blib/lib/Math/Geometry/Delaunay.pm | |||
---|---|---|---|
Criterion | Covered | Total | % |
statement | 20 | 21 | 95.2 |
branch | n/a | ||
condition | n/a | ||
subroutine | 7 | 7 | 100.0 |
pod | n/a | ||
total | 27 | 28 | 96.4 |
line | stmt | bran | cond | sub | pod | time | code |
---|---|---|---|---|---|---|---|
1 | package Math::Geometry::Delaunay; | ||||||
2 | |||||||
3 | 1 | 1 | 14218 | use 5.008; | |||
1 | 3 | ||||||
1 | 34 | ||||||
4 | 1 | 1 | 3 | use warnings; | |||
1 | 1 | ||||||
1 | 18 | ||||||
5 | 1 | 1 | 4 | use strict; | |||
1 | 3 | ||||||
1 | 22 | ||||||
6 | 1 | 1 | 4 | use Carp qw(carp);; | |||
1 | 0 | ||||||
1 | 46 | ||||||
7 | 1 | 1 | 4 | use Exporter(); | |||
1 | 2 | ||||||
1 | 43 | ||||||
8 | |||||||
9 | our @ISA = qw(Exporter); | ||||||
10 | our $VERSION; | ||||||
11 | |||||||
12 | BEGIN { | ||||||
13 | 1 | 1 | 4 | use XSLoader; | |||
1 | 1 | ||||||
1 | 33 | ||||||
14 | 1 | 1 | 1 | $VERSION = '0.18'; | |||
15 | 1 | 602 | XSLoader::load('Math::Geometry::Delaunay'); | ||||
16 | 0 | exactinit(); | |||||
17 | } | ||||||
18 | |||||||
19 | use constant { | ||||||
20 | TRI_CONSTRAINED => 'Y', | ||||||
21 | TRI_CONFORMING => 'Dq0', | ||||||
22 | TRI_CCDT => 'q', | ||||||
23 | TRI_VORONOI => 'v', | ||||||
24 | }; | ||||||
25 | |||||||
26 | our @EXPORT_OK = qw(TRI_CONSTRAINED TRI_CONFORMING TRI_CCDT TRI_VORONOI); | ||||||
27 | our @EXPORT = qw(); | ||||||
28 | |||||||
29 | my $pi = atan2(1,1)*4; | ||||||
30 | |||||||
31 | sub new { | ||||||
32 | my $class = shift; | ||||||
33 | my $self = {}; | ||||||
34 | $self->{in} = Math::Geometry::Delaunay::Triangulateio->new(); | ||||||
35 | $self->{out} = undef; | ||||||
36 | $self->{vorout} = undef; | ||||||
37 | $self->{poly} = { | ||||||
38 | regions => [], | ||||||
39 | holes => [], | ||||||
40 | polylines => [], | ||||||
41 | points => [], | ||||||
42 | segments => [], | ||||||
43 | outnodes => [], #for cache, first time C output arrays are imported | ||||||
44 | voutnodes => [], #for cache | ||||||
45 | segptrefs => {}, #used to avoid dups of points added with addSegments | ||||||
46 | }; | ||||||
47 | |||||||
48 | $self->{optstr} = ''; | ||||||
49 | # Triangle switches | ||||||
50 | # prq__a__uAcDjevngBPNEIOXzo_YS__iFlsCQVh | ||||||
51 | # where __ is an optional number | ||||||
52 | $self->{a} = -1; # max tri area | ||||||
53 | $self->{q} = -1; # quality min angle | ||||||
54 | $self->{e} = 0; # produce edges switch | ||||||
55 | $self->{v} = 0; # voronoi switch | ||||||
56 | $self->{n} = 0; # neighbors switch | ||||||
57 | $self->{N} = 0; # suppress node output | ||||||
58 | $self->{E} = 0; # suppress element output | ||||||
59 | $self->{O} = 0; # suppress holes - ignore input holes | ||||||
60 | $self->{o2}= 0; # subparametric switch (for 6 pts/tri) | ||||||
61 | $self->{Q} = 1; # quiet - switch for Triangle's printed output | ||||||
62 | $self->{V} = 0; # verbose - from 0 to 3 for increasing verbosity | ||||||
63 | |||||||
64 | bless $self, $class; | ||||||
65 | return $self; | ||||||
66 | } | ||||||
67 | |||||||
68 | sub reset { | ||||||
69 | my $self = shift; | ||||||
70 | # clear input | ||||||
71 | $self->{poly}->{$_} = [] for qw(regions holes polylines points segments); | ||||||
72 | $self->{poly}->{segptrefs} = {}; | ||||||
73 | # clear any previous output | ||||||
74 | $self->{poly}->{$_} = [] for qw(outnodes voutnodes); | ||||||
75 | } | ||||||
76 | |||||||
77 | # triangulatio interfaces | ||||||
78 | sub in {return $_[0]->{in};} | ||||||
79 | sub out {return $_[0]->{out};} | ||||||
80 | sub vorout {return $_[0]->{vorout};} | ||||||
81 | |||||||
82 | # getter/setters for the triangulate switches that take numbers | ||||||
83 | |||||||
84 | sub area_constraint { # -1 for disabled | ||||||
85 | if (@_>1) {$_[0]->{a}=$_[1];} | ||||||
86 | return $_[0]->{a}; | ||||||
87 | } | ||||||
88 | sub minimum_angle { # "q" switch, in degrees, -1 for disabled | ||||||
89 | if (@_>1) {$_[0]->{q}=$_[1];} | ||||||
90 | return $_[0]->{q}; | ||||||
91 | } | ||||||
92 | sub subparametric { | ||||||
93 | if (@_>1) {$_[0]->{o2}=$_[1]?1:0;} | ||||||
94 | return $_[0]->{o2}; | ||||||
95 | } | ||||||
96 | sub doEdges { | ||||||
97 | if (@_>1) {$_[0]->{e}=$_[1]?1:0;} | ||||||
98 | return $_[0]->{e}; | ||||||
99 | } | ||||||
100 | sub doVoronoi { | ||||||
101 | if (@_>1) {$_[0]->{v}=$_[1]?1:0;} | ||||||
102 | return $_[0]->{v}; | ||||||
103 | } | ||||||
104 | sub doNeighbors { | ||||||
105 | if (@_>1) {$_[0]->{n}=$_[1]?1:0;} | ||||||
106 | return $_[0]->{n}; | ||||||
107 | } | ||||||
108 | sub quiet { | ||||||
109 | if (@_>1) {$_[0]->{Q}=$_[1]?1:0;} | ||||||
110 | return $_[0]->{Q}; | ||||||
111 | } | ||||||
112 | sub verbose { # 0 to 3 | ||||||
113 | if (@_>1) {$_[0]->{V}=$_[1]?1:0;} | ||||||
114 | return $_[0]->{V}; | ||||||
115 | } | ||||||
116 | |||||||
117 | # everything to add input geometry | ||||||
118 | |||||||
119 | sub addRegion { | ||||||
120 | my $self = shift; | ||||||
121 | my $poly = shift; | ||||||
122 | my $attribute = @_ ? shift : undef; | ||||||
123 | my $area = @_ ? shift:undef; | ||||||
124 | my $point_inside = @_ ? shift : undef; # not expected, but we'll use it | ||||||
125 | |||||||
126 | if (@{$poly}==1) { | ||||||
127 | carp "first arg to addRegion should be a polygon, or point"; | ||||||
128 | return; | ||||||
129 | } | ||||||
130 | elsif (@{$poly}==2 && !ref($poly->[0])) { # a region identifying point | ||||||
131 | $point_inside = $poly; | ||||||
132 | } | ||||||
133 | else { | ||||||
134 | $self->addPolygon($poly); | ||||||
135 | } | ||||||
136 | |||||||
137 | my $ray; # return ray used for $point_inside calc for debugging, for now | ||||||
138 | |||||||
139 | if (!$point_inside) { | ||||||
140 | ($point_inside, $ray) = get_point_in_polygon($poly); | ||||||
141 | } | ||||||
142 | if (defined $point_inside) { | ||||||
143 | push @{$self->{poly}->{regions}}, [ $point_inside, $attribute, ($area && $area > 0) ? $area : -1 ]; | ||||||
144 | } | ||||||
145 | return $point_inside, $ray; | ||||||
146 | } | ||||||
147 | |||||||
148 | sub addHole { | ||||||
149 | my $self = shift; | ||||||
150 | my $poly = shift; | ||||||
151 | my $point_inside = @_ ? shift : undef; # not expected, but we'll use it if available | ||||||
152 | |||||||
153 | if (@{$poly}==1) { | ||||||
154 | carp "first arg to addHole should be a polygon, or point"; | ||||||
155 | return; | ||||||
156 | } | ||||||
157 | elsif (@{$poly}==2 && !ref($poly->[0])) { # it's really the hole identifying point | ||||||
158 | $point_inside = $poly; | ||||||
159 | } | ||||||
160 | else { | ||||||
161 | $self->addPolygon($poly); | ||||||
162 | } | ||||||
163 | |||||||
164 | my $ray; # return ray used for $point_inside calc for debugging, for now | ||||||
165 | |||||||
166 | if (!$point_inside) { | ||||||
167 | ($point_inside, $ray) = get_point_in_polygon($poly); | ||||||
168 | } | ||||||
169 | if (defined $point_inside) { | ||||||
170 | push @{$self->{poly}->{holes}}, $point_inside; | ||||||
171 | } | ||||||
172 | return $point_inside, $ray; | ||||||
173 | } | ||||||
174 | |||||||
175 | sub addPolygon { | ||||||
176 | my $self = shift; | ||||||
177 | my $poly = shift; | ||||||
178 | if (@{$poly} == 1 ) {return $self->addPoints([$poly->[0]]);} | ||||||
179 | push @{$self->{poly}->{polylines}}, ['polygon',$poly]; | ||||||
180 | return; | ||||||
181 | } | ||||||
182 | |||||||
183 | sub addPolyline { | ||||||
184 | my $self = shift; | ||||||
185 | my $poly = shift; | ||||||
186 | if (@{$poly} == 1 ) {return $self->addPoints([$poly->[0]]);} | ||||||
187 | push @{$self->{poly}->{polylines}}, ['polyline',$poly]; | ||||||
188 | return; | ||||||
189 | } | ||||||
190 | |||||||
191 | sub addSegments { | ||||||
192 | my $self = shift; | ||||||
193 | my $segments = shift; | ||||||
194 | push @{$self->{poly}->{segments}}, @{$segments}; | ||||||
195 | return; | ||||||
196 | } | ||||||
197 | |||||||
198 | sub addPoints { # points unaffiliated with PLSG segments | ||||||
199 | my $self = shift; | ||||||
200 | my $points = shift; | ||||||
201 | push @{$self->{poly}->{points}}, @{$points}; | ||||||
202 | return; | ||||||
203 | } | ||||||
204 | |||||||
205 | # compile all the input geometry in to Triangle-format lists | ||||||
206 | # set up option strings | ||||||
207 | # and initialize output lists | ||||||
208 | |||||||
209 | sub prepPoly { | ||||||
210 | my $self = shift; | ||||||
211 | my $optstr = shift; | ||||||
212 | $self->{optstr} = ''; | ||||||
213 | # option string options: | ||||||
214 | # prq__a__uAcDjevngBPNEIOXzo_YS__iFlsCQVh | ||||||
215 | # where __ is an optional number | ||||||
216 | $self->{optstr} .= ''. | ||||||
217 | $optstr. | ||||||
218 | ($self->{q} > -1?'q'.$self->{q}:''). | ||||||
219 | ($self->{a} > -1?'a'.$self->{a}:''). | ||||||
220 | ($self->{e} ?'e':''). | ||||||
221 | ($self->{v} ?'v':''). | ||||||
222 | ($self->{n} ?'n':''). | ||||||
223 | 'z'. # always number everything starting with zero | ||||||
224 | ($self->{o2} ?'o2':''). | ||||||
225 | ($self->{Q} ?'Q':''). | ||||||
226 | ($self->{V} > 0?(($self->{V} > 2) ? 'VVV' : ($self->{V} x 'V')) : '') | ||||||
227 | ; | ||||||
228 | my @allpts; | ||||||
229 | my @allsegs; | ||||||
230 | |||||||
231 | if (@{$self->{poly}->{segments}}) { | ||||||
232 | |||||||
233 | # The list of segments is the most likely to have duplicate points. | ||||||
234 | # Some algorithms in this space result in lists of segments, | ||||||
235 | # perhaps listing subsegments of intersecting segments, | ||||||
236 | # or representing a boundary or polygon with out-of-order, | ||||||
237 | # non-contiguous segment lists, where shared vertices are | ||||||
238 | # repeated in each segment's record. | ||||||
239 | |||||||
240 | # addSegments() is meant for that kind of data | ||||||
241 | # and this is where we boil the duplicate points down, | ||||||
242 | # so Triangle doesn't have to. | ||||||
243 | |||||||
244 | # We look both for duplicate point references and duplicate coordinates. | ||||||
245 | # The coordinate check could collapse points that are topologically | ||||||
246 | # unique, or it could fail to merge points that should be considered | ||||||
247 | # duplicates - but we hope most of the time it does the best thing. | ||||||
248 | |||||||
249 | foreach my $seg (@{$self->{poly}->{segments}}) { | ||||||
250 | if ( !defined($self->{segptrefs}->{$seg->[0]}) | ||||||
251 | && !defined($self->{segptrefs}->{$seg->[0]->[0].','.$seg->[0]->[1]}) | ||||||
252 | ) { | ||||||
253 | push @allpts, $seg->[0]; | ||||||
254 | $self->{segptrefs}->{$seg->[0]} = $#allpts; | ||||||
255 | $self->{segptrefs}->{$seg->[0]->[0].','.$seg->[0]->[1]} = $#allpts; | ||||||
256 | } | ||||||
257 | push @allsegs, defined($self->{segptrefs}->{$seg->[0]}) | ||||||
258 | ? $self->{segptrefs}->{$seg->[0]} | ||||||
259 | : $self->{segptrefs}->{$seg->[0]->[0].','.$seg->[0]->[1]}; | ||||||
260 | if ( !defined($self->{segptrefs}->{$seg->[1]}) | ||||||
261 | && !defined($self->{segptrefs}->{$seg->[1]->[0].','.$seg->[1]->[1]}) | ||||||
262 | ) { | ||||||
263 | push @allpts, $seg->[1]; | ||||||
264 | $self->{segptrefs}->{$seg->[1]} = $#allpts; | ||||||
265 | $self->{segptrefs}->{$seg->[1]->[0].','.$seg->[1]->[1]} = $#allpts; | ||||||
266 | } | ||||||
267 | push @allsegs, defined($self->{segptrefs}->{$seg->[1]}) | ||||||
268 | ? $self->{segptrefs}->{$seg->[1]} | ||||||
269 | : $self->{segptrefs}->{$seg->[1]->[0].','.$seg->[1]->[1]}; | ||||||
270 | } | ||||||
271 | } | ||||||
272 | $self->{segptrefs} = {}; | ||||||
273 | |||||||
274 | if (@{$self->{poly}->{polylines}} || @allsegs) { | ||||||
275 | # doing PSLG - add poly flag to options | ||||||
276 | $self->{optstr} = 'p'.$self->{optstr}; | ||||||
277 | #set up points and segments lists for each polygon and polyline | ||||||
278 | foreach my $polycont (@{$self->{poly}->{polylines}}) { | ||||||
279 | my $poly = $polycont->[1]; | ||||||
280 | push @allpts, $poly->[0]; | ||||||
281 | my $startind=$#allpts; | ||||||
282 | foreach my $thispt (@{$poly}[1..@{$poly}-1]) { | ||||||
283 | push(@allsegs, $#allpts, $#allpts + 1); | ||||||
284 | push(@allpts, $thispt); | ||||||
285 | } | ||||||
286 | if ($polycont->[0] eq 'polygon') { # add segment to close it | ||||||
287 | push(@allsegs, $#allpts, $startind); | ||||||
288 | } | ||||||
289 | |||||||
290 | } | ||||||
291 | # add segments to C struct | ||||||
292 | my $segs_added_count = $self->in->segmentlist(@allsegs); | ||||||
293 | |||||||
294 | # Add region mark points and any attributes and area constraints to C struct | ||||||
295 | if (@{$self->{poly}->{regions}}) { | ||||||
296 | my $regions_added_count = $self->in->regionlist(map {grep defined, @{$_->[0]},$_->[1],$_->[2]} @{$self->{poly}->{regions}}); | ||||||
297 | } | ||||||
298 | # Add hole mark points to C struct | ||||||
299 | if (@{$self->{poly}->{holes}}) { | ||||||
300 | my $holes_added_count = $self->in->holelist(map {@{$_}} @{$self->{poly}->{holes}}); | ||||||
301 | } | ||||||
302 | } | ||||||
303 | |||||||
304 | # add all points from PSLG, (possibly none) | ||||||
305 | # and then any other points (not associated with segments) | ||||||
306 | # into the C struct | ||||||
307 | my $points_added_count = $self->in->pointlist(map {$_->[0],$_->[1]} (@allpts, @{$self->{poly}->{points}})); | ||||||
308 | |||||||
309 | # set up attribute array if any points have more than 2 items (the coordinates) in list | ||||||
310 | my $coords_plus_attrs = 2; # 2 for the coords - we'll skip over them when it's time | ||||||
311 | foreach my $point (@allpts, @{$self->{poly}->{points}}) { | ||||||
312 | if ($coords_plus_attrs < @{$point}) {$coords_plus_attrs = @{$point}} | ||||||
313 | } | ||||||
314 | if ($coords_plus_attrs > 2) { | ||||||
315 | # Extend / fill in the attribute lists for any points | ||||||
316 | # that don't have the full set of attributes defined. | ||||||
317 | # Set missing/undefined attributes to zero. | ||||||
318 | foreach my $point (@allpts, @{$self->{poly}->{points}}) { | ||||||
319 | if (@{$point} < $coords_plus_attrs) { | ||||||
320 | foreach (2 .. $coords_plus_attrs - 1) { | ||||||
321 | if (!defined($point->[$_])) {$point->[$_]=0;} | ||||||
322 | } | ||||||
323 | } | ||||||
324 | } | ||||||
325 | # put attributes into C struct | ||||||
326 | $self->in->numberofpointattributes($coords_plus_attrs - 2); | ||||||
327 | my $attributes_added_count = $self->in->pointattributelist( | ||||||
328 | map {@{$_}[2 .. $coords_plus_attrs - 1]} (@allpts, @{$self->{poly}->{points}})); | ||||||
329 | } | ||||||
330 | |||||||
