tn]{d0} = $tr[$t]{d1}; |
3124
|
7
|
|
|
|
|
11
|
$tr[$t]{d1} = $tr[$tn]{d1} = -1; |
3125
|
|
|
|
|
|
|
|
3126
|
7
|
|
|
|
|
13
|
$tnext = $tr[$t]{d1}; |
3127
|
|
|
|
|
|
|
} elsif ($i_d0) { # intersecting d0 |
3128
|
2
|
|
|
|
|
4
|
$tr[$tr[$t]{d0}]{u0} = $t; |
3129
|
2
|
|
|
|
|
4
|
$tr[$tr[$t]{d0}]{u1} = $tn; |
3130
|
2
|
|
|
|
|
4
|
$tr[$tr[$t]{d1}]{u0} = $tn; |
3131
|
2
|
|
|
|
|
4
|
$tr[$tr[$t]{d1}]{u1} = -1; |
3132
|
|
|
|
|
|
|
|
3133
|
|
|
|
|
|
|
# new code to determine the bottom neighbours of the |
3134
|
|
|
|
|
|
|
# newly partitioned trapezoid |
3135
|
|
|
|
|
|
|
|
3136
|
2
|
|
|
|
|
3
|
$tr[$t]{d1} = -1; |
3137
|
|
|
|
|
|
|
|
3138
|
2
|
|
|
|
|
6
|
$tnext = $tr[$t]{d0}; |
3139
|
|
|
|
|
|
|
} else { # intersecting d1 |
3140
|
1
|
|
|
|
|
5
|
$tr[$tr[$t]{d0}]{u0} = $t; |
3141
|
1
|
|
|
|
|
3
|
$tr[$tr[$t]{d0}]{u1} = -1; |
3142
|
1
|
|
|
|
|
3
|
$tr[$tr[$t]{d1}]{u0} = $t; |
3143
|
1
|
|
|
|
|
3
|
$tr[$tr[$t]{d1}]{u1} = $tn; |
3144
|
|
|
|
|
|
|
|
3145
|
|
|
|
|
|
|
# new code to determine the bottom neighbours of the |
3146
|
|
|
|
|
|
|
# newly partitioned trapezoid |
3147
|
|
|
|
|
|
|
|
3148
|
1
|
|
|
|
|
3
|
$tr[$tn]{d0} = $tr[$t]{d1}; |
3149
|
1
|
|
|
|
|
2
|
$tr[$tn]{d1} = -1; |
3150
|
|
|
|
|
|
|
|
3151
|
1
|
|
|
|
|
2
|
$tnext = $tr[$t]{d1}; |
3152
|
|
|
|
|
|
|
} |
3153
|
|
|
|
|
|
|
|
3154
|
10
|
|
|
|
|
29
|
$t = $tnext; |
3155
|
|
|
|
|
|
|
} |
3156
|
|
|
|
|
|
|
|
3157
|
27
|
|
|
|
|
148
|
$tr[$t_sav]{rseg} = $tr[$tn_sav]{lseg} = $segnum; |
3158
|
|
|
|
|
|
|
} # end-while |
3159
|
|
|
|
|
|
|
|
3160
|
|
|
|
|
|
|
# Now combine those trapezoids which share common segments. We can |
3161
|
|
|
|
|
|
|
# use the pointers to the parent to connect these together. This |
3162
|
|
|
|
|
|
|
# works only because all these new trapezoids have been formed |
3163
|
|
|
|
|
|
|
# due to splitting by the segment, and hence have only one parent |
3164
|
|
|
|
|
|
|
|
3165
|
14
|
|
|
|
|
19
|
$tfirstl = $tfirst; |
3166
|
14
|
|
|
|
|
14
|
$tlastl = $tlast; |
3167
|
14
|
|
|
|
|
34
|
merge_trapezoids($segnum, $tfirstl, $tlastl, $S_LEFT); |
3168
|
14
|
|
|
|
|
26
|
merge_trapezoids($segnum, $tfirstr, $tlastr, $S_RIGHT); |
3169
|
|
|
|
|
|
|
|
3170
|
14
|
|
|
|
|
90
|
$seg[$segnum]{is_inserted} = $TRUE; |
3171
|
|
|
|
|
|
|
} |
3172
|
|
|
|
|
|
|
|
3173
|
|
|
|
|
|
|
# Returns true if the corresponding endpoint of the given segment is |
3174
|
|
|
|
|
|
|
# already inserted into the segment tree. Use the simple test of |
3175
|
|
|
|
|
|
|
# whether the segment which shares this endpoint is already inserted |
3176
|
|
|
|
|
|
|
|
3177
|
|
|
|
|
|
|
sub _inserted { |
3178
|
28
|
|
|
28
|
|
40
|
my ($segnum, $whichpt) = @_; |
3179
|
28
|
100
|
|
|
|
54
|
if ($whichpt == $FIRSTPT) { |
3180
|
14
|
|
|
|
|
48
|
return $seg[$seg[$segnum]{prev}]{is_inserted}; |
3181
|
|
|
|
|
|
|
} else { |
3182
|
14
|
|
|
|
|
46
|
return $seg[$seg[$segnum]{next}]{is_inserted}; |
3183
|
|
|
|
|
|
|
} |
3184
|
|
|
|
|
|
|
} |
3185
|
|
|
|
|
|
|
|
3186
|
|
|
|
|
|
|
# This is query routine which determines which trapezoid does the |
3187
|
|
|
|
|
|
|
# point v lie in. The return value is the trapezoid number. |
3188
|
|
|
|
|
|
|
# |
3189
|
|
|
|
|
|
|
|
3190
|
|
|
|
|
|
|
sub _locate_endpoint { |
3191
|
150
|
|
|
150
|
|
200
|
my ($v_ref, $vo_ref, $r) = @_; |
3192
|
150
|
|
|
|
|
149
|
my %v = %{$v_ref}; |
|
150
|
|
|
|
|
489
|
|
3193
|
150
|
|
|
|
|
191
|
my %vo = %{$vo_ref}; |
|
150
|
|
|
|
|
376
|
|
3194
|
150
|
|
|
|
|
175
|
my %rptr = %{$qs[$r]}; |
|
150
|
|
|
|
|
553
|
|
3195
|
|
|
|
|
|
|
|
3196
|
|
|
|
|
|
|
SWITCH: { |
3197
|
150
|
100
|
|
|
|
200
|
($rptr{nodetype} == $T_SINK) && do { |
|
150
|
|
|
|
|
313
|
|
3198
|
56
|
|
|
|
|
392
|
return $rptr{trnum}; |
3199
|
|
|
|
|
|
|
}; |
3200
|
94
|
100
|
|
|
|
189
|
($rptr{nodetype} == $T_Y) && do { |
3201
|
77
|
100
|
|
|
|
149
|
if (_greater_than(\%v, $rptr{yval})) { # above |
|
|
100
|
|
|
|
|
|
3202
|
29
|
|
|
|
|
64
|
return _locate_endpoint(\%v, \%vo, $rptr{right}); |
3203
|
|
|
|
|
|
|
} elsif (_equal_to(\%v, $rptr{yval})) { # the point is already |
3204
|
|
|
|
|
|
|
# inserted. |
3205
|
16
|
100
|
|
|
|
39
|
if (_greater_than(\%vo, $rptr{yval})) { # above |
3206
|
10
|
|
|
|
|
28
|
return _locate_endpoint(\%v, \%vo, $rptr{right}); |
3207
|
|
|
|
|
|
|
} else { |
3208
|
6
|
|
|
|
|
17
|
return _locate_endpoint(\%v, \%vo, $rptr{left}); # below |
3209
|
|
|
|
|
|
|
} |
3210
|
|
|
|
|
|
|
} else { |
3211
|
32
|
|
|
|
|
124
|
return _locate_endpoint(\%v, \%vo, $rptr{left}); # below |
3212
|
|
|
|
|
|
|
} |
3213
|
|
|
|
|
|
|
}; |
3214
|
17
|
50
|
|
|
|
31
|
($rptr{nodetype} == $T_X) && do { |
3215
|
17
|
100
|
100
|
|
|
50
|
if (_equal_to(\%v, $seg[$rptr{segnum}]{v0}) || |
|
|
100
|
|
|
|
|
|
3216
|
|
|
|
|
|
|
_equal_to(\%v, $seg[$rptr{segnum}]{v1})) { |
3217
|
6
|
50
|
|
|
|
17
|
if (_fp_equal($v{y}, $vo{y}, $precision)) { # horizontal segment |
|
|
100
|
|
|
|
|
|
3218
|
0
|
0
|
|
|
|
0
|
if ($vo{x} < $v{x}) { |
3219
|
0
|
|
|
|
|
0
|
return _locate_endpoint(\%v, \%vo, $rptr{left}); # left |
3220
|
|
|
|
|
|
|
} else { |
3221
|
0
|
|
|
|
|
0
|
return _locate_endpoint(\%v, \%vo, $rptr{right}); # right |
3222
|
|
|
|
|
|
|
} |
3223
|
|
|
|
|
|
|
} elsif (_is_left_of($rptr{segnum}, \%vo)) { |
3224
|
5
|
|
|
|
|
19
|
return _locate_endpoint(\%v, \%vo, $rptr{left}); # left |
3225
|
|
|
|
|
|
|
} else { |
3226
|
1
|
|
|
|
|
6
|
return _locate_endpoint(\%v, \%vo, $rptr{right}); # right |
3227
|
|
|
|
|
|
|
} |
3228
|
|
|
|
|
|
|
} elsif (_is_left_of($rptr{segnum}, \%v)) { |
3229
|
9
|
|
|
|
|
36
|
return _locate_endpoint(\%v, \%vo, $rptr{left}); # left |
3230
|
|
|
|
|
|
|
} else { |
3231
|
