line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
# |
2
|
|
|
|
|
|
|
# Filename : Math/Geometry.pm |
3
|
|
|
|
|
|
|
# Description : General Geometry maths functions |
4
|
|
|
|
|
|
|
# Author : Greg McCarroll (greg@mccarroll.org.uk) |
5
|
|
|
|
|
|
|
# Date Created : 22/10/99 |
6
|
|
|
|
|
|
|
# |
7
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
=head1 NAME |
9
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
Math::Geometry - Geometry related functions |
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
=head1 SYNOPSIS |
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
use Math::Geometry; |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
@P2=rotx(@P1,$angle); |
17
|
|
|
|
|
|
|
@P3=rotx(@P1,$angle); |
18
|
|
|
|
|
|
|
@N =triangle_normal(@P1,@P2,@P3); |
19
|
|
|
|
|
|
|
@ZP=zplane_project(@P1,$d); |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
=head1 NOTES |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
This is about to get a massive overhaul, but first im adding tests, |
25
|
|
|
|
|
|
|
lots of lovely lovely tests. |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
Currently for zplane_project onto a plane with normal of the z axis and z=0, |
28
|
|
|
|
|
|
|
the function returns the orthographic projections as opposed to a perspective |
29
|
|
|
|
|
|
|
projection. I'm currently looking into how to properly handle z=0 and will |
30
|
|
|
|
|
|
|
update it shortly. |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
=head1 DESCRIPTION |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
This package implements classic geometry methods. It should be considered alpha |
35
|
|
|
|
|
|
|
software and any feedback at all is greatly appreciated. The following methods |
36
|
|
|
|
|
|
|
are available: |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
=head2 vector_product. |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
Also known as the cross product, given two vectors in Geometry space, the |
41
|
|
|
|
|
|
|
vector_product of the two vectors, is a vector which is perpendicular |
42
|
|
|
|
|
|
|
to the plane of AB with length equal to the length of A multiplied |
43
|
|
|
|
|
|
|
by the length of B, multiplied by the sin of @, where @ is the angle |
44
|
|
|
|
|
|
|
between the two vectors. |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
=head2 triangle_normal |
47
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
Given a triangle ABC that defines a plane P. This function will return |
49
|
|
|
|
|
|
|
a vector N, which is a normal to the plane P. |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
($Nx,$Ny,$Nz) = |
52
|
|
|
|
|
|
|
triangle_normal(($Ax,$Ay,$Az),($Bx,$By,$Bz),($Cx,$Cy,$Cz)); |
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
=head2 zplane_project |
55
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
Project a point in Geometry space onto a plane with the z-axis as the normal, |
57
|
|
|
|
|
|
|
at a distance d from z=0. |
58
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
($x2,$y2,$z2) = zplane_project ($x1,$y1,$z1,$d); |
60
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
=head2 rotx |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
Rotate about the x axis r radians. |
64
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
($x2,$y2,$z2) = rotx ($x1,$y1,$z1,$r); |
66
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
=head2 roty |
68
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
Rotate about the y axis r radians. |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
($x2,$y2,$z2) = roty ($x1,$y1,$z1,$r); |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
=head2 rotz |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
Rotate about the z axis r radians. |
76