331 | # discard intermediate data now that it's been loaded into C arrays | ||||||
332 | $self->reset(); | ||||||
333 | |||||||
334 | # set up new triangulateio C structs to receive output | ||||||
335 | $self->{out} = Math::Geometry::Delaunay::Triangulateio->new(); | ||||||
336 | $self->{vorout} = Math::Geometry::Delaunay::Triangulateio->new(); | ||||||
337 | |||||||
338 | return; | ||||||
339 | } | ||||||
340 | |||||||
341 | |||||||
342 | sub triangulate() { | ||||||
343 | my $self = shift; | ||||||
344 | my $dotopo = defined wantarray && !wantarray; # scalar or array return context | ||||||
345 | my $optstr = @_ ? join('',@_):''; | ||||||
346 | $self->prepPoly($optstr); | ||||||
347 | Math::Geometry::Delaunay::_triangulate($self->{optstr},$self->in->to_ptr,$self->out->to_ptr,$self->vorout->to_ptr); | ||||||
348 | if (defined wantarray) { # else don't do expensive topology stuff if undef/void context | ||||||
349 | if (wantarray && index($self->{optstr},'v') != -1) { | ||||||
350 | return topology($self->out), topology($self->vorout); | ||||||
351 | } | ||||||
352 | return topology($self->out); | ||||||
353 | } | ||||||
354 | return; | ||||||
355 | } | ||||||
356 | |||||||
357 | # This probably performs well, but it does show up high enough in profiler | ||||||
358 | # reports that it's worth looking into speed-up. Consider something with unpack maybe. | ||||||
359 | sub ltolol {($#_<$_[0])?():map [@_[$_*$_[0]+1..$_*$_[0]+$_[0]]],0..$#_/$_[0]-1}#perl. | ||||||
360 | |||||||
361 | sub nodes { | ||||||
362 | my $self = shift; | ||||||
363 | my $fromVouty = @_ ? shift : 0; | ||||||
364 | my $triio = $fromVouty ? $self->vorout : $self->out; | ||||||
365 | my $cachetarg = $fromVouty ? 'voutnodes' : 'outnodes'; | ||||||
366 | if (@{$self->{poly}->{$cachetarg}} == 0) { | ||||||
367 | my @nodeattributes; | ||||||
368 | if ($triio->numberofpointattributes) { | ||||||
369 | @nodeattributes = ltolol($triio->numberofpointattributes,$triio->pointattributelist); | ||||||
370 | } | ||||||
371 | @{$self->{poly}->{$cachetarg}} = ltolol(2,$triio->pointlist); | ||||||
372 | for (my $i=0;$i<@nodeattributes;$i++) { | ||||||
373 | push @{$self->{poly}->{$cachetarg}->[$i]}, @{$nodeattributes[$i]}; | ||||||
374 | } | ||||||
375 | if (!$fromVouty) { | ||||||
376 | my @nodemarkers = $triio->pointmarkerlist; | ||||||
377 | for (my $i=0;$i<@nodemarkers;$i++) { | ||||||
378 | push @{$self->{poly}->{$cachetarg}->[$i]}, $nodemarkers[$i]; | ||||||
379 | } | ||||||
380 | } | ||||||
381 | } | ||||||
382 | return $self->{poly}->{$cachetarg}; | ||||||
383 | } | ||||||
384 | |||||||
385 | sub elements { | ||||||
386 | my $self = shift; | ||||||
387 | my $triio = $self->out; | ||||||
388 | my $nodes = $self->nodes; | ||||||
389 | my @outelements; | ||||||
390 | my @triangleattributes; | ||||||
391 | if ($triio->numberoftriangleattributes) { | ||||||
392 | @triangleattributes = ltolol($triio->numberoftriangleattributes,$triio->triangleattributelist); | ||||||
393 | } | ||||||
394 | @outelements = map {[map {$nodes->[$_]} @{$_}]} ltolol($triio->numberofcorners,$triio->trianglelist); | ||||||
395 | for (my $i=0;$i<@triangleattributes;$i++) { | ||||||
396 | push @{$outelements[$i]}, @{$triangleattributes[$i]}; | ||||||
397 | } | ||||||
398 | return \@outelements; | ||||||
399 | } | ||||||
400 | |||||||
401 | sub segments { | ||||||
402 | my $self = shift; | ||||||
403 | my $triio = $self->out; | ||||||
404 | my $nodes = $self->nodes; | ||||||
405 | my @outsegments; | ||||||
406 | my @segmentmarkers = $triio->segmentmarkerlist; | ||||||
407 | @outsegments = map {[$nodes->[$_->[0]],$nodes->[$_->[1]]]} ltolol(2,$triio->segmentlist); | ||||||
408 | for (my $i=0;$i<@segmentmarkers;$i++) { | ||||||
409 | push @{$outsegments[$i]}, $segmentmarkers[$i]; | ||||||
410 | } | ||||||
411 | return \@outsegments; | ||||||
412 | } | ||||||
413 | |||||||
414 | sub edges { | ||||||
415 | my $self = shift; | ||||||
416 | my $fromVouty = @_ ? shift : 0; | ||||||
417 | my $triio = $fromVouty ? $self->vorout : $self->out; | ||||||
418 | my $nodes = $self->nodes($fromVouty); | ||||||
419 | my @outedges; | ||||||
420 | @outedges = map {[map { $_==-1?0:$nodes->[$_]} @{$_}]} ltolol(2,$triio->edgelist); | ||||||
421 | if (!$fromVouty) { | ||||||
422 | my @edgemarkers = $triio->edgemarkerlist; | ||||||
423 | for (my $i=0;$i<@edgemarkers;$i++) { | ||||||
424 | push @{$outedges[$i]}, $edgemarkers[$i]; | ||||||
425 | } | ||||||
426 | } | ||||||
427 | return \@outedges; | ||||||
428 | } | ||||||
429 | |||||||
430 | sub vnodes {return $_[0]->nodes(1);} | ||||||
431 | |||||||
432 | sub vedges { | ||||||
433 | my $self = shift; | ||||||
434 | my $vedges = $self->edges(1); | ||||||
435 | my $triio = $self->vorout; | ||||||
436 | my @outrays; | ||||||
437 | @outrays = ltolol(2,$triio->normlist); | ||||||
438 | for (my $i=0;$i<@{$vedges};$i++) { | ||||||
439 | # if one end was a ray (missing node ref) | ||||||
440 | # look up the direction vector and use that as missing point | ||||||
441 | # and set third element in edge array to true | ||||||
442 | # as a flag to identify this edge as a ray | ||||||
443 | if (!$vedges->[$i]->[0]) { | ||||||
444 | $vedges->[$i]->[0] = $outrays[$i]; | ||||||
445 | $vedges->[$i]->[2] = 1; | ||||||
446 | } | ||||||
447 | elsif (!$vedges->[$i]->[1]) { | ||||||
448 | $vedges->[$i]->[1] = $outrays[$i]; | ||||||
449 | $vedges->[$i]->[2] = 2; | ||||||
450 | } | ||||||
451 | else { | ||||||
452 | $vedges->[$i]->[2] = 0; | ||||||
453 | } | ||||||
454 | } | ||||||
455 | return $vedges; | ||||||
456 | } | ||||||
457 | |||||||
458 | sub topology { | ||||||
459 | my $triio = shift; | ||||||
460 | |||||||
461 | my $isVoronoi = 0; # we'll detect this when reading edges | ||||||
462 | |||||||
463 | my $pcnt = 0; # In Voronoi diagram node index corresponds to dual Delaunay element. | ||||||
464 | my @nodes = map {{ point => $_, attributes => [], marker => undef, elements => [], edges => [] , segments => [], index => $pcnt++}} ltolol(2,$triio->pointlist); | ||||||
465 | my $tcnt = 0; # In Delaunay triangulation element index corresponds to dual Voronoi node. | ||||||
466 | my @eles = map {my $ele={ nodes=>[map {$nodes[$_]} @{$_}], marker => undef, edges => [], neighbors => [], attributes => [], index => $tcnt++ }; foreach (@{$ele->{nodes}}) {push(@{$_->{elements}},$ele)};$ele} ltolol($triio->numberofcorners,$triio->trianglelist); | ||||||
467 | my $ecnt = 0; # Corresponding edges in the Delaunay and Voronoi topologies will have the same index. | ||||||
468 | my @edges = map {my $edg={ nodes=>[map {$nodes[$_]} grep {$_>-1} @{$_}], marker => undef, elements => [], vector => undef, index => $ecnt++}; foreach (@{$edg->{nodes}}) {push @{$_->{edges} },$edg};if (!$isVoronoi && ($_->[0] == -1 || $_->[1] == -1)) {$isVoronoi = 1};$edg} ltolol(2,$triio->edgelist); | ||||||
469 | my @segs = map {my $edg={ nodes=>[map {$nodes[$_]} @{$_}], marker => undef, elements => [] }; foreach (@{$edg->{nodes}}) {push @{$_->{segments}},$edg}; $edg} ltolol(2,$triio->segmentlist); | ||||||
470 | |||||||
471 | my @elementattributes; | ||||||
472 | if ($triio->numberoftriangleattributes) { | ||||||
473 | @elementattributes = ltolol($triio->numberoftriangleattributes,$triio->triangleattributelist); | ||||||
474 | } | ||||||
475 | for (my $i=0;$i<@elementattributes;$i++) { | ||||||
476 | $eles[$i]->{attributes} = $elementattributes[$i]; | ||||||
477 | } | ||||||
478 | my @nodeattributes; | ||||||
479 | if ($triio->numberofpointattributes) { | ||||||
480 | @nodeattributes = ltolol($triio->numberofpointattributes,$triio->pointattributelist); | ||||||
481 | } | ||||||
482 | my @nodemarkers = $triio->pointmarkerlist; # always there for pslg, unlike attributes | ||||||
483 | for (my $i=0;$i<@nodemarkers;$i++) { | ||||||
484 | if ($triio->numberofpointattributes) { | ||||||
485 | $nodes[$i]->{attributes} = $nodeattributes[$i]; | ||||||
486 | } | ||||||
487 | $nodes[$i]->{marker} = $nodemarkers[$i]; | ||||||
488 | } | ||||||
489 | my @edgemarkers = $triio->edgemarkerlist; | ||||||
490 | for (my $i=0;$i<@edgemarkers;$i++) { | ||||||
491 | $edges[$i]->{marker} = $edgemarkers[$i]; | ||||||
492 | } | ||||||
493 | my @segmentmarkers = $triio->segmentmarkerlist; # because some can be internal to boundaries | ||||||
494 | for (my $i=0;$i<@segmentmarkers;$i++) { | ||||||
495 | $segs[$i]->{marker} = $segmentmarkers[$i]; | ||||||
496 | } | ||||||
497 | my @neighs = ltolol(3,$triio->neighborlist); | ||||||
498 | for (my $i=0;$i<@neighs;$i++) { | ||||||
499 | $eles[$i]->{neighbors} = [map {$eles[$_]} grep {$_ != -1} @{$neighs[$i]}]; | ||||||
500 | } | ||||||
501 | if ($isVoronoi) { | ||||||
502 | my @edgevectors = ltolol(2,$triio->normlist); # voronoi ray vectors | ||||||
503 | for (my $i=0;$i<@edgevectors;$i++) { | ||||||
504 | $edges[$i]->{vector} = $edgevectors[$i]; | ||||||
505 | } | ||||||
506 | } | ||||||
507 | |||||||
508 | # cross reference elements and edges | ||||||
509 | if (@edges) { # but only if edges were generated | ||||||
510 | foreach my $ele (@eles) { | ||||||
511 | for (my $i=-1;$i<@{$ele->{nodes}}-1;$i++) { | ||||||
512 | foreach my $edge (@{$ele->{nodes}->[$i]->{edges}}) { | ||||||
513 | if ($ele->{nodes}->[$i+1] == $edge->{nodes}->[0] || $ele->{nodes}->[$i+1] == $edge->{nodes}->[1]) { | ||||||
514 | push @{$ele->{edges}}, $edge; | ||||||
515 | push @{$edge->{elements}}, $ele; | ||||||
516 | last; | ||||||
517 | } | ||||||
518 | } | ||||||
519 | } | ||||||
520 | } | ||||||
521 | } | ||||||
522 | |||||||
523 | my $ret = { | ||||||
524 | nodes => \@nodes, | ||||||
525 | edges => \@edges, | ||||||
526 | segments => \@segs, | ||||||
527 | elements => \@eles | ||||||
528 | }; | ||||||
529 | bless $ret, 'mgd_topo'; # gives the hash a DESTROY method that helps with garbage collection | ||||||
530 | return $ret; | ||||||
531 | } | ||||||
532 | |||||||
533 | sub get_point_in_polygon { | ||||||
534 | my $poly = shift; | ||||||
535 | my $point_inside; | ||||||
536 | |||||||
537 | my $bottom_left_index=0; | ||||||
538 | my $maxy = $poly->[$bottom_left_index]->[1]; | ||||||
539 | for (my $i=1;$i<@{$poly};$i++) { | ||||||
540 | if ($poly->[$i]->[1] <= $poly->[$bottom_left_index]->[1]) { | ||||||
541 | if ($poly->[$i]->[1] < $poly->[$bottom_left_index]->[1] || | ||||||
542 | $poly->[$i]->[0] < $poly->[$bottom_left_index]->[0] | ||||||
543 | ) { | ||||||
544 | $bottom_left_index = $i; | ||||||
545 | } | ||||||
546 | } | ||||||
547 | if ($maxy < $poly->[$i]->[1]) { $maxy = $poly->[$i]->[1] } | ||||||
548 | } | ||||||
549 | my $prev_index = $bottom_left_index; | ||||||
550 | my $next_index = -1 * @{$poly} + $bottom_left_index; | ||||||
551 | --$prev_index | ||||||
552 | while ($poly->[$prev_index]->[0] == $poly->[$bottom_left_index]->[0] && | ||||||
553 | $poly->[$prev_index]->[1] == $poly->[$bottom_left_index]->[1] | ||||||
554 | ); | ||||||
555 | ++$next_index | ||||||
556 | while ($poly->[$next_index]->[0] == $poly->[$bottom_left_index]->[0] && | ||||||
557 | $poly->[$next_index]->[1] == $poly->[$bottom_left_index]->[1] | ||||||
558 | ); | ||||||
559 | |||||||
560 | my @vec1 = ($poly->[$bottom_left_index]->[0] - $poly->[$prev_index]->[0], | ||||||
561 | $poly->[$bottom_left_index]->[1] - $poly->[$prev_index]->[1]); | ||||||
562 | my @vec2 = ($poly->[$next_index]->[0] - $poly->[$bottom_left_index]->[0], | ||||||
563 | $poly->[$next_index]->[1] - $poly->[$bottom_left_index]->[1]); | ||||||
564 | my $orient = (($vec1[0]*$vec2[1] - $vec2[0]*$vec1[1])>=0) ? 1:0; | ||||||
565 | |||||||
566 | my $angle1 = atan2($poly->[$prev_index]->[1] - $poly->[$bottom_left_index]->[1], $poly->[$prev_index]->[0] - $poly->[$bottom_left_index]->[0]); | ||||||
567 | my $angle2 = atan2($poly->[$next_index]->[1] - $poly->[$bottom_left_index]->[1], $poly->[$next_index]->[0] - $poly->[$bottom_left_index]->[0]); | ||||||
568 | my $angle; | ||||||
569 | if ($orient) {$angle = $angle2 + ($angle1 - $angle2)/2;} | ||||||
570 | else {$angle = $angle1 + ($angle2 - $angle1)/2;} | ||||||
571 | my $cosangle = cos($angle); | ||||||
572 | my $sinangle = sin($angle); | ||||||
573 | my $tanangle = $sinangle/$cosangle; | ||||||
574 | |||||||
575 | my $adequate_distance = 1.1 * ($maxy - $poly->[$bottom_left_index]->[1]) * | ||||||
576 | ((abs($cosangle) < 0.00000001) ? 1 : 1/$sinangle); | ||||||
577 | my $point_wayout = [$poly->[$bottom_left_index]->[0] + $adequate_distance * $cosangle, | ||||||
578 | $poly->[$bottom_left_index]->[1] + $adequate_distance * $sinangle]; | ||||||
579 | |||||||
580 | my @intersections = sort {$a->[2] <=> $b->[2]} ray_from_index_poly_intersections($bottom_left_index,$point_wayout,$poly,1); | ||||||
581 | |||||||
582 | if (!@intersections) { | ||||||
583 | print "Warning: Failed to calculate hole or region indicator point."; | ||||||
584 | } | ||||||
585 | elsif ($#intersections % 2 != 0) { | ||||||
586 | print "Warning: Calculated hole or region indicator point is not inside its polygon."; | ||||||
587 | } | ||||||
588 | else { | ||||||
589 | my $closest_intersection = $intersections[0]; | ||||||
590 | $point_inside = [($poly->[$bottom_left_index]->[0] + $closest_intersection->[0])/2, | ||||||
591 | ($poly->[$bottom_left_index]->[1] + $closest_intersection->[1])/2]; | ||||||
592 | } | ||||||
593 | return $point_inside; | ||||||
594 | } | ||||||
595 | |||||||
596 | sub ray_from_index_poly_intersections { | ||||||
597 | my $vertind = shift; | ||||||
598 | my $raypt = shift; | ||||||
599 | my $poly = shift; | ||||||
600 | my $doDists = @_ ? shift : 0; | ||||||
601 | |||||||
602 | my $seg1 = [$poly->[$vertind],$raypt]; | ||||||
603 | my $x1= $seg1->[0]->[0]; | ||||||
604 | my $y1= $seg1->[0]->[1]; | ||||||
605 | my $x2= $seg1->[1]->[0]; | ||||||
606 | my $y2= $seg1->[1]->[1]; | ||||||
607 | my @lowhix=($x2>$x1)?($x1,$x2):($x2,$x1); | ||||||
608 | my @lowhiy=($y2>$y1)?($y1,$y2):($y2,$y1); | ||||||
609 | |||||||
610 | my @intersections; | ||||||
611 | |||||||
612 | for (my $i = -1; $i < $#$poly; $i++) { | ||||||
613 | |||||||
614 | # skip the segs on either side of the ray base point | ||||||
615 | next if $i == $vertind || ($i + 1) == $vertind || ($vertind == $#$poly && $i == -1); | ||||||
616 | |||||||
617 | my $seg2 = [$poly->[$i],$poly->[$i+1]]; | ||||||
618 | my @segsegret; | ||||||
619 | |||||||
620 | my $u1= $seg2->[0]->[0]; | ||||||
621 | my $v1= $seg2->[0]->[1]; | ||||||
622 | my $u2= $seg2->[1]->[0]; | ||||||
623 | my $v2= $seg2->[1]->[1]; | ||||||
624 | |||||||
625 | ##to maybe optimize for the case where segments are | ||||||