2
|
|
|
|
|
8
|
return _locate_endpoint(\%v, \%vo, $rptr{right}); # right |
3232
|
|
|
|
|
|
|
} |
3233
|
|
|
|
|
|
|
}; |
3234
|
|
|
|
|
|
|
# default |
3235
|
0
|
|
|
|
|
0
|
croak("Haggu !!!!!"); |
3236
|
|
|
|
|
|
|
} |
3237
|
|
|
|
|
|
|
} |
3238
|
|
|
|
|
|
|
|
3239
|
|
|
|
|
|
|
# Thread in the segment into the existing trapezoidation. The |
3240
|
|
|
|
|
|
|
# limiting trapezoids are given by tfirst and tlast (which are the |
3241
|
|
|
|
|
|
|
# trapezoids containing the two endpoints of the segment. Merges all |
3242
|
|
|
|
|
|
|
# possible trapezoids which flank this segment and have been recently |
3243
|
|
|
|
|
|
|
# divided because of its insertion |
3244
|
|
|
|
|
|
|
# |
3245
|
|
|
|
|
|
|
|
3246
|
|
|
|
|
|
|
sub merge_trapezoids { |
3247
|
28
|
|
|
28
|
0
|
49
|
my ($segnum, $tfirst, $tlast, $side) = @_; |
3248
|
28
|
|
|
|
|
29
|
my ($t, $tnext, $cond); |
3249
|
0
|
|
|
|
|
0
|
my $ptnext; |
3250
|
|
|
|
|
|
|
|
3251
|
|
|
|
|
|
|
# First merge polys on the LHS |
3252
|
28
|
|
|
|
|
29
|
$t = $tfirst; |
3253
|
|
|
|
|
|
|
# while (($t > 0) && _greater_than_equal_to($tr[$t]{lo}, $tr[$tlast]{lo})) { |
3254
|
28
|
|
|
|
|
62
|
while ($t > 0) { |
3255
|
54
|
50
|
|
|
|
122
|
last if (! _greater_than_equal_to($tr[$t]{lo}, $tr[$tlast]{lo})); |
3256
|
54
|
100
|
|
|
|
105
|
if ($side == $S_LEFT) { |
3257
|
27
|
|
66
|
|
|
174
|
$cond = (((($tnext = $tr[$t]{d0}) > 0) && ($tr[$tnext]{rseg} == $segnum)) || |
3258
|
|
|
|
|
|
|
((($tnext = $tr[$t]{d1}) > 0) && ($tr[$tnext]{rseg} == $segnum))); |
3259
|
|
|
|
|
|
|
} else { |
3260
|
27
|
|
66
|
|
|
165
|
$cond = (((($tnext = $tr[$t]{d0}) > 0) && ($tr[$tnext]{lseg} == $segnum)) || |
3261
|
|
|
|
|
|
|
((($tnext = $tr[$t]{d1}) > 0) && ($tr[$tnext]{lseg} == $segnum))); |
3262
|
|
|
|
|
|
|
} |
3263
|
54
|
100
|
|
|
|
85
|
if ($cond) { |
3264
|
26
|
100
|
100
|
|
|
123
|
if (($tr[$t]{lseg} == $tr[$tnext]{lseg}) && |
3265
|
|
|
|
|
|
|
($tr[$t]{rseg} == $tr[$tnext]{rseg})) { # good neighbours |
3266
|
|
|
|
|
|
|
# merge them |
3267
|
|
|
|
|
|
|
# Use the upper node as the new node i.e. t |
3268
|
13
|
|
|
|
|
23
|
$ptnext = $qs[$tr[$tnext]{sink}]{parent}; |
3269
|
13
|
100
|
|
|
|
35
|
if ($qs[$ptnext]{left} == $tr[$tnext]{sink}) { |
3270
|
9
|
|
|
|
|
17
|
$qs[$ptnext]{left} = $tr[$t]{sink}; |
3271
|
|
|
|
|
|
|
} else { |
3272
|
4
|
|
|
|
|
9
|
$qs[$ptnext]{right} = $tr[$t]{sink}; # redirect parent |
3273
|
|
|
|
|
|
|
} |
3274
|
|
|
|
|
|
|
# Change the upper neighbours of the lower trapezoids |
3275
|
13
|
50
|
|
|
|
35
|
if (($tr[$t]{d0} = $tr[$tnext]{d0}) > 0) { |
3276
|
13
|
50
|
|
|
|
31
|
if ($tr[$tr[$t]{d0}]{u0} == $tnext) { |
|
|
0
|
|
|
|
|
|
3277
|
13
|
|
|
|
|
21
|
$tr[$tr[$t]{d0}]{u0} = $t; |
3278
|
|
|
|
|
|
|
} elsif ($tr[$tr[$t]{d0}]{u1} == $tnext) { |
3279
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{d0}]{u1} = $t; |
3280
|
|
|
|
|
|
|
} |
3281
|
|
|
|
|
|
|
} |
3282
|
13
|
50
|
|
|
|
40
|
if (($tr[$t]{d1} = $tr[$tnext]{d1}) > 0) { |
3283
|
0
|
0
|
|
|
|
0
|
if ($tr[$tr[$t]{d1}]{u0} == $tnext) { |
|
|
0
|
|
|
|
|
|
3284
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{d1}]{u0} = $t; |
3285
|
|
|
|
|
|
|
} elsif ($tr[$tr[$t]{d1}]{u1} == $tnext) { |
3286
|
0
|
|
|
|
|
0
|
$tr[$tr[$t]{d1}]{u1} = $t; |
3287
|
|
|
|
|
|
|
} |
3288
|
|
|
|
|
|
|
} |
3289
|
13
|
|
|
|
|
55
|
$tr[$t]{lo} = {x => $tr[$tnext]{lo}{x} , y=> $tr[$tnext]{lo}{y}}; |
3290
|
13
|
|
|
|
|
47
|
$tr[$tnext]{state} = 2; # invalidate the lower |
3291
|
|
|
|
|
|
|
# trapezium |
3292
|
|
|
|
|
|
|
} else { #* not good neighbours |
3293
|
13
|
|
|
|
|
32
|
$t = $tnext; |
3294
|
|
|
|
|
|
|
} |
3295
|
|
|
|
|
|
|
} else { #* do not satisfy the outer if |
3296
|
28
|
|
|
|
|
78
|
$t = $tnext; |
3297
|
|
|
|
|
|
|
} |
3298
|
|
|
|
|
|
|
} # end-while |
3299
|
|
|
|
|
|
|
} |
3300
|
|
|
|
|
|
|
|
3301
|
|
|
|
|
|
|
# Retun TRUE if the vertex v is to the left of line segment no. |
3302
|
|
|
|
|
|
|
# segnum. Takes care of the degenerate cases when both the vertices |
3303
|
|
|
|
|
|
|
# have the same y--cood, etc. |
3304
|
|
|
|
|
|
|
# |
3305
|
|
|
|
|
|
|
|
3306
|
|
|
|
|
|
|
sub _is_left_of { |
3307
|
23
|
|
|
23
|
|
37
|
my ($segnum, $v_ref) = @_; |
3308
|
23
|
|
|
|
|
28
|
my %s = %{$seg[$segnum]}; |
|
23
|
|
|
|
|
111
|
|
3309
|
23
|
|
|
|
|
39
|
my $area; |
3310
|
23
|
|
|
|
|
23
|
my %v = %{$v_ref}; |
|
23
|
|
|
|
|
59
|
|
3311
|
|
|
|
|
|
|
|
3312
|
23
|
100
|
|
|
|
58
|
if (_greater_than($s{v1}, $s{v0})) { # seg. going upwards |
3313
|
13
|
100
|
|
|
|
34
|
if (_fp_equal($s{v1}{y}, $v{y}, $precision)) { |
|
|
100
|
|
|
|
|
|
3314
|
9
|
50
|
|
|
|
25
|
if ($v{x} < $s{v1}{x}) { |
3315
|
9
|
|
|
|
|
13
|
$area = 1; |
3316
|
|
|
|
|
|
|
} else { |
3317
|
0
|
|
|
|
|
0
|
$area = -1; |
3318
|
|
|
|
|
|
|
} |
3319
|
|
|
|
|
|
|
} elsif (_fp_equal($s{v0}{y}, $v{y}, $precision)) { |
3320
|
2
|
50
|
|
|
|
8
|
if ($v{x} < $s{v0}{x}) { |
3321
|
2
|
|
|
|
|
2
|
$area = 1; |
3322
|
|
|
|
|
|
|
} else{ |
3323
|
0
|
|
|
|
|
0
|
$area = -1; |
3324
|
|
|
|
|
|
|
} |
3325
|
|
|
|
|
|
|
} else { |
3326
|
2
|
|
|
|
|
10
|
$area = _Cross($s{v0}, $s{v1}, \%v); |
3327
|
|
|
|
|
|
|
} |
3328
|
|
|
|
|
|
|
} else { # v0 > v1 |
3329
|
10
|
100
|
|
|
|
32
|
if (_fp_equal($s{v1}{y}, $v{y}, $precision)) { |
|
|
100
|
|
|
|
|
|
3330
|
2
|
50
|
|
|
|
10
|
if ($v{x} < $s{v1}{x}) { |
3331
|
2
|
|
|
|
|
3
|
$area = 1; |
3332
|
|
|
|
|
|
|
} else { |
3333
|
0
|
|
|
|
|
0
|
$area = -1; |
3334
|
|
|
|
|
|
|
} |
3335
|
|
|
|
|
|
|
} elsif (_fp_equal($s{v0}{y}, $v{y}, $precision)) { |
3336
|
4
|
50
|
|
|
|
16
|
if ($v{x} < $s{v0}{x}) { |
3337
|
4
|
|
|
|
|
7
|
$area = 1; |
3338
|
|
|
|
|
|
|
} else { |
3339
|
0
|
|