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
($x2,$y2,$z2) = rotz ($x1,$y1,$z1,$r); |
78
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
=head2 deg2rad |
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
Convert degree's to radians. |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
=head2 rad2deg |
84
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
Convert radians to degree's. |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
=head2 pi |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
Returns an approximate value of Pi, the code has been cribed from Pg146, Programming Perl |
90
|
|
|
|
|
|
|
2nd Ed. |
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
=head1 EXAMPLE |
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
use Math::Geometry; |
95
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
=head1 AUTHOR |
97
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
Greg McCarroll |
99
|
|
|
|
|
|
|
- http://www.mccarroll.org.uk/~gem/ |
100
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
=head1 COPYRIGHT |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
Copyright 2006 by Greg McCarroll |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. |
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
See http://www.perl.com/perl/misc/Artistic.html |
108
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
=cut |
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
package Math::Geometry; |
112
|
|
|
|
|
|
|
|
113
|
1
|
|
|
1
|
|
28457
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
40
|
|
114
|
1
|
|
|
1
|
|
5
|
use warnings; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
66
|
|
115
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
require Exporter; |
117
|
|
|
|
|
|
|
our @ISA='Exporter'; |
118
|
|
|
|
|
|
|
our @EXPORT = qw/zplane_project triangle_normal rotx roty rotz rad2deg deg2rad pi/; |
119
|
|
|
|
|
|
|
|
120
|
1
|
|
|
1
|
|
947
|
use Math::Matrix; |
|
1
|
|
|
|
|
7141
|
|
|
1
|
|
|
|
|
1296
|
|
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
our $VERSION='0.04'; |
123
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
sub version { |
125
|
0
|
|
|
0
|
0
|
0
|
return "Math::Geometry $VERSION"; |
126
|
|
|
|
|
|
|
} |
127
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
sub vector_product { |
130
|
0
|
|
|
0
|
0
|
0
|
my($a,$b,$c,$d,$e,$f)=@_; |
131
|
0
|
|
|
|
|
0
|
return($b*$f-$c*$e,$c*$d-$a*$f,$a*$e-$b*$d); |
132
|
|
|
|
|
|
|
} |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
sub triangle_normal { |
135
|
0
|
|
|
0
|
1
|
0
|
my(($ax,$ay,$az),($bx,$by,$bz),($cx,$cy,$cz))=@_; |
136
|
0
|
|
|
|
|
0
|
my(@AB)=($bx-$ax,$by-$ay,$bz-$az); |
137
|
0
|
|
|
|
|
0
|
my(@AC)=($cx-$ax,$cy-$ay,$cz-$az); |
138
|
0
|
|
|
|
|
0
|
return(vector_product(@AB,@AC)); |
139
|
|
|
|
|
|
|
} |
140
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
sub zplane_project { |
142
|
0
|
|
|
0
|
1
|
0
|
my($x,$y,$z,$d)=@_; |
143
|
0
|
|
|
|
|
0
|
my($w); |
144
|
0
|
|
|
|
|
0
|
my($xp,$yp,$zp); |
145
|
0
|
0
|
|
|
|
0
|
if ($d == 0) { |
146
|
0
|
|
|
|
|
0
|
my($trans)=new Math::Matrix ([ 1, 0, 0, 0], |
147
|
|
|
|
|
|
|
[ 0, 1, 0, 0], |
148
|
|
|
|
|
|
|
[ 0, 0, 0, 0], |
149
|
|
|
|
|
|
|
[ 0, 0, 0, 1]); |
150
|
0
|
|
|
|
|
0
|
my($orig) =new Math::Matrix ([ $x], |
151
|
|
|
|
|
|
|
[ $y], |
152
|
|
|
|
|
|
|
[ $z], |
153
|
|
|
|
|
|
|
[ 1]); |
154
|
0
|
|
|
|
|
0
|
my($prod) =$trans->multiply($orig); |
155
|
0
|
|
|
|
|
0
|
$x=$prod->[0][0]; |
156
|
0
|
|
|
|
|
0
|
$y=$prod->[1][0]; |
157
|
0
|
|
|
|
|
0
|
$z=$prod->[2][0]; |
158
|
0
|
|
|
|
|
0
|
$w=$prod->[3][0]; |
159
|
|
|
|
|
|
|
} else { |
160
|
0
|
|
|
|
|
0
|
my($trans)=new Math::Matrix ([ 1, 0, 0, 0], |
161
|
|
|
|
|
|
|
[ 0, 1, 0, 0], |
162
|
|
|
|
|
|
|
[ 0, 0, 1, 0], |
163
|
|
|
|
|
|
|
[ 0, 0, 1/$d, 0]); |