626 | ##expected NOT to intersect most of the time | ||||||
627 | #my @lowhix=($x2>$x1)?($x1,$x2):($x2,$x1); | ||||||
628 | #my @lowhiu=($u2>$u1)?($u1,$u2):($u2,$u1); | ||||||
629 | #if ( | ||||||
630 | # $lowhix[0]>$lowhiu[1] | ||||||
631 | # || | ||||||
632 | # $lowhix[1]<$lowhiu[0] | ||||||
633 | # ) { | ||||||
634 | # return; | ||||||
635 | # } | ||||||
636 | #my @lowhiy=($y2>$y1)?($y1,$y2):($y2,$y1); | ||||||
637 | #my @lowhiv=($v2>$v1)?($v1,$v2):($v2,$v1); | ||||||
638 | #if ( | ||||||
639 | # $lowhiy[0]>$lowhiv[1] | ||||||
640 | # || | ||||||
641 | # $lowhiy[1]<$lowhiv[0] | ||||||
642 | # ) { | ||||||
643 | # return; | ||||||
644 | # } | ||||||
645 | |||||||
646 | my $m1 = ($x2 eq $x1)?'Inf':($y2 - $y1)/($x2 - $x1); | ||||||
647 | my $m2 = ($u2 eq $u1)?'Inf':($v2 - $v1)/($u2 - $u1); | ||||||
648 | |||||||
649 | my $b1; | ||||||
650 | my $b2; | ||||||
651 | my $xi; | ||||||
652 | |||||||
653 | # Arranged like this to avoid m1-m2 with infinity involved, which works | ||||||
654 | # in other contexts, but can trigger a floating point exception here. | ||||||
655 | # Turns out the exception happens when we let Triangle set the FPU | ||||||
656 | # control word, but not when we use XPFPA.h to take care of that, but | ||||||
657 | # leaving it this as it is in case that doesn't fix that everywhere. | ||||||
658 | my $dm; | ||||||
659 | if ($m1 != 'Inf' && $m2 != 'Inf') {$dm = $m1 - $m2;} | ||||||
660 | elsif ($m1 == 'Inf' && $m2 == 'Inf') {return;} | ||||||
661 | else {$dm='Inf';} | ||||||
662 | if ($m1 == 'Inf' && $m2 != 'Inf') {$xi = $x1;$b2 = $v1 - ($m2 * $u1);} | ||||||
663 | elsif ($m2 == 'Inf' && $m1 != 'Inf') {$xi = $u1;$b1 = $y1 - ($m1 * $x1);} | ||||||
664 | elsif (abs($dm) > 0.000000000001) { | ||||||
665 | $b1 = $y1 - ($m1 * $x1); | ||||||
666 | $b2 = $v1 - ($m2 * $u1); | ||||||
667 | $xi=($b2-$b1)/$dm; | ||||||
668 | } | ||||||
669 | my @lowhiu=($u2>$u1)?($u1,$u2):($u2,$u1); | ||||||
670 | if ($m1 != 'Inf') { | ||||||
671 | if ($m2 == 'Inf' && ($u2<$lowhix[0] || $u2>$lowhix[1]) ) { | ||||||
672 | next; | ||||||
673 | } | ||||||
674 | if ( | ||||||
675 | defined $xi && | ||||||
676 | ($xi < $lowhix[1] || $xi eq $lowhix[1]) && | ||||||
677 | ($xi > $lowhix[0] || $xi eq $lowhix[0]) && | ||||||
678 | ($xi < $lowhiu[1] || $xi eq $lowhiu[1]) && | ||||||
679 | ($xi > $lowhiu[0] || $xi eq $lowhiu[0]) | ||||||
680 | ) { | ||||||
681 | my $y=($m1*$xi)+$b1; | ||||||
682 | my @lowhiv=($v2>$v1)?($v1,$v2):($v2,$v1); | ||||||
683 | if ($m2 == 'Inf' && | ||||||
684 | ($y<$lowhiv[0] || $y>$lowhiv[1]) | ||||||
685 | ) { | ||||||
686 | next; | ||||||
687 | } | ||||||
688 | else { | ||||||
689 | push(@intersections,[$xi,$y]); | ||||||
690 | if ($y eq $v1 || $y eq $v2) { | ||||||
691 | $i++; # avoid duplicates at endpoints | ||||||
692 | } | ||||||
693 | } | ||||||
694 | } | ||||||
695 | } | ||||||
696 | elsif ($m2 != 'Inf') {#so $m1 is Inf | ||||||
697 | if (($x1 < $lowhiu[0] || $x1 > $lowhiu[1]) && ! ($x1 eq $lowhiu[0] || $x1 eq $lowhiu[1])) { | ||||||
698 | next; | ||||||
699 | } | ||||||
700 | my @lowhiv=($v2>$v1)?($v1,$v2):($v2,$v1); | ||||||
701 | my $yi = ($m2*$xi)+$b2; | ||||||
702 | if (($yi || $yi eq 0) && | ||||||
703 | ($yi < $lowhiy[1] || $yi eq $lowhiy[1]) && | ||||||
704 | ($yi > $lowhiy[0] || $yi eq $lowhiy[0]) && | ||||||
705 | ($yi < $lowhiv[1] || $yi eq $lowhiv[1]) && | ||||||
706 | ($yi > $lowhiv[0] || $yi eq $lowhiv[0]) | ||||||
707 | ) { | ||||||
708 | push(@intersections,[$xi,$yi]); | ||||||
709 | if ($xi eq $u1 || $xi eq $u2) { | ||||||
710 | $i++; # avoid duplicates at endpoints | ||||||
711 | } | ||||||
712 | } | ||||||
713 | } | ||||||
714 | } | ||||||
715 | if ($doDists) { | ||||||
716 | foreach my $int (@intersections) { | ||||||
717 | push(@{$int}, sqrt( ($int->[0]-$seg1->[0]->[0])**2 + ($int->[1]-$seg1->[0]->[1])**2 ) ); | ||||||
718 | } | ||||||
719 | } | ||||||
720 | return @intersections; | ||||||
721 | } | ||||||
722 | |||||||
723 | # Adjust location of nodes in voronoi diagram so they become | ||||||
724 | # centers of maximum inscribed circles, and store MIC radius in each node. | ||||||
725 | # This is a first step towards a better medial axis approximation. | ||||||
726 | # It straightens out the initial MA approx. derived from the Voronoi diagram. | ||||||
727 | |||||||
728 | sub mic_adjust { | ||||||
729 | my $topo = shift; | ||||||
730 | my $vtopo = shift; | ||||||
731 | |||||||
732 | my @new_vnode_points; # voronoi vertices moved to MIC center points | ||||||
733 | my @new_vnode_radii; # will be calculated and added to node data | ||||||
734 | my @new_vnode_tangents; # where the MIC touches the boundary PSLG | ||||||
735 | |||||||
736 | my $vnc=-1; # will use to look up triangle that corresponds to the voronoi node | ||||||
737 | # $vnc can probably be replaced with $vnode->{index} | ||||||
738 | |||||||
739 | foreach my $vnode (@{$vtopo->{nodes}}) { | ||||||
740 | $vnc++; | ||||||
741 | |||||||
742 | push(@new_vnode_points,$vnode->{point}); | ||||||
743 | push(@new_vnode_radii,undef); | ||||||
744 | push(@new_vnode_tangents,[]); | ||||||
745 | |||||||
746 | my $boundary_edge; | ||||||
747 | |||||||
748 | if (@{$vnode->{edges}} == 3) { | ||||||
749 | my @all_edges = map {$topo->{edges}->[$_->{index}]} @{$vnode->{edges}}; | ||||||
750 | my @boundary_edges = grep {$_->{marker}} @all_edges; | ||||||
751 | |||||||
752 | my @opposite_boundary_edges; | ||||||
753 | my @opposite_boundary_feet; | ||||||
754 | |||||||
755 | my $branch_node_edge_index1; | ||||||
756 | my $branch_node_edge_index2; | ||||||
757 | my $branch_node_third_tan; | ||||||
758 | |||||||
759 | # BRANCH NODE | ||||||
760 | # The corresponding Delaunay triangle has no edges on the PSLG boundary, | ||||||
761 | # but touches the boundary at its vertices. This corresponds to a | ||||||
762 | # node with three edges in the medial axis approximation. | ||||||
763 | if (@boundary_edges == 0) { | ||||||
764 | $vnode->{isbranchnode} = 1; | ||||||
765 | |||||||
766 | # Orient nodes in edges emanating from this branch node so that | ||||||
767 | # the first node is always the branch node. | ||||||
768 | # The notion is that direction is always outward from a branch node. | ||||||
769 | # This will be a problem if two branch nodes link to each other. | ||||||
770 | $_->{nodes} = [$vnode,$_->{nodes}->[0]!=$vnode?$_->{nodes}->[0]:$_->{nodes}->[1]] for @{$vnode->{edges}}; | ||||||
771 | |||||||
772 | # Make sure corners are sorted so they are opposite the Voronoi edges in order. | ||||||
773 | # They may have already been that way, but couldn't determine from Triangle docs. | ||||||
774 | my @corners; | ||||||
775 | for (my $i=0;$i<@{$vnode->{edges}};$i++) { | ||||||
776 | push @corners, +(grep $_ != $topo->{edges}->[$vnode->{edges}->[$i]->{index}]->{nodes}->[0] | ||||||
777 | && $_ != $topo->{edges}->[$vnode->{edges}->[$i]->{index}]->{nodes}->[1], | ||||||
778 | @{$topo->{elements}->[$vnc]->{nodes}} | ||||||
779 | )[0]; | ||||||
780 | } | ||||||
781 | |||||||
782 | my @corner_boundary_edges = grep $_->{marker}, map @{$_->{edges}}, @corners; | ||||||
783 | my @corner_boundary_feet = map {getFoot([$_->{nodes}->[0]->{point},$_->{nodes}->[1]->{point}],$vnode->{point}->[0],$vnode->{point}->[1])} @corner_boundary_edges; | ||||||
784 | |||||||
785 | # Handle the case where the three corners are probably the three MIC tangents. | ||||||
786 | if (! grep $_, @corner_boundary_feet) { | ||||||
787 | $new_vnode_radii[-1] = dist2d($vnode->{point},$topo->{edges}->[$vnode->{edges}->[0]->{index}]->{nodes}->[0]->{point}); | ||||||
788 | $new_vnode_tangents[-1] = [[$corners[2]->{point}, | ||||||
789 | $corners[1]->{point}], | ||||||
790 | [$corners[0]->{point}, | ||||||
791 | $corners[2]->{point}], | ||||||
792 | [$corners[1]->{point}, | ||||||
793 | $corners[0]->{point}]]; | ||||||
794 | next; | ||||||
795 | } | ||||||
796 | |||||||
797 | # Otherwise, set up a case similar to the non-branch node case | ||||||
798 | # by designating feet, a boundary edge, and an opposite edge. | ||||||
799 | my @boundary_feet_edges; | ||||||
800 | for (my $i=0;$i<@corner_boundary_feet;$i+=2) { | ||||||
801 | my $foot; | ||||||
802 | my $edge; | ||||||
803 | # if no foot was found on the two edges meeting at | ||||||
804 | # one of the triangle's vertices, make the vertex a "fake foot" | ||||||
805 | if (!$corner_boundary_feet[$i] && !$corner_boundary_feet[$i+1]) { | ||||||
806 | my $foot = ( $corner_boundary_edges[$i]->{nodes}->[0] == $corner_boundary_edges[$i+1]->{nodes}->[0] | ||||||
807 | || $corner_boundary_edges[$i]->{nodes}->[0] == $corner_boundary_edges[$i+1]->{nodes}->[1] ) | ||||||
808 | ? $corner_boundary_edges[$i]->{nodes}->[0]->{point} | ||||||
809 | : $corner_boundary_edges[$i]->{nodes}->[1]->{point}; | ||||||
810 | # edge evaluates to "false" to signal this case | ||||||
811 | push @boundary_feet_edges, [$foot,undef,$i/2]; | ||||||
812 | } | ||||||
813 | # otherwise keep foot and edge ref | ||||||
814 | else { | ||||||
815 | if ($corner_boundary_feet[$i] ) {push @boundary_feet_edges, [$corner_boundary_feet[$i], $corner_boundary_edges[$i] ,$i/2];} | ||||||
816 | if ($corner_boundary_feet[$i+1] | ||||||
817 | && ( !$corner_boundary_feet[$i] || | ||||||
818 | # screen out duplicates | ||||||
819 | ( $corner_boundary_feet[$i+1]->[0] ne $corner_boundary_feet[$i]->[0] | ||||||
820 | && $corner_boundary_feet[$i+1]->[1] ne $corner_boundary_feet[$i]->[1] | ||||||
821 | ) | ||||||
822 | ) | ||||||
823 | ) {push @boundary_feet_edges, [$corner_boundary_feet[$i+1],$corner_boundary_edges[$i+1],$i/2];} | ||||||
824 | } | ||||||
825 | } | ||||||
826 | |||||||
827 | @boundary_feet_edges = sort {dist2d($a->[0],$vnode->{point}) <=> dist2d($b->[0],$vnode->{point})} @boundary_feet_edges; | ||||||
828 | |||||||
829 | # closest edge treated as boundary edge, similar to non-branch node handling | ||||||
830 | my $first_with_edge = +(grep {$_->[1]} @boundary_feet_edges)[0]; | ||||||
831 | |||||||
832 | $boundary_edge = {nodes=>[$first_with_edge->[1]->{nodes}->[0],$first_with_edge->[1]->{nodes}->[1]]}; | ||||||
833 | |||||||
834 | # next closest edge treated as opposite boundary edge, similar to non-branch node handling | ||||||
835 | # (that is, next closest that's also not connected to the same | ||||||
836 | # corner as the closest) | ||||||
837 | my $first_not_first_with_edge = +(grep {$_ != $first_with_edge && $_->[2] != $first_with_edge->[2]} @boundary_feet_edges)[0]; | ||||||
838 | |||||||
839 | $opposite_boundary_feet[0] = $first_not_first_with_edge->[0]; | ||||||
840 | $opposite_boundary_edges[0] = $first_not_first_with_edge->[1]; | ||||||
841 | |||||||
842 | # Use these later to match up tangent point pairs with Voronoi edges. | ||||||
843 | $branch_node_edge_index1 = $first_with_edge->[2]; | ||||||
844 | $branch_node_edge_index2 = $first_not_first_with_edge->[2]; | ||||||
845 | |||||||
846 | my @threst = grep { $_ != $first_with_edge | ||||||
847 | && $_ != $first_not_first_with_edge | ||||||
848 | && $_->[2] != $first_with_edge->[2] | ||||||
849 | && $_->[2] != $first_not_first_with_edge->[2] | ||||||
850 | } @boundary_feet_edges; | ||||||
851 | # Not completely thought out, but results look good so far - | ||||||
852 | # This "tangent point" is not (generally) touched by the approximate | ||||||
853 | # MIC, but it might be worth trying to shift the approx MIC in | ||||||
854 | # a later step to come closer to this, when possible. | ||||||
855 | # Even without that extra shift attempt, it's useful to have | ||||||
856 | # this when reconstructing a polygon from the approximate | ||||||
857 | # medial axis enabled by mic_adjust(). | ||||||
858 | $branch_node_third_tan = $threst[0]->[0]; | ||||||
859 | } | ||||||
860 | |||||||
861 | # NON-BRANCH NODE | ||||||
862 | # The corresponding Delaunay triangle has one or two edges | ||||||
863 | # on the PSLG boundary. This corresponds to a node with two edges | ||||||
864 | # in the medial axis approximation. | ||||||
865 | if (@boundary_edges == 1 || @boundary_edges == 2) { | ||||||
866 | |||||||
867 | $boundary_edge = $boundary_edges[0]; | ||||||
868 | |||||||
869 | my $bef = getFoot([$boundary_edge->{nodes}->[0]->{point},$boundary_edge->{nodes}->[1]->{point}],$vnode->{point}->[0],$vnode->{point}->[1]); | ||||||
870 | my $ber = sqrt(($vnode->{point}->[0]-$bef->[0])**2 + ($vnode->{point}->[1]-$bef->[1])**2); | ||||||
871 | |||||||
872 | if (@boundary_edges == 2) { | ||||||
873 | # If the other boundary edge is closer, make that the boundary edge. | ||||||
874 | my $obef = getFoot([$boundary_edges[1]->{nodes}->[0]->{point},$boundary_edges[1]->{nodes}->[1]->{point}],$vnode->{point}->[0],$vnode->{point}->[1]); | ||||||
875 | next if (!$obef); | ||||||
876 | my $ober = sqrt(($vnode->{point}->[0]-$obef->[0])**2 + ($vnode->{point}->[1]-$obef->[1])**2); | ||||||
877 | if ($ober < $ber) { | ||||||
878 | $boundary_edge = $boundary_edges[1]; | ||||||
879 | $bef=$obef; | ||||||
880 | $ber=$ober; | ||||||
881 | } | ||||||
882 | } | ||||||
883 | |||||||
884 | my @other_edges = grep $_ != $boundary_edge, map $topo->{edges}->[$_->{index}], @{$vnode->{edges}}; | ||||||
885 | my $opposite_node = +(grep {$_ != $boundary_edge->{nodes}->[0] && $_ != $boundary_edge->{nodes}->[1]} @{$other_edges[1]->{nodes}})[0]; | ||||||
886 | @opposite_boundary_edges = grep {$_->{marker}} @{$opposite_node->{edges}}; | ||||||
887 | @opposite_boundary_feet = map {getFoot([$_->{nodes}->[0]->{point},$_->{nodes}->[1]->{point}],$vnode->{point}->[0],$vnode->{point}->[1])} @opposite_boundary_edges; | ||||||
888 | |||||||
889 | if (@boundary_edges == 1 | ||||||
890 | # || @boundary_edges == 2 | ||||||
891 | ) { # should apply to ==2 too, maybe, but should screen out the "opposite" that is also "adjacent" in that case | ||||||
892 | my @adjacent_boundary_edges = grep {$_->{marker} && $_ != $boundary_edge} map @{$_->{edges}}, @{$boundary_edge->{nodes}}; | ||||||
893 | my @adjacent_boundary_feet = map {getFoot([$_->{nodes}->[0]->{point},$_->{nodes}->[1]->{point}],$vnode->{point}->[0],$vnode->{point}->[1])} @adjacent_boundary_edges; | ||||||
894 | # if any adjacent bounds closer, replace $boundary_edge with closest | ||||||
895 | for (my $i = 0; $i < @adjacent_boundary_feet; $i++) { | ||||||
896 | next if (!$adjacent_boundary_feet[$i]); | ||||||
897 | my $newfootdist = sqrt(($vnode->{point}->[0] - $adjacent_boundary_feet[$i]->[0])**2 + ($vnode->{point}->[1]-$adjacent_boundary_feet[$i]->[1])**2); | ||||||
898 | if ($newfootdist < $ber) { | ||||||
899 | $boundary_edge = $adjacent_boundary_edges[$i]; | ||||||