|
|
|
0
|
$area = -1; |
3340
|
|
|
|
|
|
|
} |
3341
|
|
|
|
|
|
|
} else { |
3342
|
4
|
|
|
|
|
13
|
$area = _Cross($s{v1}, $s{v0}, \%v); |
3343
|
|
|
|
|
|
|
} |
3344
|
|
|
|
|
|
|
} |
3345
|
23
|
100
|
|
|
|
58
|
if ($area > 0) { |
3346
|
19
|
|
|
|
|
83
|
return $TRUE; |
3347
|
|
|
|
|
|
|
} else { |
3348
|
4
|
|
|
|
|
20
|
return $FALSE; |
3349
|
|
|
|
|
|
|
}; |
3350
|
|
|
|
|
|
|
} |
3351
|
|
|
|
|
|
|
|
3352
|
|
|
|
|
|
|
sub _Cross { |
3353
|
14
|
|
|
14
|
|
21
|
my ($v0_ref, $v1_ref, $v2_ref) = @_; |
3354
|
14
|
|
|
|
|
16
|
my %v0 = %{$v0_ref}; |
|
14
|
|
|
|
|
41
|
|
3355
|
14
|
|
|
|
|
19
|
my %v1 = %{$v1_ref}; |
|
14
|
|
|
|
|
37
|
|
3356
|
14
|
|
|
|
|
18
|
my %v2 = %{$v2_ref}; |
|
14
|
|
|
|
|
45
|
|
3357
|
14
|
|
|
|
|
68
|
return ( ($v1{x} - $v0{x}) * ($v2{y} - $v0{y}) - |
3358
|
|
|
|
|
|
|
($v1{y} - $v0{y}) * ($v2{x} - $v0{x}) ); |
3359
|
|
|
|
|
|
|
} |
3360
|
|
|
|
|
|
|
|
3361
|
|
|
|
|
|
|
# Get log*n for given n |
3362
|
|
|
|
|
|
|
sub _math_logstar_n { |
3363
|
8
|
|
|
8
|
|
16
|
my ($n) = @_; |
3364
|
8
|
|
|
|
|
11
|
my $i = 0; |
3365
|
8
|
|
|
|
|
31
|
for ($i = 0 ; $n >= 1 ; $i++) { |
3366
|
24
|
|
|
|
|
79
|
$n = log($n)/log(2); # log2 |
3367
|
|
|
|
|
|
|
} |
3368
|
8
|
|
|
|
|
27
|
return ($i - 1); |
3369
|
|
|
|
|
|
|
} |
3370
|
|
|
|
|
|
|
|
3371
|
|
|
|
|
|
|
sub _math_N { |
3372
|
20
|
|
|
20
|
|
30
|
my ($n,$h) = @_; |
3373
|
20
|
|
|
|
|
28
|
my $v = $n; |
3374
|
20
|
|
|
|
|
53
|
for (my $i = 0 ; $i < $h; $i++) { |
3375
|
28
|
|
|
|
|
75
|
$v = log($v)/log(2); # log2 |
3376
|
|
|
|
|
|
|
} |
3377
|
20
|
|
|
|
|
121
|
return (ceil($n/$v)); |
3378
|
|
|
|
|
|
|
} |
3379
|
|
|
|
|
|
|
|
3380
|
|
|
|
|
|
|
# This function returns TRUE or FALSE depending upon whether the |
3381
|
|
|
|
|
|
|
# vertex is inside the polygon or not. The polygon must already have |
3382
|
|
|
|
|
|
|
# been triangulated before this routine is called. |
3383
|
|
|
|
|
|
|
# This routine will always detect all the points belonging to the |
3384
|
|
|
|
|
|
|
# set (polygon-area - polygon-boundary). The return value for points |
3385
|
|
|
|
|
|
|
# on the boundary is not consistent!!! |
3386
|
|
|
|
|
|
|
# |
3387
|
|
|
|
|
|
|
|
3388
|
|
|
|
|
|
|
sub is_point_inside_polygon { |
3389
|
0
|
|
|
0
|
0
|
0
|
my @vertex = @_; |
3390
|
0
|
|
|
|
|
0
|
my %v; |
3391
|
0
|
|
|
|
|
0
|
my ($trnum, $rseg); |
3392
|
|
|
|
|
|
|
|
3393
|
0
|
|
|
|
|
0
|
%v = {x => $vertex[0] , y => $vertex[1]}; |
3394
|
|
|
|
|
|
|
|
3395
|
0
|
|
|
|
|
0
|
$trnum = _locate_endpoint(&v, &v, 1); |
3396
|
0
|
|
|
|
|
0
|
my %t = %{$tr[$trnum]}; |
|
0
|
|
|
|
|
0
|
|
3397
|
|
|
|
|
|
|
|
3398
|
0
|
0
|
|
|
|
0
|
if ($t{state} == $ST_INVALID) { |
3399
|
0
|
|
|
|
|
0
|
return $FALSE; |
3400
|
|
|
|
|
|
|
} |
3401
|
|
|
|
|
|
|
|
3402
|
0
|
0
|
0
|
|
|
0
|
if (($t{lseg} <= 0) || ($t{rseg} <= 0)) { |
3403
|
0
|
|
|
|
|
0
|
return $FALSE; |
3404
|
|
|
|
|
|
|
} |
3405
|
0
|
|
|
|
|
0
|
$rseg = $t{rseg}; |
3406
|
0
|
|
|
|
|
0
|
return _greater_than_equal_to($seg[$rseg]{v1}, $seg[$rseg]{v0}); |
3407
|
|
|
|
|
|
|
} |
3408
|
|
|
|
|
|
|
|
3409
|
|
|
|
|
|
|
sub _Cross_Sine { |
3410
|
18
|
|
|
18
|
|
23
|
my ($v0_ref, $v1_ref) = @_; |
3411
|
18
|
|
|
|
|
27
|
my %v0 = %{$v0_ref}; |
|
18
|
|
|
|
|
62
|
|
3412
|
18
|
|
|
|
|
24
|
my %v1 = %{$v1_ref}; |
|
18
|
|
|
|
|
52
|
|
3413
|
18
|
|
|
|
|
76
|
return ($v0{x} * $v1{y} - $v1{x} * $v0{y}); |
3414
|
|
|
|
|
|
|
} |
3415
|
|
|
|
|
|
|
|
3416
|
|
|
|
|
|
|
sub _Length { |
3417
|
36
|
|
|
36
|
|
41
|
my ($v0_ref) = @_; |
3418
|
36
|
|
|
|
|
45
|
my %v0 = %{$v0_ref}; |
|
36
|
|
|
|
|
86
|
|
3419
|
36
|
|
|
|
|
214
|
return (sqrt($v0{x} * $v0{x} + $v0{y} * $v0{y})); |
3420
|
|
|
|
|
|
|
} |
3421
|
|
|
|
|
|
|
|
3422
|
|
|
|
|
|
|
sub _Dot { |
3423
|
18
|
|
|
18
|
|
28
|
my ($v0_ref, $v1_ref) = @_; |
3424
|
18
|
|
|
|
|
17
|
my %v0 = %{$v0_ref}; |
|
18
|
|
|
|
|
39
|
|
3425
|
18
|
|
|
|
|
30
|
my %v1 = %{$v1_ref}; |
|
18
|
|
|
|
|
41
|
|
3426
|
18
|
|
|
|
|
74
|
return ($v0{x} * $v1{x} + $v0{y} * $v1{y}) |
3427
|
|
|
|
|
|
|
} |
3428
|
|
|
|
|
|
|
|
3429
|
|
|
|
|
|
|
# Function returns TRUE if the trapezoid lies inside the polygon |
3430
|
|
|
|
|
|
|
sub inside_polygon { |
3431
|
18
|
|
|
18
|
0
|
25
|
my ($t_ref) = @_; |
3432
|
18
|
|
|
|
|
22
|
my %t = %{$t_ref}; |
|
18
|
|
|
|
|
129
|
|
3433
|
18
|
|
|
|
|
42
|
my $rseg = $t{rseg}; |
3434
|
18
|
100
|
|
|
|
42
|
if ($t{state} == $ST_INVALID) { |
3435
|
5
|
|
|
|
|
30
|
return 0; |
3436
|
|
|
|
|
|
|
} |
3437
|
13
|
100
|
100
|
|
|
53
|
if (($t{lseg} <= 0) || ($t{rseg} <= 0)) { |
3438
|
9
|
|
|
|
|
47
|
return 0; |
3439
|
|
|
|
|
|
|
} |
3440
|
4
|
100
|
66
|
|
|
36
|
if ((($t{u0} <= 0) && ($t{u1} <= 0)) || |
|
|
|
66
|
|
|
|
|
|
|
|
66
|
|
|
|
|
3441
|
|
|
|
|
|
|
(($t{d0} <= 0) && ($t{d1} <= 0))) { # triangle |
3442
|
2
|
|
|
|
|
9
|
return (_greater_than($seg[$rseg]{v1}, $seg[$rseg]{v0})); |
3443
|
|
|
|
|
|
|
} |
3444
|
2
|
|
|
|
|
13
|
return 0; |
3445
|
|
|
|
|
|
|
} |
3446
|
|
|
|
|
|
|
|
3447
|
|
|
|
|
|
|
# return a new mon structure from the table |
3448
|
|
|
|
|
|
|
sub _newmon { |
3449
|
9
|
|
|
9
|
|
23
|
return ++$mon_idx; |
3450
|
|
|
|
|
|
|
} |
3451
|
|
|
|
|
|
|
|
3452
|
|
|
|
|
|
|
# return a new chain element from the table |
3453
|
|
|
|
|
|
|
sub _new_chain_element { |
3454
|
14
|
|
|
14
|
|
20
|
return ++$chain_idx; |
3455
|
|
|
|
|
|
|
} |
3456
|
|
|
|
|
|
|
|
3457
|
|
|
|
|
|
|
sub _get_angle { |
3458
|
18
|
|
|
18
|
|
26
|
my ($vp0_ref, $vpnext_ref, $vp1_ref) = @_; |
3459
|
18
|
|
|
|
|
20
|
my %vp0 = %{$vp0_ref}; |
|
18
|
|
|
|
|
52
|
|
3460
|
18
|
|
|
|
|
27
|
my %vpnext = %{$vpnext_ref}; |
|
18
|
|
|
|
|
44
|
|
3461
|
18
|
|
|
|
|