164
|
0
|
|
|
|
|
0
|
my($orig) =new Math::Matrix ([ $x], |
165
|
|
|
|
|
|
|
[ $y], |
166
|
|
|
|
|
|
|
[ $z], |
167
|
|
|
|
|
|
|
[ 1]); |
168
|
0
|
|
|
|
|
0
|
my($prod) =$trans->multiply($orig); |
169
|
0
|
|
|
|
|
0
|
$x=$prod->[0][0]; |
170
|
0
|
|
|
|
|
0
|
$y=$prod->[1][0]; |
171
|
0
|
|
|
|
|
0
|
$z=$prod->[2][0]; |
172
|
0
|
|
|
|
|
0
|
$w=$prod->[3][0]; |
173
|
0
|
|
|
|
|
0
|
$x=$x/$w; |
174
|
0
|
|
|
|
|
0
|
$y=$y/$w; |
175
|
0
|
|
|
|
|
0
|
$z=$z/$w; |
176
|
|
|
|
|
|
|
} |
177
|
0
|
|
|
|
|
0
|
return ($x,$y,$z); |
178
|
|
|
|
|
|
|
} |
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
sub rotx { |
182
|
3
|
|
|
3
|
1
|
6
|
my($x,$y,$z,$rot)=@_; |
183
|
3
|
|
|
|
|
8
|
my($cosr)=cos $rot; |
184
|
3
|
|
|
|
|
9
|
my($sinr)=sin $rot; |
185
|
3
|
|
|
|
|
25
|
my($trans)=new Math::Matrix ([ 1, 0, 0, 0], |
186
|
|
|
|
|
|
|
[ 0, $cosr,-1*$sinr, 0], |
187
|
|
|
|
|
|
|
[ 0, $sinr, $cosr, 0], |
188
|
|
|
|
|
|
|
[ 0, 0, 0, 1]); |
189
|
|
|
|
|
|
|
|
190
|
3
|
|
|
|
|
96
|
my($orig) =new Math::Matrix ([ $x], |
191
|
|
|
|
|
|
|
[ $y], |
192
|
|
|
|
|
|
|
[ $z], |
193
|
|
|
|
|
|
|
[ 1]); |
194
|
|
|
|
|
|
|
|
195
|
3
|
|
|
|
|
85
|
my($prod) =$trans->multiply($orig); |
196
|
3
|
|
|
|
|
314
|
$x=$prod->[0][0]; |
197
|
3
|
|
|
|
|
7
|
$y=$prod->[1][0]; |
198
|
3
|
|
|
|
|
6
|
$z=$prod->[2][0]; |
199
|
3
|
|
|
|
|
21
|
return ($x,$y,$z); |
200
|
|
|
|
|
|
|
} |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
sub roty { |
203
|
3
|
|
|
3
|
1
|
8
|
my($x,$y,$z,$rot)=@_; |
204
|
3
|
|
|
|
|
7
|
my($cosr)=cos $rot; |
205
|
3
|
|
|
|
|
9
|
my($sinr)=sin $rot; |
206
|
3
|
|
|
|
|
22
|
my($trans)=new Math::Matrix ([ $cosr, 0, $sinr, 0], |
207
|
|
|
|
|
|
|
[ 0, 1, 0, 0], |
208
|
|
|
|
|
|
|
[-1*$sinr, 0, $cosr, 0], |
209
|
|
|
|
|
|
|
[ 0, 0, 0, 1]); |
210
|
|
|
|
|
|
|
|
211
|
3
|
|
|
|
|
168
|
my($orig) =new Math::Matrix ([ $x], |
212
|
|
|
|
|
|
|
[ $y], |
213
|
|
|
|
|
|
|
[ $z], |
214
|
|
|
|
|
|
|
[ 1]); |
215
|
|
|
|
|
|
|
|
216
|
3
|
|
|
|
|
85
|
my($prod) =$trans->multiply($orig); |
217
|
3
|
|
|
|
|
335
|
$x=$prod->[0][0]; |
218
|
3
|
|
|
|
|
5
|
$y=$prod->[1][0]; |
219
|
3
|
|
|
|
|
7
|
$z=$prod->[2][0]; |
220
|
3
|
|
|
|
|
20
|
return ($x,$y,$z); |
221
|
|
|
|
|
|
|
} |
222
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
sub rotz { |
224
|
3
|
|
|
3
|
1
|
7
|
my($x,$y,$z,$rot)=@_; |
225
|
3
|
|
|
|
|
31
|
my($cosr)=cos $rot; |
226
|
3
|
|
|
|
|
28
|
my($sinr)=sin $rot; |
227
|
3
|
|
|
|
|
43
|
my($trans)=new Math::Matrix ([ $cosr,-1*$sinr, 0, 0], |
228
|
|
|
|
|
|
|
[ $sinr, $cosr, 0, 0], |
229
|
|
|
|
|
|
|
[ 0, 0, 1, 0], |
230
|
|
|
|
|
|
|
[ 0, 0, 0, 1]); |
231
|
|
|
|
|
|
|
|
232
|
3
|
|
|
|
|
123
|
my($orig) =new Math::Matrix ([ $x], |
233
|
|
|
|
|
|
|
[ $y], |
234
|
|
|
|
|
|
|
[ $z], |
235
|
|
|
|
|
|
|
[ 1]); |
236
|
|
|
|
|
|
|
|
237
|
3
|
|
|
|
|
95
|
my($prod) =$trans->multiply($orig); |
238
|
3
|
|
|
|
|
422
|
$x=$prod->[0][0]; |
239
|
3
|
|
|
|
|
6
|
$y=$prod->[1][0]; |
240
|
3
|
|
|
|
|
6
|
$z=$prod->[2][0]; |
241
|
3
|
|
|
|
|
20
|
return ($x,$y,$z); |
242
|
|
|
|
|
|
|
} |
243
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
sub deg2rad ($) { |
246
|
2
|
|
|
2
|
1
|
5
|
my($deg)=@_; |
247
|
2
|
|
|
|
|
33
|
return ($deg*pi())/180; |
248
|
|
|
|
|
|
|
} |
249
|
|
|
|
|
|
|
|
250
|
|
|
|
|
|
|
sub rad2deg ($) { |
251
|
2
|
|
|
2
|
1
|
5
|
my($rad)=@_; |
252
|
2
|
|
|
|
|
6
|
return ($rad*180)/pi(); |
253
|
|
|
|
|
|
|
} |
254
|
|
|
|
|
|
|
{ |
255
|
|
|
|
|
|
|
my($PI); |
256
|
|
|
|
|
|
|
sub pi() { |
257
|
17
|
|
100
|
17
|
1
|
3160
|
$PI ||= atan2(1,1)*4; |
258
|
17
|
|
|
|
|
76
|
return $PI; |
259
|
|
|
|
|
|
|
} |
260
|
|
|
|
|
|
|
} |
261
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
1; |
263
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
|
272
|
|
|
|
|
|
|
|