900 | $bef = $adjacent_boundary_feet[$i]; | ||||||
901 | $ber = $newfootdist; | ||||||
902 | } | ||||||
903 | } | ||||||
904 | } | ||||||
905 | |||||||
906 | if (grep $_, @opposite_boundary_feet) { | ||||||
907 | my @sortind = sort {dist2d($vnode->{point},$opposite_boundary_feet[$a]) <=> dist2d($vnode->{point},$opposite_boundary_feet[$b])} grep {$opposite_boundary_feet[$_]} (0..$#opposite_boundary_feet); | ||||||
908 | @opposite_boundary_feet = map $opposite_boundary_feet[$_], @sortind; | ||||||
909 | @opposite_boundary_edges = map $opposite_boundary_edges[$_], @sortind; | ||||||
910 | @opposite_boundary_feet = ($opposite_boundary_feet[0]); | ||||||
911 | @opposite_boundary_edges = ($opposite_boundary_edges[0]); | ||||||
912 | my $obr = dist2d($opposite_boundary_feet[0],$vnode->{point}); | ||||||
913 | if ($ber>$obr) { | ||||||
914 | my $tmp = $opposite_boundary_edges[0]; | ||||||
915 | $opposite_boundary_edges[0] = $boundary_edge; | ||||||
916 | $boundary_edge = $tmp; | ||||||
917 | $opposite_boundary_feet[0] = $bef; | ||||||
918 | } | ||||||
919 | } | ||||||
920 | |||||||
921 | if (!grep $_, @opposite_boundary_feet) { | ||||||
922 | # make the foot just the opposite point | ||||||
923 | @opposite_boundary_feet = ($opposite_node->{point}); | ||||||
924 | # make edge eval to false to signal this fake foot case | ||||||
925 | @opposite_boundary_edges = map {0} @opposite_boundary_edges; | ||||||
926 | } | ||||||
927 | |||||||
928 | } | ||||||
929 | |||||||
930 | # FIND THE TWO TANGENT POINTS, RADIUS, AND SHIFT POINT TO MIC CENTER | ||||||
931 | |||||||
932 | # Only one defined unique foot should be in @opposite_boundary_feet | ||||||
933 | # at this point, though that wasn't always the case in the past. | ||||||
934 | # When we're satisfied that it will be the case in the future, we'll | ||||||
935 | # remove the for loop. | ||||||
936 | |||||||
937 | for (my $i = 0; $i < @opposite_boundary_feet; $i++) { | ||||||
938 | next if !$opposite_boundary_feet[$i]; | ||||||
939 | my $foot = $opposite_boundary_feet[$i]; | ||||||
940 | my $opp_edge = $opposite_boundary_edges[$i]; | ||||||
941 | |||||||
942 | my $a1; | ||||||
943 | if ($opp_edge) { | ||||||
944 | $a1 = atan2($opp_edge->{nodes}->[0]->{point}->[1] - $opp_edge->{nodes}->[1]->{point}->[1], | ||||||
945 | $opp_edge->{nodes}->[0]->{point}->[0] - $opp_edge->{nodes}->[1]->{point}->[0]); | ||||||
946 | } | ||||||
947 | else { # the "fake foot" case, where opposite edge is just a point | ||||||
948 | $a1 = atan2($foot->[1] - $vnode->{point}->[1], | ||||||
949 | $foot->[0] - $vnode->{point}->[0]); | ||||||
950 | $a1 -= $pi / 2; | ||||||
951 | } | ||||||
952 | |||||||
953 | my $a2 = atan2($boundary_edge->{nodes}->[1]->{point}->[1] - $boundary_edge->{nodes}->[0]->{point}->[1], | ||||||
954 | $boundary_edge->{nodes}->[1]->{point}->[0] - $boundary_edge->{nodes}->[0]->{point}->[0]); | ||||||
955 | |||||||
956 | $a1 = angle_reduce_pi($a1); | ||||||
957 | |||||||
958 | my $amid = ($a1 + $a2) / 2; | ||||||
959 | my $amidnorm = $amid + $pi / 2; | ||||||
960 | |||||||
961 | my $boundtanpt = line_line_intersection( | ||||||
962 | [ $boundary_edge->{nodes}->[0]->{point}, $boundary_edge->{nodes}->[1]->{point} ], | ||||||
963 | [ $foot, [$foot->[0] + 100 * cos($amidnorm), $foot->[1] + (100 * sin($amidnorm))] ], | ||||||
964 | ); | ||||||
965 | |||||||
966 | if ($boundtanpt) { | ||||||
967 | my $midpt=[($foot->[0]+$boundtanpt->[0])/2,($foot->[1]+$boundtanpt->[1])/2]; | ||||||
968 | my $nother_mid_pt=[$midpt->[0]-100*cos($amid),$midpt->[1]-100*sin($amid)]; | ||||||
969 | my $center = line_line_intersection([$vnode->{point},$foot],[$midpt,$nother_mid_pt]); | ||||||
970 | if ($center) { | ||||||
971 | $new_vnode_points[-1] = $center; | ||||||
972 | $new_vnode_radii[-1] = dist2d($center,$foot); | ||||||
973 | # assign the three tangent pairs to a branch node | ||||||
974 | if (defined $branch_node_edge_index1) { | ||||||
975 | my $gets_both_found = +(grep $_ != $branch_node_edge_index1 && $_ != $branch_node_edge_index2, (0..2))[0]; | ||||||
976 | $new_vnode_tangents[-1]->[( $gets_both_found ) % 3] = [$foot, $boundtanpt]; | ||||||
977 | $new_vnode_tangents[-1]->[( $branch_node_edge_index1 ) % 3] = [$branch_node_third_tan, $foot]; | ||||||
978 | $new_vnode_tangents[-1]->[( $branch_node_edge_index2 ) % 3] = [$boundtanpt, $branch_node_third_tan]; | ||||||
979 | } | ||||||
980 | # assign the two tangent pairs for non-branch nodes | ||||||
981 | else { | ||||||
982 | foreach my $edge (@{$vnode->{edges}}) { | ||||||
983 | next if defined($edge->{vector}) && ($edge->{vector}->[0] != 0 || $edge->{vector}->[1] != 0); # a ray | ||||||
984 | push @{$new_vnode_tangents[-1]}, [$foot, $boundtanpt]; | ||||||
985 | } | ||||||
986 | } | ||||||
987 | } | ||||||
988 | } | ||||||
989 | } | ||||||
990 | } | ||||||
991 | |||||||
992 | if (!defined $new_vnode_radii[-1]) { | ||||||
993 | # This would be a branch node that had feet, but didn't end up | ||||||
994 | # getting adjusted. This is either an okay edge case or a failure. | ||||||
995 | # Let's watch for a while and see if we end up here. | ||||||
996 | $new_vnode_radii[-1] = dist2d($vnode->{point},$topo->{edges}->[$vnode->{edges}->[0]->{index}]->{nodes}->[0]->{point}); | ||||||
997 | print "\nFailure to find radius in Math::Geometery::Delaunay::mic_adjust().\nThe developer would like to know if you come across this.\n"; | ||||||
998 | } | ||||||
999 | |||||||
1000 | } | ||||||
1001 | |||||||
1002 | # Can probably integrate the node point, radius, and tangents assignments | ||||||
1003 | # directly into the above section, and get rid of this temp array stuff. | ||||||
1004 | # On the other hand, if we move this toward using matched index lists (more | ||||||
1005 | # like Triangle's native output) might just export the lists we made, and not | ||||||
1006 | # update the crossref'ed hash structure. | ||||||
1007 | for (my $i = 0; $i < @{$vtopo->{nodes}}; $i++) { | ||||||
1008 | $vtopo->{nodes}->[$i]->{point} = $new_vnode_points[$i]; | ||||||
1009 | $vtopo->{nodes}->[$i]->{radius} = $new_vnode_radii[$i]; | ||||||
1010 | $vtopo->{nodes}->[$i]->{tangents} = $new_vnode_tangents[$i]; | ||||||
1011 | } | ||||||
1012 | |||||||
1013 | # Fixup left-right ordering of tangent points, now that | ||||||
1014 | # vnodes and their edges should all be nicely centered between them. | ||||||
1015 | |||||||
1016 | for (my $i = 0; $i < @{$vtopo->{nodes}}; $i++) { | ||||||
1017 | my $vnode = $vtopo->{nodes}->[$i]; | ||||||
1018 | |||||||
1019 | # first pass - could you do iswithin for vnode in its corresponding triangle | ||||||
1020 | # and if not, shift toward next/previous vnode until it is within | ||||||
1021 | # like to intersection of line between tri apex and bound edge | ||||||
1022 | # and line between point and next/prev point... or is there trajectory | ||||||
1023 | # based on two (usually) boundary edges where the tangents are? | ||||||
1024 | # | ||||||
1025 | |||||||
1026 | my @fixtangents; | ||||||
1027 | my @edges = grep !defined($_->{vector}) || ($_->{vector}->[0] == 0 && $_->{vector}->[1] == 0), @{$vnode->{edges}}; | ||||||
1028 | |||||||
1029 | for (my $j = 0; $j < @edges; $j++) { | ||||||
1030 | my $edge = $edges[$j]; | ||||||
1031 | |||||||
1032 | my $tangents = $vnode->{tangents}->[$j]; # tangent pairs correspond to non-ray edges, in order | ||||||
1033 | my $other_node = ($edge->{nodes}->[0] != $vnode) ? $edge->{nodes}->[0] : $edge->{nodes}->[1]; | ||||||
1034 | my $start_node = $vnode; | ||||||
1035 | |||||||
1036 | # Duplicate node points can happen for common reasons, so go out | ||||||
1037 | # to the next node if we got a duplicate. (Three-in-a-row duplicates | ||||||
1038 | # shouldn't happen.) | ||||||
1039 | if ($vnode->{point}->[0] eq $other_node->{point}->[0] && $vnode->{point}->[1] eq $other_node->{point}->[1]) { | ||||||
1040 | my $other_edge = +(grep $_ != $edge && !(defined $_->{vector} && ($_->{vector}->[0] != 0 || $_->{vector}->[1] != 0)), @{$other_node->{edges}})[0]; | ||||||
1041 | if ($other_edge) { | ||||||
1042 | $other_node = $other_edge->{nodes}->[0] != $other_node ? $other_edge->{nodes}->[0] : $other_edge->{nodes}->[1]; | ||||||
1043 | } | ||||||
1044 | else { | ||||||
1045 | # Well, then, if this is a non-branch node, set up a test line | ||||||
1046 | # using the previous node, heading into this one. | ||||||
1047 | if (@{$vnode->{tangents}} == 2) { | ||||||
1048 | my $other_edge = $edges[$j == 0 ? 1 : 0]; | ||||||
1049 | $start_node = ($other_edge->{nodes}->[0] != $vnode) ? $other_edge->{nodes}->[0] : $other_edge->{nodes}->[1]; | ||||||
1050 | $other_node = $vnode; | ||||||
1051 | } | ||||||
1052 | #else { die "Couldn't get other edge in duplicate point case\n\n;" } | ||||||
1053 | } | ||||||
1054 | } | ||||||
1055 | |||||||
1056 | # Heading out from the start node to the other node, the first tangent associated | ||||||
1057 | # with this edge should be on the left (a counterclockwise turn), and the | ||||||
1058 | # other tangent on the right. We've got Triangle's adaptave robust | ||||||
1059 | # orientation code backing up counterclockwise(), for the really close cases. | ||||||
1060 | my $ccwl = counterclockwise($start_node->{point}, $other_node->{point}, $tangents->[0]); | ||||||
1061 | my $ccwr = counterclockwise($start_node->{point}, $other_node->{point}, $tangents->[1]); | ||||||
1062 | |||||||
1063 | if ($ccwl < 0) { # first tangent wasn't on the left | ||||||
1064 | if ($ccwr > 0) { # but the second was, so we just need to swap them | ||||||
1065 | @{$tangents} = reverse @{$tangents}; | ||||||
1066 | } | ||||||
1067 | else { # But if both were on the right, something's wrong. | ||||||
1068 | # If this is a branch node, and the other two tangent pairs | ||||||
1069 | # don't have the same problem, we can fix up the bad one later. | ||||||
1070 | #push @fixtangents, $j; | ||||||
1071 | $vnode->{fixtangents} = [] if !defined $vnode->{fixtangents}; | ||||||
1072 | push @{$vnode->{fixtangents}}, $j; | ||||||
1073 | } | ||||||
1074 | } | ||||||
1075 | elsif ($ccwr > 0) { # Both were on the left. Maybe fix up later. | ||||||
1076 | #push @fixtangents, $j; | ||||||
1077 | $vnode->{fixtangents} = [] if !defined $vnode->{fixtangents}; | ||||||
1078 | push @{$vnode->{fixtangents}}, $j; | ||||||
1079 | } | ||||||
1080 | #elsif ($ccwl eq 0) { die "zero" } # Shouldn't happen. Leave it alone if it does. | ||||||
1081 | } | ||||||
1082 | } | ||||||
1083 | for (my $i = 0; $i < @{$vtopo->{nodes}}; $i++) { | ||||||
1084 | if (@{$vtopo->{nodes}->[$i]->{tangents}} == 3 && defined $vtopo->{nodes}->[$i]->{fixtangents} && @{$vtopo->{nodes}->[$i]->{fixtangents}} == 1) { | ||||||
1085 | #print "FIXUP TANGENT PAIR FOR ONE BRANCH AT BRANCH NODE\n"; | ||||||
1086 | #$vtopo->{nodes}->[$i]->{color} = 'orange'; | ||||||
1087 | # one bad tangent pair out of three for a branch node | ||||||
1088 | # infer that it just needs to be reversed if other two pairs were good | ||||||
1089 | |||||||
1090 | # debug stuff | ||||||
1091 | #my @edges = grep !defined($_->{vector}) || ($_->{vector}->[0] == 0 && $_->{vector}->[1] == 0), @{$vtopo->{nodes}->[$i]->{edges}}; | ||||||
1092 | #my $reconsider_edge = $edges[$vtopo->{nodes}->[$i]->{fixtangents}->[0]]; | ||||||
1093 | #my $reconsider_node = $reconsider_edge->{nodes}->[0] != $vtopo->{nodes}->[$i] ? $reconsider_edge->{nodes}->[0]:$reconsider_edge->{nodes}->[1]; | ||||||
1094 | #$reconsider_node->{color} = 'green'; | ||||||
1095 | |||||||
1096 | $vtopo->{nodes}->[$i]->{tangents}->[$vtopo->{nodes}->[$i]->{fixtangents}->[0]] = | ||||||
1097 | [$vtopo->{nodes}->[$i]->{tangents}->[($vtopo->{nodes}->[$i]->{fixtangents}->[0] + 1) % 3]->[1], | ||||||
1098 | $vtopo->{nodes}->[$i]->{tangents}->[($vtopo->{nodes}->[$i]->{fixtangents}->[0] - 1) ]->[0]]; | ||||||
1099 | |||||||
1100 | } | ||||||
1101 | #if (@{$vtopo->{nodes}->[$i]->{tangents}} == 3 && defined $vtopo->{nodes}->[$i]->{fixtangents} && @{$vtopo->{nodes}->[$i]->{fixtangents}} != 1) { | ||||||
1102 | #print " MORE NEEDED FIXUP: ",scalar(@{$vtopo->{nodes}->[$i]->{fixtangents}}),"\n"; | ||||||
1103 | # if more than one branch had tangents mixed up... | ||||||
1104 | # maybe the other one or two wrong ones are really right? | ||||||
1105 | # ambiguous. | ||||||
1106 | # $vtopo->{nodes}->[$i]->{color} = 'orange'; | ||||||
1107 | # } | ||||||
1108 | if ( @{$vtopo->{nodes}->[$i]->{tangents}} == 2 | ||||||
1109 | && $vtopo->{nodes}->[$i]->{tangents}->[0]->[0] == $vtopo->{nodes}->[$i]->{tangents}->[1]->[0] | ||||||
1110 | ) { | ||||||
1111 | #print "non-branch maybe needs fixup.\n"; | ||||||
1112 | # not sure if this a good way to approach this - | ||||||
1113 | # doesn't definitively capture all that can go | ||||||
1114 | # wrong with non-branch node orientations. | ||||||
1115 | $vtopo->{nodes}->[$i]->{color} = 'green'; | ||||||
1116 | if (defined $vtopo->{nodes}->[$i]->{fixtangents} && @{$vtopo->{nodes}->[$i]->{fixtangents}} == 1) { | ||||||
1117 | $vtopo->{nodes}->[$i]->{tangents}->[$vtopo->{nodes}->[$i]->{fixtangents}->[0]] = | ||||||
1118 | [$vtopo->{nodes}->[$i]->{tangents}->[$vtopo->{nodes}->[$i]->{fixtangents}->[0] - 1]->[1], | ||||||
1119 | $vtopo->{nodes}->[$i]->{tangents}->[$vtopo->{nodes}->[$i]->{fixtangents}->[0] - 1]->[0]]; | ||||||
1120 | } | ||||||
1121 | } | ||||||
1122 | } | ||||||
1123 | } | ||||||
1124 | |||||||
1125 | sub getFoot { | ||||||
1126 | my $seg = shift; | ||||||
1127 | my $x = shift; | ||||||
1128 | my $y = shift; | ||||||
1129 | my $foot; | ||||||
1130 | my $m = ($seg->[1]->[0] - $seg->[0]->[0] == 0) ? 'inf' : ($seg->[1]->[1] - $seg->[0]->[1])/($seg->[1]->[0] - $seg->[0]->[0]); | ||||||
1131 | my @sortx = $seg->[0]->[0] < $seg->[1]->[0] ? ($seg->[0]->[0], $seg->[1]->[0]) : ($seg->[1]->[0], $seg->[0]->[0]); | ||||||
1132 | my @sorty = $seg->[0]->[1] < $seg->[1]->[1] ? ($seg->[0]->[1], $seg->[1]->[1]) : ($seg->[1]->[1], $seg->[0]->[1]); | ||||||
1133 | if ($m == 0) { | ||||||
1134 | if ($x >= $sortx[0] && $x <= $sortx[1]) {$foot=[$x, $seg->[0]->[1]];} | ||||||
1135 | } | ||||||
1136 | elsif ($m == 'inf') { | ||||||
1137 | if ($y >= $sorty[0] && $y <= $sorty[1]) {$foot=[$seg->[0]->[0], $y];} | ||||||
1138 | } | ||||||
1139 | else { | ||||||
1140 | my $intersect_x = (($m*$seg->[0]->[0])-($seg->[0]->[1])+((1/$m)*$x)+($y))/($m+(1/$m)); | ||||||
1141 | if ($intersect_x >= $sortx[0] && $intersect_x <= $sortx[1]) { | ||||||
1142 | my $intersect_y = -($seg->[0]->[0] - $intersect_x) * $m + $seg->[0]->[1]; | ||||||