22
|
my %vp1 = %{$vp1_ref}; |
|
18
|
|
|
|
|
42
|
|
3462
|
|
|
|
|
|
|
|
3463
|
18
|
|
|
|
|
20
|
my ($v0, $v1); |
3464
|
|
|
|
|
|
|
|
3465
|
18
|
|
|
|
|
72
|
$v0 = {x => $vpnext{x} - $vp0{x} , y => $vpnext{y} - $vp0{y}}; |
3466
|
18
|
|
|
|
|
65
|
$v1 = {x => $vp1{x} - $vp0{x} , y => $vp1{y} - $vp0{y}}; |
3467
|
|
|
|
|
|
|
|
3468
|
18
|
100
|
|
|
|
40
|
if (_Cross_Sine($v0, $v1) >= 0) { # sine is positive |
3469
|
15
|
|
|
|
|
31
|
return _Dot($v0, $v1)/_Length($v0)/_Length($v1); |
3470
|
|
|
|
|
|
|
} else { |
3471
|
3
|
|
|
|
|
9
|
return (-1 * _Dot($v0, $v1)/_Length($v0)/_Length($v1) - 2); |
3472
|
|
|
|
|
|
|
} |
3473
|
|
|
|
|
|
|
} |
3474
|
|
|
|
|
|
|
|
3475
|
|
|
|
|
|
|
# (v0, v1) is the new diagonal to be added to the polygon. Find which |
3476
|
|
|
|
|
|
|
# chain to use and return the positions of v0 and v1 in p and q |
3477
|
|
|
|
|
|
|
sub _get_vertex_positions { |
3478
|
7
|
|
|
7
|
|
9
|
my ($v0, $v1) = @_; |
3479
|
|
|
|
|
|
|
|
3480
|
7
|
|
|
|
|
10
|
my (%vp0, %vp1); |
3481
|
0
|
|
|
|
|
0
|
my ($angle, $temp); |
3482
|
0
|
|
|
|
|
0
|
my ($tp, $tq); |
3483
|
|
|
|
|
|
|
|
3484
|
7
|
|
|
|
|
11
|
%vp0 = %{$vert[$v0]}; |
|
7
|
|
|
|
|
37
|
|
3485
|
7
|
|
|
|
|
11
|
%vp1 = %{$vert[$v1]}; |
|
7
|
|
|
|
|
35
|
|
3486
|
|
|
|
|
|
|
|
3487
|
|
|
|
|
|
|
# p is identified as follows. Scan from (v0, v1) rightwards till |
3488
|
|
|
|
|
|
|
# you hit the first segment starting from v0. That chain is the |
3489
|
|
|
|
|
|
|
# chain of our interest |
3490
|
|
|
|
|
|
|
|
3491
|
7
|
|
|
|
|
10
|
$angle = -4.0; |
3492
|
7
|
|
|
|
|
22
|
for (my $i = 0; $i < 4; $i++) { |
3493
|
28
|
100
|
|
|
|
81
|
next if (! $vp0{vnext}[$i]); # prevents 'uninitialized' warnings |
3494
|
9
|
50
|
|
|
|
22
|
if ($vp0{vnext}[$i] <= 0) { |
3495
|
0
|
|
|
|
|
0
|
next; |
3496
|
|
|
|
|
|
|
} |
3497
|
9
|
50
|
|
|
|
31
|
if (($temp = _get_angle($vp0{pt}, $vert[$vp0{vnext}[$i]]{pt}, $vp1{pt})) > $angle) { |
3498
|
9
|
|
|
|
|
12
|
$angle = $temp; |
3499
|
9
|
|
|
|
|
26
|
$tp = $i; |
3500
|
|
|
|
|
|
|
} |
3501
|
|
|
|
|
|
|
} |
3502
|
|
|
|
|
|
|
|
3503
|
|
|
|
|
|
|
# $ip_ref = \$tp; |
3504
|
|
|
|
|
|
|
|
3505
|
|
|
|
|
|
|
# Do similar actions for q |
3506
|
|
|
|
|
|
|
|
3507
|
7
|
|
|
|
|
8
|
$angle = -4.0; |
3508
|
7
|
|
|
|
|
19
|
for (my $i = 0; $i < 4; $i++) { |
3509
|
28
|
100
|
|
|
|
76
|
next if (! $vp1{vnext}[$i]); # prevents 'uninitialized' warnings |
3510
|
9
|
50
|
|
|
|
25
|
if ($vp1{vnext}[$i] <= 0) { |
3511
|
0
|
|
|
|
|
0
|
next; |
3512
|
|
|
|
|
|
|
} |
3513
|
9
|
50
|
|
|
|
28
|
if (($temp = _get_angle($vp1{pt}, $vert[$vp1{vnext}[$i]]{pt}, $vp0{pt})) > $angle) { |
3514
|
9
|
|
|
|
|
13
|
$angle = $temp; |
3515
|
9
|
|
|
|
|
27
|
$tq = $i; |
3516
|
|
|
|
|
|
|
} |
3517
|
|
|
|
|
|
|
} |
3518
|
|
|
|
|
|
|
|
3519
|
|
|
|
|
|
|
# $iq_ref = \$tq; |
3520
|
|
|
|
|
|
|
|
3521
|
7
|
|
|
|
|
25
|
return ($tp,$tq); |
3522
|
|
|
|
|
|
|
|
3523
|
|
|
|
|
|
|
} |
3524
|
|
|
|
|
|
|
|
3525
|
|
|
|
|
|
|
# v0 and v1 are specified in anti-clockwise order with respect to |
3526
|
|
|
|
|
|
|
# the current monotone polygon mcur. Split the current polygon into |
3527
|
|
|
|
|
|
|
# two polygons using the diagonal (v0, v1) |
3528
|
|
|
|
|
|
|
# |
3529
|
|
|
|
|
|
|
sub _make_new_monotone_poly { |
3530
|
7
|
|
|
7
|
|
10
|
my ($mcur, $v0, $v1) = @_; |
3531
|
|
|
|
|
|
|
|
3532
|
7
|
|
|
|
|
9
|
my ($p, $q, $ip, $iq); |
3533
|
7
|
|
|
|
|
15
|
my $mnew = _newmon; |
3534
|
7
|
|
|
|
|
11
|
my ($i, $j, $nf0, $nf1); |
3535
|
|
|
|
|
|
|
|
3536
|
7
|
|
|
|
|
9
|
my %vp0 = %{$vert[$v0]}; |
|
7
|
|
|
|
|
40
|
|
3537
|
7
|
|
|
|
|
12
|
my %vp1 = %{$vert[$v1]}; |
|
7
|
|
|
|
|
27
|
|
3538
|
|
|
|
|
|
|
|
3539
|
7
|
|
|
|
|
23
|
($ip,$iq) = _get_vertex_positions($v0, $v1); |
3540
|
|
|
|
|
|
|
|
3541
|
7
|
|
|
|
|
15
|
$p = $vp0{vpos}[$ip]; |
3542
|
7
|
|
|
|
|
12
|
$q = $vp1{vpos}[$iq]; |
3543
|
|
|
|
|
|
|
|
3544
|
|
|
|
|
|
|
# At this stage, we have got the positions of v0 and v1 in the |
3545
|
|
|
|
|
|
|
# desired chain. Now modify the linked lists |
3546
|
|
|
|
|
|
|
|
3547
|
7
|
|
|
|
|
17
|
$i = _new_chain_element; # for the new list |
3548
|
7
|
|
|
|
|
11
|
$j = _new_chain_element; |
3549
|
|
|
|
|
|
|
|
3550
|
7
|
|
|
|
|
20
|
$mchain[$i]{vnum} = $v0; |
3551
|
7
|
|
|
|
|
24
|
$mchain[$j]{vnum} = $v1; |
3552
|
|
|
|
|
|
|
|
3553
|
7
|
|
|
|
|
18
|
$mchain[$i]{next} = $mchain[$p]{next}; |
3554
|
7
|
|
|
|
|
14
|
$mchain[$mchain[$p]{next}]{prev} = $i; |
3555
|
7
|
|
|
|
|
13
|
$mchain[$i]{prev} = $j; |
3556
|
7
|
|
|
|
|
29
|
$mchain[$j]{next} = $i; |
3557
|
7
|
|
|
|
|
50
|
$mchain[$j]{prev} = $mchain[$q]{prev}; |
3558
|
7
|
|
|
|
|
13
|
$mchain[$mchain[$q]{prev}]{next} = $j; |
3559
|
|
|
|
|
|
|
|
3560
|
7
|
|
|
|
|
9
|
$mchain[$p]{next} = $q; |
3561
|
7
|
|
|
|
|
9
|
$mchain[$q]{prev} = $p; |
3562
|
|
|
|
|
|
|
|
3563
|
7
|
|
|
|
|
10
|
$nf0 = $vp0{nextfree}; |
3564
|
7
|
|
|
|
|
18
|
$nf1 = $vp1{nextfree}; |
3565
|
|
|
|
|
|
|
|
3566
|
7
|
|
|
|
|
12
|
$vert[$v0]{vnext}[$ip] = $v1; |
3567
|
|
|
|
|
|
|
|
3568
|
7
|
|
|
|
|
11
|
$vert[$v0]{vpos}[$nf0] = $i; |
3569
|
7
|
|
|
|
|
17
|
$vert[$v0]{vnext}[$nf0] = $mchain[$mchain[$i]{next}]{vnum}; |
3570
|
7
|
|
|
|
|
12
|
$vert[$v1]{vpos}[$nf1] = $j; |
3571
|
7
|
|
|
|
|
10
|
$vert[$v1]{vnext}[$nf1] = $v0; |
3572
|
|
|
|
|
|
|
|
3573
|
7
|
|
|
|
|
11
|
$vert[$v0]{nextfree}++; |
3574
|
7
|
|
|
|
|
10
|
$vert[$v1]{nextfree}++; |
3575
|
|
|
|
|
|
|
|
3576
|
7
|
|
|
|
|
11
|
$mon[$mcur] = $p; |
3577
|
7
|
|
|
|
|
12
|
$mon[$mnew] = $i; |
3578
|
7
|
|
|
|
|
21
|
return $mnew; |
3579
|
|
|
|
|
|
|
} |
3580
|
|
|
|
|
|
|
|
3581
|
|
|
|
|
|
|
# Main routine to get monotone polygons from the trapezoidation of |
3582
|
|
|
|
|
|
|
# the polygon. |
3583
|
|
|
|
|
|
|
# |
3584
|
|
|
|
|
|
|
|
3585
|
|
|
|
|
|
|
sub _monotonate_trapezoids { |
3586
|
2
|
|
|
2
|
|
4
|
my ($n) = @_; |
3587
|
|
|
|
|
|
|
|
3588
|
2
|
|
|
|
|
4
|
my $tr_start; |
3589
|
|
|
|
|
|
|
|
3590
|
|
|
|
|
|
|
# First locate a trapezoid which lies inside the polygon |
3591
|
|
|
|
|
|
|
# and which is triangular |
3592
|
|
|
|
|
|
|
my $i; |
3593
|
2
|
|
|
|
|
10
|
for ($i = 1; $i < $#tr; $i++) { |
3594
|
18
|
100
|
|
|
|
39
|
if (inside_polygon($tr[$i])) { |
3595
|
2
|
|
|
|
|
6
|
last; |
3596
|
|
|
|
|
|
|
} |
3597
|
|
|
|
|
|
|
} |
3598
|
2
|
|
|
|
|
10
|
$tr_start = $i; |
3599
|
|
|
|
|
|
|
|
3600
|
|
|
|
|
|
|
# Initialise the mon data-structure and start spanning all the |
3601
|
|
|
|
|
|
|
# trapezoids within the polygon |
3602
|
|
|
|
|
|
|
|
3603
|
2
|
|
|
|
|
8
|
for (my $i = 1; $i <= $n; $i++) { |
3604
|
16
|
|
|
|
|
232
|
$mchain[$i]{prev} = $seg[$i]{prev}; |
3605
|
16
|
|
|
|
|
32
|
$mchain[$i]{next} = $seg[$i]{next}; |
3606
|
16
|
|
|
|
|
24
|
$mchain[$i]{vnum} = $i; |
3607
|
16
|
|
|
|
|
68
|
$vert[$i]{pt} = {x => $seg[$i]{v0}{x} , y => $seg[$i]{v0}{y}}; |
3608
|
16
|
|
|
|
|
38
|
$vert[$i]{vnext}[0] = $seg[$i]{next}; # next vertex |
3609
|
16
|
|
|
|
|
35
|
$vert[$i]{vpos}[0] = $i; # locn. of next vertex |
3610
|
16
|
|
|
|
|
39
|
$vert[$i]{nextfree} = 1; |
3611
|
|
|
|
|
|
|
} |
3612
|
|
|
|
|
|
|
|
3613
|
2
|
|
|
|
|
3
|
$chain_idx = $n; |
3614
|
2
|
|
|
|
|
3
|
$mon_idx = 0; |
3615
|
2
|
|
|
|
|
3
|
$mon[0] = 1; # position of any vertex in the first chain |
3616
|
|
|
|
|
|
|
|
3617
|
|
|
|
|
|
|
# traverse the polygon |
3618
|
2
|
100
|
|
|
|
10
|
if ($tr[$tr_start]{u0} > 0) { |
|
|
50
|
|
|
|
|
|
3619
|
1
|
|
|
|
|
5
|
_traverse_polygon(0, $tr_start, $tr[$tr_start]{u0}, $TR_FROM_UP); |
3620
|
|
|
|
|
|
|
} elsif ($tr[$tr_start]{d0} > 0) { |
3621
|
1
|
|
|
|
|
4
|
_traverse_polygon(0, $tr_start, $tr[$tr_start]{d0}, $TR_FROM_DN); |
3622
|
|
|
|
|
|
|
} |
3623
|
|
|
|
|
|
|
|
3624
|
|
|
|
|
|
|
# return the number of polygons created |
3625
|
2
|
|
|
|
|
5
|
return _newmon; |
3626
|
|
|
|
|
|
|
} |
3627
|
|
|
|
|
|
|
|
3628
|
|
|
|
|
|
|
# recursively visit all the trapezoids |
3629
|
|
|
|
|
|
|
sub _traverse_polygon { |
3630
|
62
|
|
|
62
|
|
92
|
my ($mcur, $trnum, $from, $dir) = @_; |
3631
|
|
|
|
|
|
|
|
3632
|
62
|
100
|
|
|
|
116
|
if (!$trnum) { # patch dvdp |
3633
|
5
|
|
|
|
|
8
|
return 0; |
3634
|
|
|
|
|
|
|
} |
3635
|
57
|
|
|
|
|
59
|
my %t = %{$tr[$trnum]}; |
|
57
|
|
|
|
|
365
|
|
3636
|
57
|
|
|
|
|
114
|
my ($howsplit, $mnew); |
3637
|
0
|
|
|
|
|
0
|
my ($v0, $v1, $v0next, $v1next); |
3638
|
0
|
|
|
|
|
0
|
my ($retval, $tmp); |
3639
|
57
|
|
|
|
|
62
|
my $do_switch = $FALSE; |
3640
|
|
|
|
|
|
|
|
3641
|
57
|
100
|
100
|
|
|
288
|
if (($trnum <= 0) || $visited[$trnum]) { |
3642
|
42
|
|
|
|
|
116
|
return 0; |
3643
|
|
|
|
|
|
|
} |
3644
|
|
|
|
|
|
|
|
3645
|
15
|
|
|
|
|
24
|
$visited[$trnum] = $TRUE; |
3646
|
|
|
|
|
|
|
|
3647
|
|
|
|
|
|
|
# We have much more information available here. |
3648
|
|
|
|
|
|
|
# rseg: goes upwards |
3649
|
|
|
|
|
|
|
# lseg: goes downwards |
3650
|
|
|
|
|
|
|
|
3651
|
|
|
|
|
|
|
# Initially assume that dir = TR_FROM_DN (from the left) |
3652
|
|
|
|
|
|
|
# Switch v0 and v1 if necessary afterwards |
3653
|
|
|
|
|
|
|
|
3654
|
|
|
|
|
|
|
# special cases for triangles with cusps at the opposite ends. |
3655
|
|
|
|
|
|
|
# take care of this first |
3656
|
15
|
100
|
66
|
|
|
135
|
if (($t{u0} <= 0) && ($t{u1} <= 0)) { |
|
|
100
|
66
|
|
|
|
|
|
|
100
|
66
|
|
|
|
|
|
|
50
|
33
|
|
|
|
|
3657
|
2
|
50
|
33
|
|
|
14
|
if (($t{d0} > 0) && ($t{d1} > 0)) { # downward opening triangle |
3658
|
0
|
|
|
|
|
0
|
$v0 = $tr[$t{d1}]{lseg}; |
3659
|
0
|
|
|
|
|
0
|
$v1 = $t{lseg}; |
3660
|
0
|
0
|
|
|
|
0
|
if ($from == $t{d1}) { |
3661
|
0
|
|
|
|
|
0
|
$do_switch = $TRUE; |
3662
|
0
|
|
|
|
|
0
|
$mnew = _make_new_monotone_poly($mcur, $v1, $v0); |
3663
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{d1}, $trnum, $TR_FROM_UP); |
3664
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{d0}, $trnum, $TR_FROM_UP); |
3665
|
|
|
|
|
|
|
} else { |
3666
|
0
|
|
|
|
|
0
|
$mnew = _make_new_monotone_poly($mcur, $v0, $v1); |
3667
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{d0}, $trnum, $TR_FROM_UP); |
3668
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{d1}, $trnum, $TR_FROM_UP); |
3669
|
|
|
|
|
|
|
} |
3670
|
|
|
|
|
|
|
} else { |
3671
|
2
|
|
|
|
|
6
|
$retval = $SP_NOSPLIT; # Just traverse all neighbours |
3672
|
2
|
|
|
|
|
18
|
_traverse_polygon($mcur, $t{u0}, $trnum, $TR_FROM_DN); |
3673
|
2
|
|
|
|
|
7
|
_traverse_polygon($mcur, $t{u1}, $trnum, $TR_FROM_DN); |
3674
|
2
|
|
|
|
|
7
|
_traverse_polygon($mcur, $t{d0}, $trnum, $TR_FROM_UP); |
3675
|
2
|
|
|
|
|
4
|
_traverse_polygon($mcur, $t{d1}, $trnum, $TR_FROM_UP); |
3676
|
|
|
|
|
|
|
} |
3677
|
|
|
|
|
|
|
} elsif (($t{d0} <= 0) && ($t{d1} <= 0)) { |
3678
|
2
|
50
|
33
|
|
|
13
|
if (($t{u0} > 0) && ($t{u1} > 0)) { # upward opening triangle |
3679
|
0
|
|
|
|
|
0
|
$v0 = $t{rseg}; |
3680
|
0
|
|
|
|
|
0
|
$v1 = $tr[$t{u0}]{rseg}; |
3681
|
0
|
0
|
|
|
|
0
|
if ($from == $t{u1}) { |
3682
|
0
|
|
|
|
|
0
|
$do_switch = $TRUE; |
3683
|
0
|
|
|
|
|
0
|
$mnew = _make_new_monotone_poly($mcur, $v1, $v0); |
3684
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{u1}, $trnum, $TR_FROM_DN); |
3685
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{u0}, $trnum, $TR_FROM_DN); |
3686
|
|
|
|
|
|
|
} else { |
3687
|
0
|
|
|
|
|
0
|
$mnew = _make_new_monotone_poly($mcur, $v0, $v1); |
3688