1143 | if ($intersect_y >= $sorty[0] && $intersect_y <= $sorty[1]) { | ||||||
1144 | $foot = [$intersect_x, $intersect_y]; | ||||||
1145 | } | ||||||
1146 | } | ||||||
1147 | } | ||||||
1148 | return $foot; | ||||||
1149 | } | ||||||
1150 | |||||||
1151 | sub angle_reduce { | ||||||
1152 | my $a=shift; | ||||||
1153 | while($a > $pi / 2) { $a -= $pi; } | ||||||
1154 | while($a <= -$pi / 2) { $a += $pi; } | ||||||
1155 | return $a; | ||||||
1156 | } | ||||||
1157 | |||||||
1158 | sub angle_reduce_pi { | ||||||
1159 | my $a=shift; | ||||||
1160 | while($a > $pi) { $a -= $pi * 2; } | ||||||
1161 | while($a <= -$pi) { $a += $pi * 2; } | ||||||
1162 | return $a; | ||||||
1163 | } | ||||||
1164 | |||||||
1165 | sub seg_seg_intersection { | ||||||
1166 | my $seg1 = shift; | ||||||
1167 | my $seg2 = shift; | ||||||
1168 | my $int; | ||||||
1169 | |||||||
1170 | my $x1= $seg1->[0]->[0]; my $y1= $seg1->[0]->[1]; | ||||||
1171 | my $x2= $seg1->[1]->[0]; my $y2= $seg1->[1]->[1]; | ||||||
1172 | my $u1= $seg2->[0]->[0]; my $v1= $seg2->[0]->[1]; | ||||||
1173 | my $u2= $seg2->[1]->[0]; my $v2= $seg2->[1]->[1]; | ||||||
1174 | |||||||
1175 | my $m1 = ($x2 eq $x1)?'Inf':($y2 - $y1)/($x2 - $x1); | ||||||
1176 | my $m2 = ($u2 eq $u1)?'Inf':($v2 - $v1)/($u2 - $u1); | ||||||
1177 | |||||||
1178 | my $b1; | ||||||
1179 | my $b2; | ||||||
1180 | my $xi; | ||||||
1181 | |||||||
1182 | # Arranged like this to avoid m1-m2 with infinity involved, which works | ||||||
1183 | # in other contexts, but can trigger a floating point exception here. | ||||||
1184 | my $dm; | ||||||
1185 | if ($m1 != 'Inf' && $m2 != 'Inf') {$dm = $m1 - $m2;} | ||||||
1186 | elsif ($m1 == 'Inf' && $m2 == 'Inf') {return;} | ||||||
1187 | else {$dm='Inf';} | ||||||
1188 | |||||||
1189 | if ($m1 == 'Inf' && $m2 != 'Inf') {$xi = $x1;$b2 = $v1 - ($m2 * $u1);} | ||||||
1190 | elsif ($m2 == 'Inf' && $m1 != 'Inf') {$xi = $u1;$b1 = $y1 - ($m1 * $x1);} | ||||||
1191 | elsif (abs($dm) > 0.000000000001) { | ||||||
1192 | $b1 = $y1 - ($m1 * $x1); | ||||||
1193 | $b2 = $v1 - ($m2 * $u1); | ||||||
1194 | $xi=($b2-$b1)/$dm; | ||||||
1195 | } | ||||||
1196 | my @lowhiu=($u2>$u1)?($u1,$u2):($u2,$u1); | ||||||
1197 | if ($m1 != 'Inf') { | ||||||
1198 | my @lowhix=($x2>$x1)?($x1,$x2):($x2,$x1); | ||||||
1199 | if ($m2 == 'Inf' && ($u2<$lowhix[0] || $u2>$lowhix[1]) ) { | ||||||
1200 | return; | ||||||
1201 | } | ||||||
1202 | if ( | ||||||
1203 | ($xi || $xi eq 0) && | ||||||
1204 | ($xi < $lowhix[1] || $xi eq $lowhix[1]) && | ||||||
1205 | ($xi > $lowhix[0] || $xi eq $lowhix[0]) && | ||||||
1206 | ($xi < $lowhiu[1] || $xi eq $lowhiu[1]) && | ||||||
1207 | ($xi > $lowhiu[0] || $xi eq $lowhiu[0]) | ||||||
1208 | ) { | ||||||
1209 | my $y=($m1*$xi)+$b1; | ||||||
1210 | my @lowhiv=($v2>$v1)?($v1,$v2):($v2,$v1); | ||||||
1211 | if ($m2 == 'Inf' && | ||||||
1212 | ($y<$lowhiv[0] || $y>$lowhiv[1]) | ||||||
1213 | ) { | ||||||
1214 | return; | ||||||
1215 | } | ||||||
1216 | else { | ||||||
1217 | $int = [$xi,$y]; | ||||||
1218 | } | ||||||
1219 | } | ||||||
1220 | } | ||||||
1221 | elsif ($m2 != 'Inf') { #so $m1 is Inf | ||||||
1222 | |||||||
1223 | if ($x1 < $lowhiu[0] || $x1 > $lowhiu[1] && ! ($x1 eq $lowhiu[0] || $x1 eq $lowhiu[1])) { | ||||||
1224 | return; | ||||||
1225 | } | ||||||
1226 | my @lowhiy=($y2>$y1)?($y1,$y2):($y2,$y1); | ||||||
1227 | my @lowhiv=($v2>$v1)?($v1,$v2):($v2,$v1); | ||||||
1228 | my $yi = ($m2*$xi)+$b2; | ||||||
1229 | if (($yi || $yi eq 0) && | ||||||
1230 | ($yi < $lowhiy[1] || $yi eq $lowhiy[1]) && | ||||||
1231 | ($yi > $lowhiy[0] || $yi eq $lowhiy[0]) && | ||||||
1232 | ($yi < $lowhiv[1] || $yi eq $lowhiv[1]) && | ||||||
1233 | ($yi > $lowhiv[0] || $yi eq $lowhiv[0]) | ||||||
1234 | ) { | ||||||
1235 | $int = [$xi,$yi]; | ||||||
1236 | } | ||||||
1237 | } | ||||||
1238 | return $int; | ||||||
1239 | } | ||||||
1240 | |||||||
1241 | sub line_line_intersection { | ||||||
1242 | my $seg1 = shift; | ||||||
1243 | my $seg2 = shift; | ||||||
1244 | my $int; | ||||||
1245 | |||||||
1246 | my $x1= $seg1->[0]->[0]; my $y1= $seg1->[0]->[1]; | ||||||
1247 | my $x2= $seg1->[1]->[0]; my $y2= $seg1->[1]->[1]; | ||||||
1248 | my $u1= $seg2->[0]->[0]; my $v1= $seg2->[0]->[1]; | ||||||
1249 | my $u2= $seg2->[1]->[0]; my $v2= $seg2->[1]->[1]; | ||||||
1250 | |||||||
1251 | my $m1 = ($x2 eq $x1)?'Inf':($y2 - $y1)/($x2 - $x1); | ||||||
1252 | my $m2 = ($u2 eq $u1)?'Inf':($v2 - $v1)/($u2 - $u1); | ||||||
1253 | |||||||
1254 | my $b1; | ||||||
1255 | my $b2; | ||||||
1256 | |||||||
1257 | my $xi; | ||||||
1258 | |||||||
1259 | # Arranged like this to avoid m1-m2 with infinity involved, which works | ||||||
1260 | # in other contexts, but can trigger a floating point exception here. | ||||||
1261 | my $dm; | ||||||
1262 | if ($m1 != 'Inf' && $m2 != 'Inf') {$dm = $m1 - $m2;} | ||||||
1263 | elsif ($m1 == 'Inf' && $m2 == 'Inf') {return;} | ||||||
1264 | else {$dm='Inf';} | ||||||
1265 | |||||||
1266 | if ($m1 == 'Inf' && $m2 != 'Inf') {$xi = $x1;$b2 = $v1 - ($m2 * $u1);} | ||||||
1267 | elsif ($m2 == 'Inf' && $m1 != 'Inf') {$xi = $u1;$b1 = $y1 - ($m1 * $x1);} | ||||||
1268 | elsif (abs($dm) > 0.000000000001) { | ||||||
1269 | $b1 = $y1 - ($m1 * $x1); | ||||||
1270 | $b2 = $v1 - ($m2 * $u1); | ||||||
1271 | $xi=($b2-$b1)/$dm; | ||||||
1272 | } | ||||||
1273 | if ($m1 != 'Inf') { | ||||||
1274 | if (defined $xi) { | ||||||
1275 | my $y=($m1*$xi)+$b1; | ||||||
1276 | $int = [$xi,$y]; | ||||||
1277 | } | ||||||
1278 | } | ||||||
1279 | elsif ($m2 != 'Inf') { # so $m1 is Inf | ||||||
1280 | my $yi = ($m2*$xi)+$b2; | ||||||
1281 | if ($yi || $yi eq 0) { | ||||||
1282 | $int = [$xi,$yi]; | ||||||
1283 | } | ||||||
1284 | } | ||||||
1285 | return $int; | ||||||
1286 | } | ||||||
1287 | |||||||
1288 | sub to_svg { | ||||||
1289 | my %spec = @_; | ||||||
1290 | my $triios = [defined($spec{topo}) ? delete $spec{topo} : undef, defined($spec{vtopo}) ? delete $spec{vtopo} : undef]; | ||||||
1291 | my $fn = defined($spec{file}) ? delete $spec{file} : '-'; | ||||||
1292 | my $dispsize = defined($spec{size}) ? delete $spec{size} : [800, 600]; | ||||||
1293 | my $triio = $triios->[0]; | ||||||
1294 | my $vorio = @{$triios}?$triios->[1]:undef; | ||||||
1295 | my @edges; | ||||||
1296 | my @segs; | ||||||
1297 | my @pts; | ||||||
1298 | my @vpts; | ||||||
1299 | my @vedges; | ||||||
1300 | my @vrays; | ||||||
1301 | my @circles; | ||||||
1302 | my @elements; | ||||||
1303 | my $maxx; | ||||||
1304 | my $maxy; | ||||||
1305 | my $minx; | ||||||
1306 | my $miny; | ||||||
1307 | if (!$triio) {carp "no geometry provided";return;} | ||||||
1308 | foreach my $key ( keys %spec ) { if (ref($spec{$key}) !~ /ARRAY/) { carp("style config for '$key' should be a reference to an array"); return; } } | ||||||
1309 | |||||||
1310 | # make copies of points, because we'll be moving and scaling them | ||||||
1311 | |||||||
1312 | if (ref($triio) =~ /HASH/ && defined $triio->{nodes}) { | ||||||
1313 | push @pts, map [$_,defined $spec{nodes} ? @{$spec{nodes}} : undef], map [@{$_->{point}}], @{$triio->{nodes}}; | ||||||
1314 | } | ||||||
1315 | else { | ||||||
1316 | push @pts, map [[@{$_}],defined $spec{nodes} ? @{$spec{nodes}} : undef], ltolol(2,$triio->pointlist); | ||||||
1317 | } | ||||||
1318 | if ($vorio) { | ||||||
1319 | if (ref($vorio) =~ /HASH/ && defined $vorio->{nodes}) { | ||||||
1320 | push @vpts, map [$_,defined $spec{vnodes} ? @{$spec{vnodes}} : undef], map [@{$_->{point}}], @{$vorio->{nodes}}; | ||||||
1321 | } | ||||||
1322 | else { | ||||||
1323 | push @vpts, map [[@{$_}],defined $spec{vnodes} ? @{$spec{vnodes}} : undef], ltolol(2,$vorio->pointlist); | ||||||
1324 | } | ||||||
1325 | } | ||||||
1326 | |||||||
1327 | $maxx = $pts[0]->[0]->[0]; | ||||||
1328 | $minx = $pts[0]->[0]->[0]; | ||||||
1329 | $maxy = $pts[0]->[0]->[1]; | ||||||
1330 | $miny = $pts[0]->[0]->[1]; | ||||||
1331 | foreach my $pt (@pts,@vpts) { | ||||||
1332 | if ($maxx < $pt->[0]->[0]) {$maxx = $pt->[0]->[0]} | ||||||
1333 | if ($maxy < $pt->[0]->[1]) {$maxy = $pt->[0]->[1]} | ||||||
1334 | if ($minx > $pt->[0]->[0]) {$minx = $pt->[0]->[0]} | ||||||
1335 | if ($miny > $pt->[0]->[1]) {$miny = $pt->[0]->[1]} | ||||||
1336 | } | ||||||
1337 | |||||||
1338 | # offset and scale to avoid limitations of svg renderers | ||||||
1339 | |||||||
1340 | my $dispsizex = '640'; | ||||||
1341 | my $dispsizey = '480'; | ||||||
1342 | |||||||
1343 | if (ref($dispsize) =~ /ARRAY/ && @{$dispsize} > 1) { | ||||||
1344 | $dispsizex = $dispsize->[0]; | ||||||
1345 | $dispsizey = $dispsize->[1]; | ||||||
1346 | } | ||||||
1347 | |||||||
1348 | # used to scale lines and point circle radii | ||||||
1349 | # so they stay visible in different viewports dimensions | ||||||
1350 | my $scale=(sqrt($dispsizex**2+$dispsizey**2))/sqrt(($maxx-$minx)**2+($maxy-$miny)**2); | ||||||
1351 | |||||||
1352 | foreach (@pts,@vpts) { | ||||||
1353 | $_->[0]->[0] -= $minx; | ||||||
1354 | $_->[0]->[0] *= $scale; | ||||||
1355 | $_->[0]->[1] -= $miny; | ||||||
1356 | $_->[0]->[1] *= $scale; | ||||||
1357 | } | ||||||
1358 | |||||||
1359 | my $scaled_maxx = ($maxx - $minx) * $scale; | ||||||
1360 | my $scaled_maxy = ($maxy - $miny) * $scale; | ||||||
1361 | my $scaled_minx = 0; | ||||||
1362 | my $scaled_miny = 0; | ||||||
1363 | |||||||
1364 | if (ref($triio) =~ /HASH/ && defined $triio->{nodes}) { | ||||||
1365 | if ($spec{edges}) {push @edges, map {[$_,@{$spec{edges}}]} map [$pts[$_->{nodes}->[0]->{index}]->[0],$pts[$_->{nodes}->[1]->{index}]->[0]], @{$triio->{edges}};} | ||||||
1366 | if ($spec{segments}) {push @segs, map {[$_,@{$spec{segments}}]} map [$pts[$_->{nodes}->[0]->{index}]->[0],$pts[$_->{nodes}->[1]->{index}]->[0]], @{$triio->{segments}};} | ||||||
1367 | #ignoring any subparametric points for elements | ||||||
1368 | if ($spec{elements}) {push @elements, map [[map $pts[$_->{index}]->[0], @{$_->{nodes}}[0..2]], (ref($spec{elements}->[0]) =~ /CODE/ ? &{$spec{elements}->[0]}($_) : $spec{elements}->[0]), defined($spec{elements}->[1]) ? $spec{elements}->[1] : ''], @{$triio->{elements}};} #/ | ||||||
1369 | } | ||||||
1370 | else { | ||||||
1371 | if ($spec{edges}) {push @edges, map {[[$pts[$_->[0]]->[0],$pts[$_->[1]]->[0]],@{$spec{edges}}]} ltolol(2,$triio->edgelist);} | ||||||
1372 | if ($spec{segments}) {push @segs, map {[[$pts[$_->[0]]->[0],$pts[$_->[1]]->[0]],@{$spec{segments}}]} ltolol(2,$triio->segmentlist);} | ||||||
1373 | #ignoring any subparametric points for elements | ||||||
1374 | if ($spec{elements}) { | ||||||
1375 | push @elements, map {[[$pts[$_->[0]]->[0],$pts[$_->[1]]->[0],$pts[$_->[2]]->[0]],$spec{elements}->[0], defined($spec{elements}->[1]) ? $spec{elements}->[1] : '']} ltolol($triio->numberofcorners,$triio->trianglelist); #/ | ||||||
1376 | #read triangle attribute list, so at least those are available for choosing fill color in this case | ||||||
1377 | if (ref($spec{elements}->[0]) =~ /CODE/ && $triio->numberoftriangleattributes > 0 && $triio->numberofregions > 0) { | ||||||
1378 | my @eleattrs = ltolol($triio->numberoftriangleattributes,$triio->triangleattributes); | ||||||
1379 | for (my $i=0;$i<@elements;$i++) { | ||||||
1380 | # topologically-linked triangle not available here | ||||||
1381 | # but we'll fake it at least for the attributes list | ||||||
1382 | # so the color callback can still color according to region id | ||||||
1383 | # or whatever is in the triangle attribute list | ||||||
1384 | $elements[$i]->[1] = &{$spec{elements}->[0]}({attributes=>$eleattrs[$i]}); | ||||||
1385 | } | ||||||
1386 | } | ||||||
1387 | } | ||||||
1388 | } | ||||||
1389 | |||||||
1390 | if ($vorio) { | ||||||
1391 | if (ref($vorio) =~ /HASH/ && defined $vorio->{nodes}) { | ||||||
1392 | # circles only available in this case | ||||||
1393 | if (defined $spec{circles}) { | ||||||
1394 | push @circles, map { | ||||||
1395 | [ | ||||||
1396 | [ # this is point and radius: [x,y,r] | ||||||
1397 | @{$vpts[$_->{index}]->[0]}, | ||||||
1398 | defined $_->{radius} | ||||||
1399 | ? $_->{radius} * $scale | ||||||
1400 | : dist2d($vpts[$_->{index}]->[0],$edges[$_->{edges}->[0]->{index}]->[0]->[0]) | ||||||
1401 | ], | ||||||
1402 | @{$spec{circles}} | ||||||
1403 | ] | ||||||
1404 | } @{$vorio->{nodes}}; | ||||||
1405 | } | ||||||
1406 | if ($spec{vedges}) { | ||||||
1407 | @vedges = map [[$vpts[$_->{nodes}->[0]->{index}]->[0],$vpts[$_->{nodes}->[1]->{index}]->[0]],@{$spec{vedges}}], grep $_->{vector}->[0] eq 0 && $_->{vector}->[1] eq 0, @{$vorio->{edges}}; | ||||||
1408 | } | ||||||
1409 | if (defined $spec{vrays}) { | ||||||
1410 | @vrays = map [[$vpts[$_->{nodes}->[0]->{index}]->[0],[@{$_->{vector}}]],(defined($spec{vrays}) ? @{$spec{vrays}} : @{$spec{vedges}})], grep $_->{vector}->[0] ne 0 || $_->{vector}->[1] ne 0, @{$vorio->{edges}}; | ||||||
1411 | foreach my $ray (@vrays) { | ||||||
1412 | $ray->[0]->[1]->[0] *= $scale; | ||||||
1413 | $ray->[0]->[1]->[1] *= $scale; | ||||||
1414 | $ray->[0]->[1]->[0] += $ray->[0]->[0]->[0]; | ||||||
1415 | $ray->[0]->[1]->[1] += $ray->[0]->[0]->[1]; | ||||||
1416 | } | ||||||
1417 | } | ||||||
1418 | } | ||||||
1419 | else { | ||||||
1420 | if ($spec{vedges}) { | ||||||
1421 | my @ves =ltolol(2,$vorio->edgelist); | ||||||
1422 | my @vnorms=ltolol(2,$vorio->normlist); | ||||||
1423 | for (my $i=0;$i<@ves;$i++) { | ||||||
1424 | if ($ves[$i]->[0] > -1 && $ves[$i]->[1] > -1) { | ||||||
1425 | push @vedges, [[$vpts[$ves[$i]->[0]]->[0],$vpts[$ves[$i]->[1]]->[0]],@{$spec{vedges}}]; | ||||||
1426 | } | ||||||
1427 | elsif (defined $spec{vrays}) { | ||||||
1428 | my $baseidx = ($ves[$i]->[0] != -1)?0:1; | ||||||
1429 | my $basept = $vpts[$ves[$i]->[$baseidx]]->[0]; | ||||||
1430 | my $vec = $vnorms[$i]; | ||||||
1431 | my $h = sqrt($vec->[0]**2 + $vec->[1]**2); | ||||||
1432 | $vec = [$vec->[0]/$h,$vec->[1]/$h]; | ||||||
1433 | push @vrays, [ | ||||||
1434 | [$basept,[$basept->[0]+$vec->[0]*$maxx,$basept->[1]+$vec->[1]*$maxx]], | ||||||
1435 | (defined($spec{vrays}) ? @{$spec{vrays}} : @{$spec{vedges}})]; | ||||||
1436 | } | ||||||
1437 | } | ||||||
1438 | } | ||||||
1439 | if ($spec{circles}) { | ||||||
1440 | for (my $i=0;$i<@vpts;$i++) { | ||||||
1441 | push @circles, [[@{$vpts[$i]->[0]},dist2d($vpts[$i]->[0],$elements[$i]->[0])],@{$spec{circles}}]; | ||||||
1442 | } | ||||||
1443 | } | ||||||
1444 | } | ||||||
1445 | } | ||||||
1446 | |||||||
1447 | my $margin_x_hi = 5; | ||||||
1448 | my $margin_x_lo = 5; | ||||||
1449 | my $margin_y_hi = 5; | ||||||
1450 | my $margin_y_lo = 5; | ||||||
1451 | |||||||