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{u0}, $trnum, $TR_FROM_DN); |
3689
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{u1}, $trnum, $TR_FROM_DN); |
3690
|
|
|
|
|
|
|
} |
3691
|
|
|
|
|
|
|
} else { |
3692
|
2
|
|
|
|
|
3
|
$retval = $SP_NOSPLIT; # Just traverse all neighbours |
3693
|
2
|
|
|
|
|
32
|
_traverse_polygon($mcur, $t{u0}, $trnum, $TR_FROM_DN); |
3694
|
2
|
|
|
|
|
6
|
_traverse_polygon($mcur, $t{u1}, $trnum, $TR_FROM_DN); |
3695
|
2
|
|
|
|
|
6
|
_traverse_polygon($mcur, $t{d0}, $trnum, $TR_FROM_UP); |
3696
|
2
|
|
|
|
|
5
|
_traverse_polygon($mcur, $t{d1}, $trnum, $TR_FROM_UP); |
3697
|
|
|
|
|
|
|
} |
3698
|
|
|
|
|
|
|
} elsif (($t{u0} > 0) && ($t{u1} > 0)) { |
3699
|
1
|
50
|
33
|
|
|
9
|
if (($t{d0} > 0) && ($t{d1} > 0)) { # downward + upward cusps |
3700
|
0
|
|
|
|
|
0
|
$v0 = $tr[$t{d1}]{lseg}; |
3701
|
0
|
|
|
|
|
0
|
$v1 = $tr[$t{u0}]{rseg}; |
3702
|
0
|
|
|
|
|
0
|
$retval = $SP_2UP_2DN; |
3703
|
0
|
0
|
0
|
|
|
0
|
if ((($dir == $TR_FROM_DN) && ($t{d1} == $from)) || |
|
|
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
3704
|
|
|
|
|
|
|
(($dir == $TR_FROM_UP) && ($t{u1} == $from))) { |
3705
|
0
|
|
|
|
|
0
|
$do_switch = $TRUE; |
3706
|
0
|
|
|
|
|
0
|
$mnew = _make_new_monotone_poly($mcur, $v1, $v0); |
3707
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{u1}, $trnum, $TR_FROM_DN); |
3708
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{d1}, $trnum, $TR_FROM_UP); |
3709
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{u0}, $trnum, $TR_FROM_DN); |
3710
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{d0}, $trnum, $TR_FROM_UP); |
3711
|
|
|
|
|
|
|
} else { |
3712
|
0
|
|
|
|
|
0
|
$mnew = _make_new_monotone_poly($mcur, $v0, $v1); |
3713
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{u0}, $trnum, $TR_FROM_DN); |
3714
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{d0}, $trnum, $TR_FROM_UP); |
3715
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{u1}, $trnum, $TR_FROM_DN); |
3716
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{d1}, $trnum, $TR_FROM_UP); |
3717
|
|
|
|
|
|
|
} |
3718
|
|
|
|
|
|
|
} else { #* only downward cusp |
3719
|
1
|
50
|
|
|
|
7
|
if (_equal_to($t{lo}, $seg[$t{lseg}]{v1})) { |
3720
|
0
|
|
|
|
|
0
|
$v0 = $tr[$t{u0}]{rseg}; |
3721
|
0
|
|
|
|
|
0
|
$v1 = $seg[$t{lseg}]{next}; |
3722
|
|
|
|
|
|
|
|
3723
|
0
|
|
|
|
|
0
|
$retval = $SP_2UP_LEFT; |
3724
|
0
|
0
|
0
|
|
|
0
|
if (($dir == $TR_FROM_UP) && ($t{u0} == $from)) { |
3725
|
0
|
|
|
|
|
0
|
$do_switch = $TRUE; |
3726
|
0
|
|
|
|
|
0
|
$mnew = _make_new_monotone_poly($mcur, $v1, $v0); |
3727
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{u0}, $trnum, $TR_FROM_DN); |
3728
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{d0}, $trnum, $TR_FROM_UP); |
3729
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{u1}, $trnum, $TR_FROM_DN); |
3730
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{d1}, $trnum, $TR_FROM_UP); |
3731
|
|
|
|
|
|
|
} else { |
3732
|
0
|
|
|
|
|
0
|
$mnew = _make_new_monotone_poly($mcur, $v0, $v1); |
3733
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{u1}, $trnum, $TR_FROM_DN); |
3734
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{d0}, $trnum, $TR_FROM_UP); |
3735
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{d1}, $trnum, $TR_FROM_UP); |
3736
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{u0}, $trnum, $TR_FROM_DN); |
3737
|
|
|
|
|
|
|
} |
3738
|
|
|
|
|
|
|
} else { |
3739
|
1
|
|
|
|
|
4
|
$v0 = $t{rseg}; |
3740
|
1
|
|
|
|
|
3
|
$v1 = $tr[$t{u0}]{rseg}; |
3741
|
1
|
|
|
|
|
2
|
$retval = $SP_2UP_RIGHT; |
3742
|
1
|
50
|
33
|
|
|
9
|
if (($dir == $TR_FROM_UP) && ($t{u1} == $from)) { |
3743
|
1
|
|
|
|
|
3
|
$do_switch = $TRUE; |
3744
|
1
|
|
|
|
|
3
|
$mnew = _make_new_monotone_poly($mcur, $v1, $v0); |
3745
|
1
|
|
|
|
|
4
|
_traverse_polygon($mcur, $t{u1}, $trnum, $TR_FROM_DN); |
3746
|
1
|
|
|
|
|
4
|
_traverse_polygon($mnew, $t{d1}, $trnum, $TR_FROM_UP); |
3747
|
1
|
|
|
|
|
5
|
_traverse_polygon($mnew, $t{d0}, $trnum, $TR_FROM_UP); |
3748
|
1
|
|
|
|
|
4
|
_traverse_polygon($mnew, $t{u0}, $trnum, $TR_FROM_DN); |
3749
|
|
|
|
|
|
|
} else { |
3750
|
0
|
|
|
|
|
0
|
$mnew = _make_new_monotone_poly($mcur, $v0, $v1); |
3751
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{u0}, $trnum, $TR_FROM_DN); |
3752
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{d0}, $trnum, $TR_FROM_UP); |
3753
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{d1}, $trnum, $TR_FROM_UP); |
3754
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{u1}, $trnum, $TR_FROM_DN); |
3755
|
|
|
|
|
|
|
} |
3756
|
|
|
|
|
|
|
} |
3757
|
|
|
|
|
|
|
} |
3758
|
|
|
|
|
|
|
} elsif (($t{u0} > 0) || ($t{u1} > 0)) { # no downward cusp |
3759
|
10
|
100
|
66
|
|
|
48
|
if (($t{d0} > 0) && ($t{d1} > 0)) { # only upward cusp |
3760
|
1
|
50
|
|
|
|
5
|
if (_equal_to($t{hi}, $seg[$t{lseg}]{v0})) { |
3761
|
1
|
|
|
|
|
2
|
$v0 = $tr[$t{d1}]{lseg}; |
3762
|
1
|
|
|
|
|
2
|
$v1 = $t{lseg}; |
3763
|
1
|
|
|
|
|
2
|
$retval = $SP_2DN_LEFT; |
3764
|
1
|
50
|
33
|
|
|
6
|
if (!(($dir == $TR_FROM_DN) && ($t{d0} == $from))) { |
3765
|
1
|
|
|
|
|
2
|
$do_switch = $TRUE; |
3766
|
1
|
|
|
|
|
4
|
$mnew = _make_new_monotone_poly($mcur, $v1, $v0); |
3767
|
1
|
|
|
|
|
4
|
_traverse_polygon($mcur, $t{u1}, $trnum, $TR_FROM_DN); |
3768
|
1
|
|
|
|
|
4
|
_traverse_polygon($mcur, $t{d1}, $trnum, $TR_FROM_UP); |
3769
|
1
|
|
|
|
|
4
|
_traverse_polygon($mcur, $t{u0}, $trnum, $TR_FROM_DN); |
3770
|
1
|
|
|
|
|
3
|
_traverse_polygon($mnew, $t{d0}, $trnum, $TR_FROM_UP); |
3771
|
|
|
|
|
|
|
} else { |
3772
|
0
|
|
|
|
|
0
|
$mnew = _make_new_monotone_poly($mcur, $v0, $v1); |
3773