1452 | # extend margins to account for the radius of any circles or points | ||||||
1453 | my @round_things = (@circles, (map {[[$_->[0]->[0], $_->[0]->[1], $_->[2]]]} ( ($spec{nodes} ? @pts : () ), ($spec{vnodes} ? @vpts : () )))); | ||||||
1454 | if (scalar(@round_things) > 0) { | ||||||
1455 | my $cir_maxx = $round_things[0]->[0]->[0] + $round_things[0]->[0]->[2]; | ||||||
1456 | my $cir_maxy = $round_things[0]->[0]->[1] + $round_things[0]->[0]->[2]; | ||||||
1457 | my $cir_minx = $round_things[0]->[0]->[0] - $round_things[0]->[0]->[2]; | ||||||
1458 | my $cir_miny = $round_things[0]->[0]->[1] - $round_things[0]->[0]->[2]; | ||||||
1459 | foreach my $cir (@round_things) { | ||||||
1460 | if ($cir_maxx < $cir->[0]->[0] + $cir->[0]->[2]) {$cir_maxx = $cir->[0]->[0] + $cir->[0]->[2]} | ||||||
1461 | if ($cir_maxy < $cir->[0]->[1] + $cir->[0]->[2]) {$cir_maxy = $cir->[0]->[1] + $cir->[0]->[2]} | ||||||
1462 | if ($cir_minx > $cir->[0]->[0] - $cir->[0]->[2]) {$cir_minx = $cir->[0]->[0] - $cir->[0]->[2]} | ||||||
1463 | if ($cir_miny > $cir->[0]->[1] - $cir->[0]->[2]) {$cir_miny = $cir->[0]->[1] - $cir->[0]->[2]} | ||||||
1464 | } | ||||||
1465 | if ($cir_maxx-$scaled_maxx > $margin_x_hi) {$margin_x_hi = ($cir_maxx - $scaled_maxx) + 5;} | ||||||
1466 | if ($scaled_minx-$cir_minx > $margin_x_lo) {$margin_x_lo = ($scaled_minx - $cir_minx) + 5;} | ||||||
1467 | if ($cir_maxy-$scaled_maxy > $margin_y_hi) {$margin_y_hi = ($cir_maxy - $scaled_maxy) + 5;} | ||||||
1468 | if ($scaled_miny-$cir_miny > $margin_y_lo) {$margin_y_lo = ($scaled_miny - $cir_miny) + 5;} | ||||||
1469 | } | ||||||
1470 | |||||||
1471 | open(SVGO,'>'.$fn); | ||||||
1472 | print SVGO sprintf <<"EOS", $dispsizex, $dispsizey, -$margin_x_lo, -$margin_y_hi, $scaled_maxx + ($margin_x_lo + $margin_x_hi), $scaled_maxy + ($margin_y_lo + $margin_y_hi), $scaled_maxy; | ||||||
1473 | |||||||
1474 | |||||||
1475 | |||||||
1476 | |
||||||
1477 | EOS | ||||||
1478 | |||||||
1479 | if ($spec{elements}) {print SVGO "\n\n";} | ||||||
1480 | foreach my $ele (@elements) { | ||||||
1481 | print SVGO ' |
||||||
1482 | } | ||||||
1483 | if ($spec{edges}) {print SVGO "\n\n";} | ||||||
1484 | foreach my $edge (@edges) { | ||||||
1485 | print SVGO ' |
||||||
1486 | } | ||||||
1487 | if ($spec{segments}) {print SVGO "\n\n";} | ||||||
1488 | foreach my $edge (@segs) { | ||||||
1489 | print SVGO ' |
||||||
1490 | } | ||||||
1491 | if ($spec{vedges} && $vorio) {print SVGO "\n\n";} | ||||||
1492 | foreach my $edge (@vedges) { | ||||||
1493 | print SVGO ' |
||||||
1494 | } | ||||||
1495 | if ($spec{vrays} && $vorio) {print SVGO "\n\n";} | ||||||
1496 | foreach my $edge (@vrays) { | ||||||
1497 | print SVGO ' |
||||||
1498 | } | ||||||
1499 | if ($spec{nodes}) { | ||||||
1500 | print SVGO "\n\n"; | ||||||
1501 | foreach my $pt (@pts) { | ||||||
1502 | print SVGO ' |
||||||
1503 | } | ||||||
1504 | } | ||||||
1505 | if ($spec{vnodes} && $vorio) { | ||||||
1506 | print SVGO "\n\n"; | ||||||
1507 | foreach my $pt (@vpts) { | ||||||
1508 | print SVGO ' |
||||||
1509 | } | ||||||
1510 | } | ||||||
1511 | if ($spec{circles}) {print SVGO "\n\n";} | ||||||
1512 | foreach my $circle (@circles) { | ||||||
1513 | print SVGO ' |
||||||
1514 | } | ||||||
1515 | |||||||
1516 | if ($spec{raw}) { | ||||||
1517 | print SVGO "\n\n"; | ||||||
1518 | print SVGO join("\n",map { s/ (c?x[12]?)="([0-9\.eE\-]+)"/' '.$1.'="'.(($2-$minx)*$scale).'"'/ge; | ||||||
1519 | s/ (c?y[12]?)="([0-9\.eE\-]+)"/' '.$1.'="'.(($2-$miny)*$scale).'"'/ge; | ||||||
1520 | $_; | ||||||
1521 | } @{$spec{raw}}); | ||||||
1522 | } | ||||||
1523 | print SVGO "\n"; | ||||||
1524 | close(SVGO); | ||||||
1525 | } | ||||||
1526 | |||||||
1527 | sub dist2d {sqrt(($_[0]->[0]-$_[1]->[0])**2+($_[0]->[1]-$_[1]->[1])**2)} | ||||||
1528 | |||||||
1529 | sub counterclockwise { | ||||||
1530 | my ($pa, $pb, $pc) = @_; | ||||||
1531 | return _counterclockwise($pa->[0],$pa->[1],$pb->[0],$pb->[1],$pc->[0],$pc->[1]); | ||||||
1532 | } | ||||||
1533 | |||||||
1534 | package mgd_topo; | ||||||
1535 | |||||||
1536 | sub DESTROY { | ||||||
1537 | # circular references in the topology data seem to thwart garbage collection | ||||||
1538 | # so we'll undo some of the cross references to help with that | ||||||
1539 | my $self = shift; | ||||||
1540 | if (exists $self->{elements}) { undef $_->{nodes} for @{$self->{elements}};} | ||||||
1541 | if (exists $self->{edges}) { undef $_->{nodes} for @{$self->{edges}}; } | ||||||
1542 | if (exists $self->{segments}) { undef $_->{nodes} for @{$self->{segments}};} | ||||||
1543 | } | ||||||
1544 | |||||||
1545 | =head1 NAME | ||||||
1546 | |||||||
1547 | Math::Geometry::Delaunay - Quality Mesh Generator and Delaunay Triangulator | ||||||
1548 | |||||||
1549 | =head1 VERSION | ||||||
1550 | |||||||
1551 | Version 0.18 | ||||||
1552 | |||||||
1553 | =cut | ||||||
1554 | |||||||
1555 | =head1 SYNOPSIS | ||||||
1556 | |||||||
1557 | =for html |
||||||
1558 | |||||||
1559 | |
||||||
1560 | |
||||||
1561 | |
||||||
1562 | |
||||||
1563 | |
||||||
1564 | |
||||||
1565 | |
||||||
1566 | |
||||||
1567 | input vertices |
||||||
1568 | |||||||
1569 | |
||||||
1570 | |
||||||
1571 | |
||||||
1572 | |
||||||
1573 | |
||||||
1574 | |
||||||
1575 | |
||||||
1576 | |
||||||
1577 | |
||||||
1578 | |
||||||
1579 | |
||||||
1580 | |
||||||
1581 | |
||||||
1582 | |
||||||
1583 | |
||||||
1584 | |
||||||
1585 | |
||||||
1586 | |||||||
1587 | Delaunay triangulation |
||||||
1588 | |||||||
1589 | |
||||||
1590 | |
||||||
1591 | |
||||||
1592 | |
||||||
1593 | |
||||||
1594 | |
||||||
1595 | |
||||||
1596 | |
||||||
1597 | |
||||||
1598 | |
||||||
1599 | |
||||||
1600 | |
||||||
1601 | |
||||||
1602 | |
||||||
1603 | |
||||||
1604 | |
||||||
1605 | |||||||
1606 | Voronoi diagram |
||||||
1607 | |||||||
1608 | |||||||
1609 | use Math::Geometry::Delaunay qw(TRI_CCDT); | ||||||
1610 | |||||||
1611 | # generate Delaunay triangulation | ||||||
1612 | # and Voronoi diagram for a point set | ||||||
1613 | |||||||
1614 | my $point_set = [ [1,1], [7,1], [7,3], | ||||||
1615 | [3,3], [3,5], [1,5] ]; | ||||||
1616 | |||||||
1617 | my $tri = new Math::Geometry::Delaunay(); | ||||||
1618 | $tri->addPoints($point_set); | ||||||
1619 | $tri->doEdges(1); | ||||||
1620 | $tri->doVoronoi(1); | ||||||
1621 | |||||||
1622 | # called in void context | ||||||
1623 | $tri->triangulate(); | ||||||
1624 | # populates the following lists | ||||||
1625 | |||||||
1626 | $tri->elements(); # triangles | ||||||
1627 | $tri->nodes(); # points | ||||||
1628 | $tri->edges(); # triangle edges | ||||||
1629 | $tri->vnodes(); # Voronoi diagram points | ||||||
1630 | $tri->vedges(); # Voronoi edges and rays | ||||||
1631 | |||||||
1632 | |||||||
1633 | =for html |
||||||
1634 | |||||||
1635 | |
||||||
1636 | |
||||||
1637 | |
||||||
1638 | |
||||||
1639 | |
||||||
1640 | |
||||||
1641 | |
||||||
1642 | |
||||||
1643 | |
||||||
1644 | |
||||||
1645 | |
||||||
1646 | |
||||||
1647 | |
||||||
1648 | |||||||
1649 | input PSLG |
||||||
1650 | |||||||
1651 | |
||||||
1652 | |
||||||
1653 | |
||||||
1654 | |
||||||
1655 | |
||||||
1656 | |
||||||
1657 | |
||||||
1658 | |
||||||
1659 | |
||||||
1660 | |
||||||
1661 | |
||||||
1662 | |
||||||
1663 | |
||||||
1664 | |
||||||
1665 | |
||||||
1666 | |
||||||
1667 | |
||||||
1668 | |
||||||
1669 | |
||||||
1670 | |
||||||
1671 | |
||||||
1672 | |
||||||
1673 | |
||||||
1674 | |
||||||
1675 | |
||||||
1676 | |
||||||
1677 | |
||||||
1678 | |
||||||
1679 | |
||||||
1680 | |
||||||
1681 | |
||||||
1682 | |
||||||
1683 | |
||||||
1684 | |
||||||
1685 | |
||||||
1686 | |
||||||
1687 | |
||||||
1688 | |
||||||
1689 | |
||||||
1690 | |
||||||
1691 | |
||||||
1692 | |
||||||
1693 | |
||||||
1694 | |
||||||
1695 | |
||||||
1696 | |
||||||
1697 | |
||||||
1698 | |
||||||
1699 | |
||||||
1700 | |
||||||
1701 | |
||||||
1702 | |
||||||
1703 | |
||||||
1704 | |
||||||
1705 | |
||||||
1706 | |
||||||
1707 | |
||||||
1708 | |
||||||
1709 | |
||||||
1710 | |
||||||
1711 | |
||||||
1712 | |
||||||
1713 | |
||||||
1714 | |
||||||
1715 | |
||||||
1716 | |
||||||
1717 | |
||||||
1718 | |
||||||
1719 | |
||||||
1720 | |
||||||
1721 | |
||||||
1722 | |
||||||
1723 | |
||||||
1724 | |
||||||
1725 | |
||||||
1726 | |
||||||
1727 | |
||||||
1728 | |
||||||
1729 | |
||||||
1730 | |
||||||
1731 | |
||||||
1732 | |
||||||
1733 | |
||||||
1734 | |
||||||
1735 | |
||||||
1736 | |
||||||
1737 | |
||||||
1738 | |
||||||
1739 | |
||||||
1740 | |
||||||
1741 | |
||||||
1742 | |
||||||
1743 | |
||||||
1744 | |
||||||
1745 | |
||||||
1746 | |
||||||
1747 | |
||||||
1748 | |
||||||
1749 | |
||||||
1750 | |
||||||
1751 | |
||||||
1752 | |
||||||
1753 | |
||||||
1754 | |
||||||
1755 | |
||||||
1756 | |
||||||
1757 | |
||||||
1758 | |
||||||
1759 | |
||||||
1760 | |
||||||
1761 | |
||||||
1762 | |
||||||
1763 | |
||||||
1764 | |
||||||
1765 | |
||||||
1766 | |
||||||
1767 | |
||||||
1768 | |
||||||
1769 | |
||||||
1770 | |
||||||
1771 | |
||||||
1772 | |
||||||
1773 | |
||||||
1774 | |
||||||
1775 | |
||||||
1776 | |
||||||
1777 | |||||||
1778 | output mesh |
||||||
1779 | |||||||
1780 | |
||||||
1781 | |
||||||
1782 | |
||||||
1783 | |
||||||
1784 | |
||||||
1785 | |
||||||
1786 | |
||||||
1787 | |
||||||
1788 | |
||||||
1789 | |
||||||
1790 | |
||||||
1791 | |
||||||
1792 | |
||||||
1793 | |
||||||
1794 | |
||||||
1795 | |
||||||
1796 | |
||||||
1797 | |
||||||
1798 | |||||||
1799 | |
||||||
1800 | |
||||||
1801 | |
||||||
1802 | |
||||||
1803 | |
||||||
1804 | |
||||||
1805 | |
||||||
1806 | |
||||||
1807 | |
||||||
1808 | |
||||||
1809 | |
||||||
1810 | |
||||||
1811 | |
||||||
1812 | |
||||||
1813 | |
||||||
1814 | |
||||||
1815 | |
||||||
1816 | |
||||||
1817 | |
||||||
1818 | |
||||||
1819 | |||||||
1820 | |||||||
1821 | something interesting extracted from topology |
||||||
1822 | |||||||
1823 | |||||||
1824 | # quality mesh of a planar straight line graph | ||||||
1825 | # with cross-referenced topological output | ||||||
1826 | |||||||
1827 | my $tri = new Math::Geometry::Delaunay(); | ||||||
1828 | $tri->addPolygon($point_set); | ||||||
1829 | $tri->minimum_angle(23); | ||||||
1830 | $tri->doEdges(1); | ||||||
1831 | |||||||
1832 | # called in scalar context | ||||||
1833 | my $mesh_topology = $tri->triangulate(TRI_CCDT); | ||||||
1834 | # returns cross-referenced topology | ||||||
1835 | |||||||
1836 | # make two lists of triangles that touch boundary segments | ||||||
1837 | |||||||
1838 | my @tris_with_boundary_segment; | ||||||
1839 | my @tris_with_boundary_point; | ||||||
1840 | |||||||
1841 | foreach my $triangle (@{$mesh_topology->{elements}}) { | ||||||
1842 | my $nodes_on_boundary_count = ( | ||||||
1843 | grep $_->{marker} == 1, | ||||||
1844 | @{$triangle->{nodes}} | ||||||
1845 | ); | ||||||
1846 | if ($nodes_on_boundary_count == 2) { | ||||||
1847 | push @tris_with_boundary_segment, $triangle; | ||||||
1848 | } | ||||||
1849 | elsif ($nodes_on_boundary_count == 1) { | ||||||
1850 | push @tris_with_boundary_point, $triangle; | ||||||
1851 | } | ||||||
1852 | } | ||||||
1853 | |||||||
1854 | |||||||
1855 | =for html |
||||||
1856 | |||||||
1857 | =head1 DESCRIPTION | ||||||
1858 | |||||||
1859 | This is a Perl interface to the Jonathan Shewchuk's Triangle library. | ||||||
1860 | |||||||
1861 | "Triangle generates exact Delaunay triangulations, constrained Delaunay | ||||||
1862 | triangulations, conforming Delaunay triangulations, Voronoi diagrams, and | ||||||
1863 | high-quality triangular meshes. The latter can be generated with no small or | ||||||
1864 | large angles, and are thus suitable for finite element analysis." | ||||||
1865 | -- from L |
||||||
1866 | |||||||
1867 | =head1 EXPORTS | ||||||
1868 | |||||||
1869 | Triangle has several option switches that can be used in different combinations | ||||||
1870 | to choose a class of triangulation and then configure options within that class. | ||||||
1871 | To clarify the composition of option strings, or just to give you a head start, | ||||||
1872 | a few constants are supplied to configure different classes of mesh output. | ||||||
1873 | |||||||
1874 | TRI_CONSTRAINED = 'Y' for "Constrained Delaunay" | ||||||
1875 | TRI_CONFORMING = 'Dq0' for "Conforming Delaunay" | ||||||
1876 | TRI_CCDT = 'q' for "Constrained Conforming Delaunay" | ||||||
1877 | TRI_VORONOI = 'v' to generate the Voronoi diagram | ||||||
1878 | |||||||
1879 | For an illustration of these terms, see: | ||||||
1880 | L |
||||||
1881 | |||||||
1882 | =head1 CONSTRUCTOR | ||||||
1883 | |||||||
1884 | =head2 new | ||||||
1885 | |||||||
1886 | The constructor returns a Math::Geometry::Delaunay object. | ||||||
1887 | |||||||
1888 | my $tri = Math::Geometry::Delaunay->new(); | ||||||
1889 | |||||||
1890 | =head1 MESH GENERATION | ||||||
1891 | |||||||
1892 | =head2 triangulate | ||||||
1893 | |||||||
1894 | Run the triangulation with specified options, and either populate the object's | ||||||
1895 | output lists, or return a hash reference giving access to a cross-referenced | ||||||
1896 | representation of the mesh topology. | ||||||
1897 | |||||||
1898 | Common options can be set prior to calling C |
||||||
1899 | Triangle's options can also be passed to C |
||||||
1900 | of strings. For example: | ||||||
1901 | |||||||
1902 | my $tri = Math::Geometry::Delaunay->new('pzq0eQ'); | ||||||
1903 | |||||||
1904 | my $tri = Math::Geometry::Delaunay->new(TRI_CCDT, 'q15', 'a3.5'); | ||||||
1905 | |||||||
1906 | Triangle's command line switches are documented here: | ||||||
1907 | L |
||||||
1908 | |||||||
1909 | =head3 list output | ||||||
1910 | |||||||
1911 | After triangulate is invoked in void context, the output mesh data can be | ||||||
1912 | retrieved from the following methods, all of which return a reference to an | ||||||
1913 | array. | ||||||
1914 | |||||||
1915 | $tri->triangulate(); # void context - no return value requested | ||||||
1916 | # output lists now available | ||||||
1917 | $points = $tri->nodes(); # array of vertices | ||||||
1918 | $tris = $tri->elements(); # array of triangles | ||||||
1919 | $edges = $tri->edges(); # all the triangle edges | ||||||
1920 | $segs = $tri->segments(); # the PSLG segments | ||||||
1921 | $vpoints = $tri->vnodes(); # points in the voronoi diagram | ||||||
1922 | $vedges = $tri->vedges(); # edges in the voronoi diagram | ||||||
1923 | |||||||
1924 | Data may not be available for all lists, depending on which option switches were | ||||||
1925 | used. By default, nodes and elements are generated, while edges are not. | ||||||