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{d0}, $trnum, $TR_FROM_UP); |
3774
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{u0}, $trnum, $TR_FROM_DN); |
3775
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{u1}, $trnum, $TR_FROM_DN); |
3776
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{d1}, $trnum, $TR_FROM_UP); |
3777
|
|
|
|
|
|
|
} |
3778
|
|
|
|
|
|
|
} else { |
3779
|
0
|
|
|
|
|
0
|
$v0 = $tr[$t{d1}]{lseg}; |
3780
|
0
|
|
|
|
|
0
|
$v1 = $seg[$t{rseg}]{next}; |
3781
|
|
|
|
|
|
|
|
3782
|
0
|
|
|
|
|
0
|
$retval = $SP_2DN_RIGHT; |
3783
|
0
|
0
|
0
|
|
|
0
|
if (($dir == $TR_FROM_DN) && ($t{d1} == $from)) { |
3784
|
0
|
|
|
|
|
0
|
$do_switch = $TRUE; |
3785
|
0
|
|
|
|
|
0
|
$mnew = _make_new_monotone_poly($mcur, $v1, $v0); |
3786
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{d1}, $trnum, $TR_FROM_UP); |
3787
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{u1}, $trnum, $TR_FROM_DN); |
3788
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{u0}, $trnum, $TR_FROM_DN); |
3789
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{d0}, $trnum, $TR_FROM_UP); |
3790
|
|
|
|
|
|
|
} else { |
3791
|
0
|
|
|
|
|
0
|
$mnew = _make_new_monotone_poly($mcur, $v0, $v1); |
3792
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{u0}, $trnum, $TR_FROM_DN); |
3793
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{d0}, $trnum, $TR_FROM_UP); |
3794
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{u1}, $trnum, $TR_FROM_DN); |
3795
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{d1}, $trnum, $TR_FROM_UP); |
3796
|
|
|
|
|
|
|
} |
3797
|
|
|
|
|
|
|
} |
3798
|
|
|
|
|
|
|
} else { # no cusp |
3799
|
9
|
100
|
100
|
|
|
29
|
if (_equal_to($t{hi}, $seg[$t{lseg}]{v0}) && |
|
|
100
|
100
|
|
|
|
|
3800
|
|
|
|
|
|
|
_equal_to($t{lo}, $seg[$t{rseg}]{v0})) { |
3801
|
2
|
|
|
|
|
5
|
$v0 = $t{rseg}; |
3802
|
2
|
|
|
|
|
4
|
$v1 = $t{lseg}; |
3803
|
2
|
|
|
|
|
3
|
$retval = $SP_SIMPLE_LRDN; |
3804
|
2
|
50
|
|
|
|
5
|
if ($dir == $TR_FROM_UP) { |
3805
|
0
|
|
|
|
|
0
|
$do_switch = $TRUE; |
3806
|
0
|
|
|
|
|
0
|
$mnew = _make_new_monotone_poly($mcur, $v1, $v0); |
3807
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{u0}, $trnum, $TR_FROM_DN); |
3808
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{u1}, $trnum, $TR_FROM_DN); |
3809
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{d1}, $trnum, $TR_FROM_UP); |
3810
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{d0}, $trnum, $TR_FROM_UP); |
3811
|
|
|
|
|
|
|
} else { |
3812
|
2
|
|
|
|
|
6
|
$mnew = _make_new_monotone_poly($mcur, $v0, $v1); |
3813
|
2
|
|
|
|
|
17
|
_traverse_polygon($mcur, $t{d1}, $trnum, $TR_FROM_UP); |
3814
|
2
|
|
|
|
|
5
|
_traverse_polygon($mcur, $t{d0}, $trnum, $TR_FROM_UP); |
3815
|
2
|
|
|
|
|
5
|
_traverse_polygon($mnew, $t{u0}, $trnum, $TR_FROM_DN); |
3816
|
2
|
|
|
|
|
6
|
_traverse_polygon($mnew, $t{u1}, $trnum, $TR_FROM_DN); |
3817
|
|
|
|
|
|
|
} |
3818
|
|
|
|
|
|
|
} elsif (_equal_to($t{hi}, $seg[$t{rseg}]{v1}) && |
3819
|
|
|
|
|
|
|
_equal_to($t{lo}, $seg[$t{lseg}]{v1})) { |
3820
|
3
|
|
|
|
|
8
|
$v0 = $seg[$t{rseg}]{next}; |
3821
|
3
|
|
|
|
|
7
|
$v1 = $seg[$t{lseg}]{next}; |
3822
|
|
|
|
|
|
|
|
3823
|
3
|
|
|
|
|
4
|
$retval = $SP_SIMPLE_LRUP; |
3824
|
3
|
50
|
|
|
|
9
|
if ($dir == $TR_FROM_UP) { |
3825
|
0
|
|
|
|
|
0
|
$do_switch = $TRUE; |
3826
|
0
|
|
|
|
|
0
|
$mnew = _make_new_monotone_poly($mcur, $v1, $v0); |
3827
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{u0}, $trnum, $TR_FROM_DN); |
3828
|
0
|
|
|
|
|
0
|
_traverse_polygon($mcur, $t{u1}, $trnum, $TR_FROM_DN); |
3829
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{d1}, $trnum, $TR_FROM_UP); |
3830
|
0
|
|
|
|
|
0
|
_traverse_polygon($mnew, $t{d0}, $trnum, $TR_FROM_UP); |
3831
|
|
|
|
|
|
|
} else { |
3832
|
3
|
|
|
|
|
8
|
$mnew = _make_new_monotone_poly($mcur, $v0, $v1); |
3833
|
3
|
|
|
|
|
58
|
_traverse_polygon($mcur, $t{d1}, $trnum, $TR_FROM_UP); |
3834
|
3
|
|
|
|
|
8
|
_traverse_polygon($mcur, $t{d0}, $trnum, $TR_FROM_UP); |
3835
|
3
|
|
|
|
|
9
|
_traverse_polygon($mnew, $t{u0}, $trnum, $TR_FROM_DN); |
3836
|
3
|
|
|
|
|
7
|
_traverse_polygon($mnew, $t{u1}, $trnum, $TR_FROM_DN); |
3837
|
|
|
|
|
|
|
} |
3838
|
|
|
|
|
|
|
} else { # no split possible |
3839
|
4
|
|
|
|
|
11
|
$retval = $SP_NOSPLIT; |
3840
|
4
|
|
|
|
|
11
|
_traverse_polygon($mcur, $t{u0}, $trnum, $TR_FROM_DN); |
3841
|
4
|
|
|
|
|
12
|
_traverse_polygon($mcur, $t{d0}, $trnum, $TR_FROM_UP); |
3842
|
4
|
|
|
|
|
9
|
_traverse_polygon($mcur, $t{u1}, $trnum, $TR_FROM_DN); |
3843
|
4
|
|
|
|
|
8
|
_traverse_polygon($mcur, $t{d1}, $trnum, $TR_FROM_UP); |
3844
|
|
|
|
|
|
|
} |
3845
|
|
|
|
|
|
|
} |
3846
|
|
|
|
|
|
|
} |
3847
|
|
|
|
|
|
|
|
3848
|
15
|
|
|
|
|
44
|
return $retval; |
3849
|
|
|
|
|
|
|
} |
3850
|
|
|
|
|
|
|
|
3851
|
|
|
|
|
|
|
# For each monotone polygon, find the ymax and ymin (to determine the |
3852
|
|
|
|
|
|
|
# two y-monotone chains) and pass on this monotone polygon for greedy |
3853
|
|
|
|
|
|
|
# triangulation. |
3854
|
|
|
|
|
|
|
# Take care not to triangulate duplicate monotone polygons |
3855
|
|
|
|
|
|
|
|
3856
|
|
|
|
|
|
|
sub _triangulate_monotone_polygons { |
3857
|
2
|
|
|
2
|
|
5
|
my ($nvert, $nmonpoly) = @_; |
3858
|
|
|
|
|
|
|
|
3859
|
2
|
|
|
|
|
4
|
my ($ymax, $ymin); |
3860
|
0
|
|
|
|
|
0
|
my ($p, $vfirst, $posmax, $posmin, $v); |
3861
|
0
|
|
|
|
|
0
|
my ($vcount, $processed); |
3862
|
|
|
|
|
|
|
|
3863
|
2
|
|
|
|
|
3
|
$op_idx = 0; |
3864
|
2
|
|
|
|
|
9
|
for (my $i = 0; $i < $nmonpoly; $i++) { |
3865
|
9
|
|
|
|
|
11
|
$vcount = 1; |
3866
|
9
|
|
|
|
|
9
|
$processed = $FALSE; |
3867
|
9
|
|
|
|
|
18
|
$vfirst = $mchain[$mon[$i]]{vnum}; |
3868
|
9
|
|
|
|
|
59
|
$ymax = {x => $vert[$vfirst]{pt}{x} , y => $vert[$vfirst]{pt}{y}}; |
3869
|
9
|
|
|
|
|
44
|
$ymin = {x => $vert[$vfirst]{pt}{x} , y => $vert[$vfirst]{pt}{y}}; |
3870
|
9
|
|
|
|
|
17
|
$posmax = $posmin = $mon[$i]; |
3871
|
9
|
|
|
|
|
16
|
$mchain[$mon[$i]]{marked} = $TRUE; |
3872
|
9
|
|
|
|
|
15
|
$p = $mchain[$mon[$i]]{next}; |
3873
|
9
|
|
|
|
|
28
|
while (($v = $mchain[$p]{vnum}) != $vfirst) { |
3874
|
23
|
100
|
|
|
|
47
|
if ($mchain[$p]{marked}) { |
3875
|
1
|
|
|
|
|
2
|
$processed = $TRUE; |
3876
|
1
|
|
|
|
|
2
|
last; # break from while |
3877
|
|
|
|
|
|
|
} else { |
3878
|
22
|
|
|
|
|
41
|
$mchain[$p]{marked} = $TRUE; |
3879
|
|
|
|
|
|
|
} |
3880
|
|
|
|
|
|
|
|
3881
|
22
|
100
|
|
|
|
47
|
if (_greater_than($vert[$v]{pt}, $ymax)) { |
3882
|
4
|
|
|
|
|
16
|
$ymax = {x => $vert[$v]{pt}{x} , y => $vert[$v]{pt}{y}}; |
3883
|
4
|
|
|
|
|
9
|
$posmax = $p; |
3884
|
|
|
|
|
|
|
} |
3885
|
22
|
100
|
|
|
|
53
|
if (_less_than($vert[$v]{pt}, $ymin)) { |
3886
|
11
|
|
|
|
|
39
|
$ymin = {x => $vert[$v]{pt}{x} , y => $vert[$v]{pt}{y}}; |
3887
|
11
|
|
|
|
|
24
|
$posmin = $p; |
3888
|
|
|
|
|
|
|
} |
3889
|
22
|
|
|
|
|
38
|
$p = $mchain[$p]{next}; |
3890
|
22
|
|
|
|
|
56
|
$vcount++; |
3891
|
|
|
|
|
|
|
} |
3892
|
|
|
|
|
|
|
|
3893
|
9
|
100
|
|
|
|
17
|
if ($processed) { # Go to next polygon |
3894
|
1
|
|
|
|
|
3
|
next; |
3895
|
|
|
|
|
|
|
} |
3896
|
|
|
|
|
|
|
|
3897
|
8
|
100
|
|
|
|
16
|
if ($vcount == 3) { # already a triangle |
3898
|
6
|
|
|
|
|
16
|
$op[$op_idx][0] = $mchain[$p]{vnum}; |
3899
|
6
|
|
|
|
|
14
|
$op[$op_idx][1] = $mchain[$mchain[$p]{next}]{vnum}; |
3900
|
6
|
|
|
|
|
9
|
$op[$op_idx][2] = $mchain[$mchain[$p]{prev}]{vnum}; |
3901
|
6
|
|
|
|
|
17
|
$op_idx++; |
3902
|
|
|
|
|
|
|
} else { # triangulate the polygon |
3903
|
2
|
|
|
|
|
6
|
$v = $mchain[$mchain[$posmax]{next}]{vnum}; |
3904
|
2
|
100
|
|
|
|
7
|
if (_equal_to($vert[$v]{pt}, $ymin)) { # LHS is a single line |
3905
|
1
|
|
|
|
|
4
|
_triangulate_single_polygon($nvert, $posmax, $TRI_LHS); |
3906
|
|
|
|
|
|
|
} else { |
3907
|
1
|
|
|
|
|
4
|
_triangulate_single_polygon($nvert, $posmax, $TRI_RHS); |
3908
|
|
|
|
|
|
|
} |
3909
|
|
|
|
|
|
|
} |
3910
|
|
|
|
|
|
|
} |
3911
|
|
|
|
|
|
|
|
3912
|
2
|
|
|
|
|
7
|
return $op_idx; |
3913
|
|
|
|
|
|
|
} |
3914
|
|
|
|
|
|
|
|
3915
|
|
|
|
|
|
|
# A greedy corner-cutting algorithm to triangulate a y-monotone |
3916
|
|
|
|
|
|
|
# polygon in O(n) time. |
3917
|
|
|
|
|
|
|
# Joseph O-Rourke, Computational Geometry in C. |
3918
|
|
|
|
|
|
|
# |
3919
|
|
|
|
|
|
|
sub _triangulate_single_polygon { |
3920
|
2
|
|
|
2
|
|
3
|
my ($nvert, $posmax, $side) = @_; |
3921
|
|
|
|
|
|
|
|
3922
|
2
|
|
|
|
|
4
|
my $v; |
3923
|
|
|
|
|
|
|
my @rc; |
3924
|
2
|
|
|
|
|
2
|
my $ri = 0; # reflex chain |
3925
|
2
|
|
|
|
|
3
|
my ($endv, $tmp, $vpos); |
3926
|
|
|
|
|
|
|
|
3927
|
2
|
100
|
|
|
|
6
|
if ($side == $TRI_RHS) { # RHS segment is a single segment |
3928
|
1
|
|
|
|
|
3
|
$rc[0] = $mchain[$posmax]{vnum}; |
3929
|
1
|
|
|
|
|
2
|
$tmp = $mchain[$posmax]{next}; |
3930
|
1
|
|
|
|
|
2
|
$rc[1] = $mchain[$tmp]{vnum}; |
3931
|
1
|
|
|
|
|
2
|
$ri = 1; |
3932
|
|
|
|
|
|
|
|
3933
|
1
|
|
|
|
|
2
|
$vpos = $mchain[$tmp]{next}; |
3934
|
1
|
|
|
|
|
3
|
$v = $mchain[$vpos]{vnum}; |
3935
|
|
|
|
|
|
|
|
3936
|
1
|
50
|
|
|
|
5
|
if (($endv = $mchain[$mchain[$posmax]{prev}]{vnum}) == 0) { |
3937
|
0
|
|
|
|
|
0
|
$endv = $nvert; |
3938
|
|
|
|
|
|
|
} |
3939
|
|
|
|
|
|
|
} else { # LHS is a single segment |
3940
|
1
|
|
|
|
|
2
|
$tmp = $mchain[$posmax]{next}; |
3941
|
1
|
|
|
|
|
3
|
$rc[0] = $mchain[$tmp]{vnum}; |
3942
|
1
|
|
|
|
|
3
|
$tmp = $mchain[$tmp]{next}; |
3943
|
1
|
|
|
|
|
2
|
$rc[1] = $mchain[$tmp]{vnum}; |
3944
|
1
|
|
|
|
|
2
|
$ri = 1; |
3945
|
|
|
|
|
|
|
|
3946
|
1
|
|
|
|
|
2
|
$vpos = $mchain[$tmp]{next}; |
3947
|
1
|
|
|
|
|
2
|
$v = $mchain[$vpos]{vnum}; |
3948
|
|
|
|
|
|
|
|
3949
|
1
|
|
|
|
|
3
|
$endv = $mchain[$posmax]{vnum}; |
3950
|
|
|
|
|
|
|
} |
3951
|
|
|
|
|
|
|
|
3952
|
2
|
|
100
|
|
|
9
|
while (($v != $endv) || ($ri > 1)) { |
3953
|
12
|
100
|
|
|
|
20
|
if ($ri > 0) { # reflex chain is non-empty |
3954
|
8
|
100
|
|
|
|
24
|
if (_Cross($vert[$v]{pt}, $vert[$rc[$ri - 1]]{pt}, $vert[$rc[$ri]]{pt}) > 0) { |
3955
|
|
|
|
|
|
|
# convex corner: cut if off |
3956
|
6
|
|
|
|
|
15
|
$op[$op_idx][0] = $rc[$ri - 1]; |
3957
|
6
|
|
|
|
|
10
|
$op[$op_idx][1] = $rc[$ri]; |
3958
|
6
|
|
|
|
|
7
|
$op[$op_idx][2] = $v; |
3959
|
6
|
|
|
|
|
7
|
$op_idx++; |
3960
|
6
|
|
|
|
|
19
|
$ri--; |
3961
|
|
|
|
|
|
|
} else { # non-convex |
3962
|
|
|
|
|
|
|
# add v to the chain |
3963
|
2
|
|
|
|
|
3
|
$ri++; |
3964
|
2
|
|
|
|
|
5
|
$rc[$ri] = $v; |
3965
|
2
|
|
|
|
|
4
|
$vpos = $mchain[$vpos]{next}; |
3966
|
2
|
|
|
|
|
11
|
$v = $mchain[$vpos]{vnum}; |
3967
|
|
|
|
|
|
|
} |
3968
|
|
|
|
|
|
|
} else { # reflex-chain empty: add v to the |
3969
|
|
|
|
|
|
|
# reflex chain and advance it |
3970
|
4
|
|
|
|
|
5
|
$rc[++$ri] = $v; |
3971
|
4
|
|
|
|
|
6
|
$vpos = $mchain[$vpos]{next}; |
3972
|
4
|
|
|
|
|
11
|
$v = $mchain[$vpos]{vnum}; |
3973
|
|
|
|
|
|
|
} |
3974
|
|
|
|
|
|
|
} # end-while |
3975
|
|
|
|
|
|
|
|
3976
|
|
|
|
|
|
|
# reached the bottom vertex. Add in the triangle formed |
3977
|
2
|
|
|
|
|
15
|
$op[$op_idx][0] = $rc[$ri - 1]; |
3978
|
2
|
|
|
|
|
4
|
$op[$op_idx][1] = $rc[$ri]; |
3979
|
2
|
|
|
|
|
5
|
$op[$op_idx][2] = $v; |
3980
|
2
|
|
|
|
|
3
|
$op_idx++; |
3981
|
2
|
|
|
|
|
11
|
$ri--; |
3982
|
|
|
|
|
|
|
|
3983
|
|
|
|
|
|
|
} |
3984
|
|
|
|
|
|
|
|
3985
|
|
|
|
|
|
|
1; |