1926 | |||||||
1927 | The members of the lists returned have these formats: | ||||||
1928 | |||||||
1929 | nodes: [x, y, < zero or more attributes >, < boundary marker >] | ||||||
1930 | |||||||
1931 | elements: [[x0, y0], [x1, y1], [x2, y2], | ||||||
1932 | < another three vertices, if "o2" switch used >, | ||||||
1933 | < zero or more attributes > | ||||||
1934 | ] | ||||||
1935 | edges: [[x0, y0], [x1, y1], < boundary marker >] | ||||||
1936 | |||||||
1937 | segments: [[x0, y0], [x1, y1], < boundary marker >] | ||||||
1938 | |||||||
1939 | vnodes: [x, y, < zero or more attributes >] | ||||||
1940 | |||||||
1941 | vedges: [< vertex or vector >, < vertex or vector >, < ray flag >] | ||||||
1942 | |||||||
1943 | Boundary markers are 1 or 0. An edge or segment with only one end on a boundary | ||||||
1944 | has boundary marker 0. | ||||||
1945 | |||||||
1946 | The ray flag is 0 if the edge is not a ray, or 1 or 2, to indicate | ||||||
1947 | which vertex is actually a unit vector indicating the direction of the ray. | ||||||
1948 | |||||||
1949 | Import of the mesh data from the C data structures will be deferred until | ||||||
1950 | actually requested from the list fetching methods above. For speed and | ||||||
1951 | lower memory footprint, access only what you need, and consider suppressing | ||||||
1952 | output you don't need with option switches. | ||||||
1953 | |||||||
1954 | =head3 topological output | ||||||
1955 | |||||||
1956 | When triangulate is invoked in scalar or array context, it returns a hash ref | ||||||
1957 | containing the cross-referenced nodes, elements, edges, and PSLG segments of the | ||||||
1958 | triangulation. In array context, with the "v" switch enabled, the Voronoi | ||||||
1959 | topology is the second item returned. | ||||||
1960 | |||||||
1961 | my $topology = $tri->triangulate(); | ||||||
1962 | |||||||
1963 | $topology now looks like this: | ||||||
1964 | |||||||
1965 | { | ||||||
1966 | nodes => [ | ||||||
1967 | { # a node | ||||||
1968 | point => [x0, x1], | ||||||
1969 | edges => [edgeref, ...], | ||||||
1970 | segments => [edgeref, ...], # a subset of edges | ||||||
1971 | elements => [elementref, ...], | ||||||
1972 | marker => 1 or 0 or undefined, # boundary marker | ||||||
1973 | attributes => [attr0, ...] | ||||||
1974 | }, | ||||||
1975 | ... more nodes like that | ||||||
1976 | |||||||
1977 | ], | ||||||
1978 | elements => [ | ||||||
1979 | { # a triangle | ||||||
1980 | nodes => [noderef0, noderef1, noderef2], | ||||||
1981 | edges => [edgeref0, edgeref1, edgeref2], | ||||||
1982 | neighbors => [neighref0, neighref1, neighref2], | ||||||
1983 | attributes => [attrib0, ...] | ||||||
1984 | }, | ||||||
1985 | ... more triangles like that | ||||||
1986 | ], | ||||||
1987 | edges => [ | ||||||
1988 | { | ||||||
1989 | nodes => [noderef0, noderef1], # only one for a ray | ||||||
1990 | elements => [elemref0, elemref1], # one if on boundary | ||||||
1991 | vector => undefined or [x, y], # ray direction | ||||||
1992 | marker => 1 or 0 or undefined, # boundary marker | ||||||
1993 | index => |
||||||
1994 | }, | ||||||
1995 | ... more edges like that | ||||||
1996 | |||||||
1997 | ], | ||||||
1998 | segments => [ | ||||||
1999 | { | ||||||
2000 | nodes => [noderef0, noderef1], | ||||||
2001 | elements => [elemref0, elemref1], # one if on boundary | ||||||
2002 | marker => 1 or 0 or undefined # boundary marker | ||||||
2003 | }, | ||||||
2004 | ... more segments | ||||||
2005 | ] | ||||||
2006 | } | ||||||
2007 | |||||||
2008 | =head3 cross-referencing Delaunay and Voronoi | ||||||
2009 | |||||||
2010 | Corresponding Delaunay triangles and Voronoi nodes have the same index number | ||||||
2011 | in their respective lists. | ||||||
2012 | |||||||
2013 | In the topological output, any element in a triangulation has a record of its | ||||||
2014 | own index number that can by used to look up the corresponding node in the | ||||||
2015 | Voronoi diagram topology, or vice versa, like so: | ||||||
2016 | |||||||
2017 | ($topo, $voronoi_topo) = $tri->triangulate('v'); | ||||||
2018 | |||||||
2019 | # get a triangle reference where the index is not obvious | ||||||
2020 | |||||||
2021 | $element = $topo->{nodes}->[-1]->{elements}->[-1]; | ||||||
2022 | |||||||
2023 | # this gets a reference to the corresponding node in the Voronoi diagram | ||||||
2024 | |||||||
2025 | $voronoi_node = $voronoi_topo->{nodes}->[$element->{index}]; | ||||||
2026 | |||||||
2027 | |||||||
2028 | Corresponding edges in the Delaunay and Voronoi outputs have the same index | ||||||
2029 | number in their respective edge lists. | ||||||
2030 | |||||||
2031 | In the topological output, any edge in a triangulation has a record of its own | ||||||
2032 | index number that can by used to look up the corresponding edge in the Voronoi | ||||||
2033 | diagram topology, or vice versa, like so: | ||||||
2034 | |||||||
2035 | ($topo, $voronoi_topo) = $tri->triangulate('ev'); | ||||||
2036 | |||||||
2037 | # get an edge reference where it's not obvious what the edge's index is | ||||||
2038 | |||||||
2039 | $delaunay_edge = $topo->{nodes}->[-1]->{edges}->[-1]; | ||||||
2040 | |||||||
2041 | # this gets a reference to the corresponding edge in the Voronoi diagram | ||||||
2042 | |||||||
2043 | $voronoi_edge = $voronoi_topo->{edges}->[$delaunay_edge->{index}]; | ||||||
2044 | |||||||
2045 | =head1 METHODS TO SET SOME Triangle OPTIONS | ||||||
2046 | |||||||
2047 | =head2 area_constraint | ||||||
2048 | |||||||
2049 | Corresponds to the "a" switch. | ||||||
2050 | |||||||
2051 | With one argument, sets the maximum triangle area constraint for the | ||||||
2052 | triangulation. Returns the value supplied. With no argument, returns the | ||||||
2053 | current area constraint. | ||||||
2054 | |||||||
2055 | Passing -1 to C |
||||||
2056 | |||||||
2057 | =head2 minimum_angle | ||||||
2058 | |||||||
2059 | Corresponds to the "q" switch. | ||||||
2060 | |||||||
2061 | With one argument, sets the minimum angle allowed for triangles added in the | ||||||
2062 | triangulation. Returns the value supplied. With no argument, returns the | ||||||
2063 | current minimum angle constraint. | ||||||
2064 | |||||||
2065 | Passing -1 to C |
||||||
2066 | the option string. | ||||||
2067 | |||||||
2068 | =head2 doEdges, doVoronoi, doNeighbors | ||||||
2069 | |||||||
2070 | These methods simply add or remove the corresponding letters from the | ||||||
2071 | option string. Pass in a true or false value to enable or disable. | ||||||
2072 | Invoke with no argument to read the current state. | ||||||
2073 | |||||||
2074 | =head2 quiet, verbose | ||||||
2075 | |||||||
2076 | Triangle prints a basic summary of the meshing operation to STDOUT unless | ||||||
2077 | the "Q" switch is present. This module includes the "Q" switch by default, but | ||||||
2078 | you can override this by passing a false value to C |
||||||
2079 | |||||||
2080 | If you would like to see even more output regarding the triangulation process, | ||||||
2081 | there are are three levels of verbosity configurable with repeated "V" | ||||||
2082 | switches. Passing a number from 1 to 3 to the C |
||||||
2083 | the corresponding level of verbosity. | ||||||
2084 | |||||||
2085 | =head1 METHODS TO ADD VERTICES AND SEGMENTS | ||||||
2086 | |||||||
2087 | =head2 addVertices, addPoints | ||||||
2088 | |||||||
2089 | Takes a reference to an array of vertices, each vertex itself an reference to | ||||||
2090 | an array containing two coordinates and zero or more attributes. Attributes | ||||||
2091 | are floating point numbers. | ||||||
2092 | |||||||
2093 | # vertex format | ||||||
2094 | # [x, y, < zero or more attributes as floating point numbers >] | ||||||
2095 | |||||||
2096 | $tri->addPoints([[$x0, $y0], [$x1, $y1], ... ]); | ||||||
2097 | |||||||
2098 | Use addVertices to add vertices that are not part of a PSLG. | ||||||
2099 | Use addPoints to add points that are not part of a polygon or polyline. | ||||||
2100 | In other words, they do the same thing. | ||||||
2101 | |||||||
2102 | =head2 addSegments | ||||||
2103 | |||||||
2104 | Takes a reference to an array of segments. | ||||||
2105 | |||||||
2106 | # segment format | ||||||
2107 | # [[$x0, $y0], [$x1, $y1]] | ||||||
2108 | |||||||
2109 | $tri->addSegments([ $segment0, $segment1, ... ]); | ||||||
2110 | |||||||
2111 | If your segments are contiguous, it's better to use addPolyline, or addPolygon. | ||||||
2112 | |||||||
2113 | This method is provided because some point and polygon processing algorithms | ||||||
2114 | result in segments that represent polygons, but list the segments in a | ||||||
2115 | non-contiguous order, and have shared vertices repeated in each segment's record. | ||||||
2116 | |||||||
2117 | The segments added with this method will be checked for duplicate vertices, and | ||||||
2118 | references to these will be merged. | ||||||
2119 | |||||||
2120 | Triangle can handle duplicate vertices, but we would rather not feed them in on | ||||||
2121 | purpose. | ||||||
2122 | |||||||
2123 | =head2 addPolyline | ||||||
2124 | |||||||
2125 | Takes a reference to an array of vertices describing a curve. | ||||||
2126 | Creates PSLG segments for each pair of adjacent vertices. Adds the | ||||||
2127 | new segments and vertices to the triangulation input. | ||||||
2128 | |||||||
2129 | $tri->addPolyline([$vertex0, $vertex1, $vertex2, ...]); | ||||||
2130 | |||||||
2131 | =head2 addPolygon | ||||||
2132 | |||||||
2133 | Takes a reference to an array of vertices describing a polygon. | ||||||
2134 | Creates PSLG segments for each pair of adjacent vertices | ||||||
2135 | and creates and additional segment linking the last vertex to | ||||||
2136 | the first,to close the polygon. Adds the new segments and vertices | ||||||
2137 | to the triangulation input. | ||||||
2138 | |||||||
2139 | $tri->addPolygon([$vertex0, $vertex1, $vertex2, ...]); | ||||||
2140 | |||||||
2141 | =head2 addHole | ||||||
2142 | |||||||
2143 | Like addPolygon, but describing a hole or concavity - an area of the output mesh | ||||||
2144 | that should not be triangulated. | ||||||
2145 | |||||||
2146 | There are two ways to specify a hole. Either provide a list of vertices, like | ||||||
2147 | for addPolygon, or provide a single vertex that lies inside of a polygon, to | ||||||
2148 | identify that polygon as a hole. | ||||||
2149 | |||||||
2150 | # first way | ||||||
2151 | $tri->addHole([$vertex0, $vertex1, $vertex2, ...]); | ||||||
2152 | |||||||
2153 | # second way | ||||||
2154 | $tri->addPolygon( [ [0,0], [1,0], [1,1], [0,1] ] ); | ||||||
2155 | $tri->addHole( [0.5,0.5] ); | ||||||
2156 | |||||||
2157 | Hole marker points can also be used, in combination with the "c" option, to | ||||||
2158 | cause or preserve concavities in a boundary when Triangle would otherwise | ||||||
2159 | enclose a PSLG in a convex hull. | ||||||
2160 | |||||||
2161 | =head2 addRegion | ||||||
2162 | |||||||
2163 | Takes a polygon describing a region, and an attribute or area constraint. With | ||||||
2164 | both the "A" and "a" switches in effect, three arguments allow you to specify | ||||||
2165 | both an attribute and an optional area constraint. | ||||||
2166 | |||||||
2167 | The first argument may alternately be a single vertex that lies inside of | ||||||
2168 | another polygon, to identify that polygon as a region. | ||||||
2169 | |||||||
2170 | To be used in conjunction with the "A" and "a" switches. | ||||||
2171 | |||||||
2172 | # with the "A" switch | ||||||
2173 | $tri->addRegion(\@polygon, < attribute > ); | ||||||
2174 | |||||||
2175 | # with the "a" switch | ||||||
2176 | $tri->addRegion(\@polygon, < area constraint > ); | ||||||
2177 | |||||||
2178 | # with both "Aa" | ||||||
2179 | $tri->addRegion(\@polygon, < attribute >, < area constraint > ); | ||||||
2180 | |||||||
2181 | If the "A" switch is used, each triangle generated within the bounds of a region | ||||||
2182 | will have that region's attribute added to the end of the triangle's | ||||||
2183 | attributes list, while each triangle not within a region will have a "0" added | ||||||
2184 | to the end of its attribute list. | ||||||
2185 | |||||||
2186 | If the "a" switch is used without a number following, each triangle generated | ||||||
2187 | within the bounds of a region will be subject to that region's area | ||||||
2188 | constraint. | ||||||
2189 | |||||||
2190 | If the "A" or "a" switches are not in effect, addRegion has the same effect as | ||||||
2191 | addPolygon. | ||||||
2192 | |||||||
2193 | =head1 METHODS TO ACCESS OUTPUT LISTS | ||||||
2194 | |||||||
2195 | The following methods retrieve the output lists after the triangulate method has | ||||||
2196 | been invoked in void context. | ||||||
2197 | |||||||
2198 | Triangle's output data is not imported from C to Perl until one of these methods | ||||||
2199 | is invoked, and then only what's needed to construct the list requested. So | ||||||
2200 | there may be a speed or memory advantage to accessing the output in this way - | ||||||
2201 | only what you need, when you need it. | ||||||
2202 | |||||||
2203 | The methods prefixed with "v" access the Voronoi diagram nodes and edges, if one | ||||||
2204 | was generated. | ||||||
2205 | |||||||
2206 | =head2 nodes | ||||||
2207 | |||||||
2208 | Returns a reference to a list of nodes (vertices or points). | ||||||
2209 | |||||||
2210 | my $pointlist = $tri->nodes(); # retrieve nodes/vertices/points | ||||||
2211 | |||||||
2212 | The nodes in the list have this structure: | ||||||
2213 | |||||||
2214 | [x, y, < zero or more attributes >, < boundary marker >] | ||||||
2215 | |||||||
2216 | =head2 elements | ||||||
2217 | |||||||
2218 | Returns a reference to a list of elements. | ||||||
2219 | |||||||
2220 | $triangles = $tri->elements(); # retrieve triangle list | ||||||
2221 | |||||||
2222 | The elements in the list have this structure: | ||||||
2223 | |||||||
2224 | [[x0, y0], [x1, y1], [x2, y2], | ||||||
2225 | < another three vertices, if "o2" switch used > | ||||||
2226 | < zero or more attributes > | ||||||
2227 | ] | ||||||
2228 | |||||||
2229 | =head2 segments | ||||||
2230 | |||||||
2231 | Returns a reference to a list of segments. | ||||||
2232 | |||||||
2233 | $segs = $tri->segments(); # retrieve the PSLG segments | ||||||
2234 | |||||||
2235 | The segments in the list have this structure: | ||||||
2236 | |||||||
2237 | [[x0, y0], [x1, y1], < boundary marker >] | ||||||
2238 | |||||||
2239 | =head2 edges | ||||||
2240 | |||||||
2241 | Returns a reference to a list of edges. | ||||||
2242 | |||||||
2243 | $edges = $tri->edges(); # retrieve all the triangle edges | ||||||
2244 | |||||||
2245 | The edges in the list have this structure: | ||||||
2246 | |||||||
2247 | [[x0, y0], [x1, y1], < boundary marker >] | ||||||
2248 | |||||||
2249 | Note that the edge list is not produced by default. Request that it be generated | ||||||
2250 | by invoking C |
||||||
2251 | |||||||
2252 | =head2 vnodes | ||||||
2253 | |||||||
2254 | Returns a reference to a list of nodes in the Voronoi diagram. | ||||||
2255 | |||||||
2256 | $vpointlist = $tri->vnodes(); # retrieve Voronoi vertices | ||||||
2257 | |||||||
2258 | The Voronoi diagram nodes in the list have this structure: | ||||||
2259 | |||||||
2260 | [x, y, < zero or more attributes >] | ||||||
2261 | |||||||
2262 | =head2 vedges | ||||||
2263 | |||||||
2264 | Returns a reference to a list of edges in the Voronoi diagram. Some of these | ||||||
2265 | edges are actually rays. | ||||||
2266 | |||||||
2267 | $vedges = $tri->vedges(); # retrieve Voronoi diagram edges and rays | ||||||
2268 | |||||||
2269 | The Voronoi diagram edges in the list have this structure: | ||||||
2270 | |||||||
2271 | [< vertex or vector >, < vertex or vector >, < ray flag >] | ||||||
2272 | |||||||
2273 | If the edge is a true edge, the ray flag will be 0. | ||||||
2274 | If the edge is actually a ray, the ray flag will either be 1 or 2, | ||||||
2275 | to indicate whether the the first, or second vertex should be interpreted as | ||||||
2276 | a direction vector for the ray. | ||||||
2277 | |||||||
2278 | =head1 UTILITY FUNCTIONS | ||||||
2279 | |||||||
2280 | =head2 to_svg | ||||||
2281 | |||||||
2282 | This function is meant as a development and debugging aid, to "dump" the | ||||||
2283 | geometric data structures specific to this package to a graphical | ||||||
2284 | representation. Takes key-value pairs to specify topology hashes, output file, | ||||||
2285 | image dimensions, and styles for the elements in the various output lists. | ||||||
2286 | |||||||
2287 | The topology hash input for the C |
||||||
2288 | returned by C |
||||||
2289 | Omit C |
||||||
2290 | and height, in pixels. For output list styles, keys correspond to the output | ||||||
2291 | list names, and values consist of references to arrays containing style | ||||||
2292 | configurations, as demonstrated below. | ||||||
2293 | |||||||
2294 | Only geometry that has a style configuration will be displayed. The following | ||||||
2295 | example includes everything. To display a subset, just omit any of the style | ||||||
2296 | configuration key-value pairs. | ||||||
2297 | |||||||
2298 | ($topo, $vtopo) = $tri->triangulate('ve'); | ||||||
2299 | |||||||
2300 | to_svg( topo => $topo, | ||||||
2301 | vtopo => $vtopo, | ||||||
2302 | |||||||
2303 | file => "enchilada.svg", # omit for STDOUT | ||||||
2304 | size => [800, 600], # width, height in pixels | ||||||
2305 | |||||||
2306 | # line width or optional | ||||||
2307 | # svg color point radius extra CSS | ||||||
2308 | |||||||
2309 | nodes => ['black' , 0.3], | ||||||
2310 | edges => ['#CCCCCC', 0.7], | ||||||
2311 | segments => ['blue' , 0.9, 'stroke-dasharray:1 1;'], | ||||||
2312 | elements => ['pink'] , # string or callback; see below | ||||||
2313 | |||||||
2314 | # these require Voronoi input (vtopo) | ||||||
2315 | |||||||
2316 | vnodes => ['purple' , 0.3], | ||||||
2317 | vedges => ['#FF0000', 0.7], | ||||||
2318 | vrays => ['purple' , 0.6], | ||||||
2319 | circles => ['orange' , 0.6], | ||||||
2320 | |||||||
2321 | ); | ||||||
2322 | |||||||
2323 | Note that for display purposes C |
||||||
2324 | the Voronoi diagram. To see the complete Voronoi diagram, including segments | ||||||
2325 | representing the infinite rays, you should include style configuration for the | ||||||
2326 | C |
||||||
2327 | |||||||
2328 | Elements (triangles) only need one style config entry, for color. (An optional | ||||||
2329 | second entry would be a string for additional CSS.) In this case, | ||||||
2330 | the first entry can also be a reference to a callback function. A reference to | ||||||
2331 | the triangle being processed for display will be passed to the callback | ||||||
2332 | function. Therefore the callback function can determine a color based on any | ||||||
2333 | features or relationships of that triangle. | ||||||
2334 | |||||||
2335 | Typically you might color each triangle according to the region it's in, by | ||||||
2336 | using Triangle's 'A' switch, and then reading the region attribute from the | ||||||
2337 | last item in the triangle's attribute list. | ||||||
2338 | |||||||
2339 | my $region_colors_callback = sub { | ||||||
2340 | my $tri_ref = shift; | ||||||
2341 | return ('gray','blue','green')[$tri_ref->{attributes}->[-1]]; | ||||||
2342 | }; | ||||||
2343 | |||||||
2344 | But any other data accessible through the triangle reference can be used to | ||||||
2345 | calculate a color. For instance, the triangle's three nodes can carry any | ||||||
2346 | number of attributes, which are interpolated during mesh generation. You | ||||||
2347 | might shade each triangle according to the average of a node attribute. | ||||||
2348 | |||||||
2349 | my $tri_nodes_average_callback = sub { | ||||||
2350 | my $tri_ref = shift; | ||||||
2351 | my $sum = 0; | ||||||
2352 | # calculate average of the eighth attribute in all nodes | ||||||
2353 | foreach my $node (@{$tri_ref->{nodes}}) { | ||||||
2354 | $sum += $node->{attributes}->[7]; | ||||||
2355 | } | ||||||
2356 | return &attrib_val_to_grayscale_hexcode( $sum / 3 ); | ||||||
2357 | }; | ||||||
2358 | |||||||
2359 | =head2 mic_adjust | ||||||
2360 | |||||||
2361 | =for html |
||||||
2362 | |||||||
2363 | |||||||
2364 | |
||||||
2365 | |
||||||
2366 | |
||||||
2367 | |
||||||
2368 | |
||||||
2369 | |
||||||
2370 | |
||||||
2371 | |
||||||
2372 | |
||||||
2373 | |
||||||
2374 | |
||||||
2375 | |
||||||
2376 | |
||||||
2377 | |
||||||
2378 | |
||||||
2379 | |
||||||
2380 | |
||||||
2381 | |
||||||
2382 | |
||||||
2383 | |
||||||
2384 | |
||||||
2385 | |
||||||
2386 | |
||||||
2387 | |
||||||
2388 | |
||||||
2389 | |
||||||
2390 | |
||||||
2391 | |
||||||
2392 | |
||||||
2393 | |
||||||
2394 | |
||||||
2395 | |
||||||
2396 | |
||||||
2397 | |
||||||
2398 | |
||||||
2399 | |
||||||
2400 | |
||||||
2401 | |
||||||
2402 | |
||||||
2403 | |
||||||
2404 | |
||||||
2405 | |
||||||
2406 | |
||||||
2407 | |
||||||
2408 | |
||||||
2409 | |
||||||
2410 | |
||||||
2411 | |
||||||
2412 | |
||||||
2413 | |
||||||
2414 | |
||||||
2415 | |
||||||
2416 | |
||||||
2417 | |
||||||
2418 | |
||||||
2419 | |
||||||
2420 | |
||||||
2421 | |
||||||
2422 | |
||||||
2423 | |
||||||
2424 | |
||||||
2425 | |
||||||
2426 | |
||||||
2427 | |
||||||
2428 | |
||||||
2429 | |
||||||
2430 | |
||||||
2431 | |
||||||
2432 | |
||||||
2433 | |
||||||
2434 | |
||||||
2435 | |
||||||
2436 | |
||||||
2437 | |
||||||
2438 | |
||||||
2439 | |||||||
2440 | Voronoi edges (blue) as a poor medial axis approximation |
||||||
2441 | |||||||
2442 | |||||||
2443 | |
||||||
2444 | |
||||||
2445 | |
||||||
2446 | |
||||||
2447 | |
||||||
2448 | |
||||||
2449 | |
||||||
2450 | |
||||||
2451 | |
||||||
2452 | |
||||||
2453 | |
||||||
2454 | |
||||||
2455 | |
||||||
2456 | |
||||||
2457 | |
||||||
2458 | |
||||||
2459 | |
||||||
2460 | |
||||||
2461 | |
||||||
2462 | |
||||||
2463 | |
||||||
2464 | |
||||||
2465 | |
||||||
2466 | |
||||||
2467 | |
||||||
2468 | |
||||||
2469 | |
||||||
2470 | |
||||||
2471 | |
||||||
2472 | |
||||||
2473 | |
||||||
2474 | |
||||||
2475 | |
||||||
2476 | |
||||||
2477 | |
||||||
2478 | |
||||||
2479 | |
||||||
2480 | |
||||||
2481 | |
||||||
2482 | |
||||||
2483 | |
||||||
2484 | |
||||||
2485 | |
||||||
2486 | |
||||||
2487 | |
||||||
2488 | |
||||||
2489 | |
||||||
2490 | |
||||||
2491 | |
||||||
2492 | |
||||||
2493 | |
||||||
2494 | |
||||||
2495 | |
||||||
2496 | |
||||||
2497 | |
||||||
2498 | |
||||||
2499 | |
||||||
2500 | |
||||||
2501 | |
||||||
2502 | |
||||||
2503 | |
||||||
2504 | |
||||||
2505 | |
||||||
2506 | |
||||||
2507 | |
||||||
2508 | |
||||||
2509 | |
||||||
2510 | |
||||||
2511 | |
||||||
2512 | |
||||||
2513 | |
||||||
2514 | |
||||||
2515 | |
||||||
2516 | |
||||||
2517 | |
||||||
2518 | |||||||
2519 | improved approximation after calling mic_adust() |
||||||
2520 | |||||||
2521 | |||||||
2522 | Warning: not yet thoroughly tested; may move elsewhere | ||||||
2523 | |||||||
2524 | One use of the Voronoi diagram of a tessellated polygon is to derive an | ||||||
2525 | approximation of the polygon's medial axis by pruning infinite rays and perhaps | ||||||
2526 | trimming or refining remaining branches. The approximation improves as | ||||||
2527 | intervals between sample points on the polygon become shorter. But it's not | ||||||
2528 | always desirable to multiply the number of polygon points to achieve short | ||||||
2529 | intervals. | ||||||
2530 | |||||||
2531 | At any point on the true medial axis, there is a maximum inscribed circle, | ||||||
2532 | with it's center on the medial axis, and tangent to the polygon in at least | ||||||
2533 | two places. | ||||||
2534 | |||||||
2535 | The C |
||||||
2536 | center of a circle that is tangent to the polygon at two points. In simple | ||||||
2537 | cases this is a maximum inscribed circle, and the point is on the medial axis. | ||||||
2538 | And when it's not, it still should be a much better approximation than the | ||||||
2539 | original point location. The radius to the tangent on the polygon is stored | ||||||
2540 | with the updated Voronoi node. | ||||||
2541 | |||||||
2542 | After calling C |
||||||
2543 | list of maximum inscribed circles, from which can be derive a straighter, | ||||||
2544 | better medial axis approximation, without having to increase the number of | ||||||
2545 | sample points on the polygon. | ||||||
2546 | |||||||
2547 | ($topo, $voronoi_topo) = $tri->triangulate('e'); | ||||||
2548 | |||||||
2549 | mic_adjust($topo, $voronoi_topo); # modifies $voronoi_topo in place | ||||||
2550 | |||||||
2551 | foreach my $node (@{$voronoi_topo->{nodes}}) { | ||||||
2552 | $mic_center = $node->{point}; | ||||||
2553 | $mic_radius = $node->{radius}; | ||||||
2554 | ... | ||||||
2555 | } | ||||||
2556 | |||||||
2557 | Constructing a true medial axis is much more involved - a subject for a | ||||||
2558 | different module. Until that module appears, running topology through | ||||||
2559 | C |
||||||
2560 | fill the gap. | ||||||
2561 | |||||||
2562 | =head1 API STATUS | ||||||
2563 | |||||||
2564 | Currently Triangle's option strings are exposed to give more complete access to | ||||||
2565 | its features. More of these options, and perhaps certain common combinations of | ||||||
2566 | them, will likely be wrapped in method-call getter-setters. I would prefer to | ||||||
2567 | preserve the ability to use the option strings directly, but it may be better | ||||||
2568 | at some point to hide them completely behind a more descriptive interface. | ||||||
2569 | |||||||
2570 | |||||||
2571 | =head1 AUTHOR | ||||||
2572 | |||||||
2573 | Michael E. Sheldrake, C<< |
||||||
2574 | |||||||
2575 | Triangle's author is Jonathan Richard Shewchuk | ||||||
2576 | |||||||
2577 | |||||||
2578 | =head1 BUGS | ||||||
2579 | |||||||
2580 | Please report any bugs or feature requests to | ||||||
2581 | |||||||
2582 | C |
||||||
2583 | |||||||
2584 | or through the web interface at | ||||||
2585 | |||||||
2586 | L |
||||||
2587 | |||||||
2588 | I will be notified, and then you'll automatically be notified of progress on | ||||||
2589 | your bug as I make changes. | ||||||
2590 | |||||||
2591 | |||||||
2592 | =head1 SUPPORT | ||||||
2593 | |||||||
2594 | You can find documentation for this module with the perldoc command. | ||||||
2595 | |||||||
2596 | perldoc Math::Geometry::Delaunay | ||||||
2597 | |||||||
2598 | |||||||
2599 | You can also look for information at: | ||||||
2600 | |||||||
2601 | =over 4 | ||||||
2602 | |||||||
2603 | =item * RT: CPAN's request tracker | ||||||
2604 | |||||||
2605 | L |
||||||
2606 | |||||||
2607 | =item * Search CPAN | ||||||
2608 | |||||||
2609 | L |
||||||
2610 | |||||||
2611 | =back | ||||||
2612 | |||||||
2613 | |||||||
2614 | =head1 ACKNOWLEDGEMENTS | ||||||
2615 | |||||||
2616 | Thanks go to Far Leaves Tea in Berkeley for providing oolongs and refuge, | ||||||
2617 | and a place for paths to intersect. | ||||||
2618 | |||||||
2619 | |||||||
2620 | =head1 LICENSE AND COPYRIGHT | ||||||
2621 | |||||||
2622 | Copyright 2013 Micheal E. Sheldrake. | ||||||
2623 | |||||||
2624 | This Perl binding to Triangle is free software; | ||||||
2625 | you can redistribute it and/or modify it under the terms of either: | ||||||
2626 | the GNU General Public License as published by the Free Software Foundation; | ||||||
2627 | or the Artistic License. | ||||||
2628 | |||||||
2629 | See http://dev.perl.org/licenses/ for more information. | ||||||
2630 | |||||||
2631 | =head2 Triangle license | ||||||
2632 | |||||||
2633 | B |
||||||
2634 | notice in the C source code. Please refer to the C source, included in with this | ||||||
2635 | Perl module distribution, for the full notice. | ||||||
2636 | |||||||
2637 | This program may be freely redistributed under the condition that the | ||||||
2638 | copyright notices (including this entire header and the copyright | ||||||
2639 | notice printed when the `-h' switch is selected) are not removed, and | ||||||
2640 | no compensation is received. Private, research, and institutional | ||||||
2641 | use is free. You may distribute modified versions of this code UNDER | ||||||
2642 | THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE | ||||||
2643 | SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE | ||||||
2644 | AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR | ||||||
2645 | NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as | ||||||
2646 | part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT | ||||||
2647 | WITH THE AUTHOR. (If you are not directly supplying this code to a | ||||||
2648 | customer, and you are instead telling them how they can obtain it for | ||||||
2649 | free, then you are not required to make any arrangement with me.) | ||||||
2650 | |||||||
2651 | =cut | ||||||
2652 | |||||||
2653 | 1; |