| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
/* |
|
2
|
|
|
|
|
|
|
Fast Fourier/Cosine/Sine Transform |
|
3
|
|
|
|
|
|
|
dimension :one |
|
4
|
|
|
|
|
|
|
data length :power of 2 |
|
5
|
|
|
|
|
|
|
decimation :frequency |
|
6
|
|
|
|
|
|
|
radix :4, 2 |
|
7
|
|
|
|
|
|
|
data :inplace |
|
8
|
|
|
|
|
|
|
table :use |
|
9
|
|
|
|
|
|
|
functions |
|
10
|
|
|
|
|
|
|
cdft: Complex Discrete Fourier Transform |
|
11
|
|
|
|
|
|
|
rdft: Real Discrete Fourier Transform |
|
12
|
|
|
|
|
|
|
ddct: Discrete Cosine Transform |
|
13
|
|
|
|
|
|
|
ddst: Discrete Sine Transform |
|
14
|
|
|
|
|
|
|
dfct: Cosine Transform of RDFT (Real Symmetric DFT) |
|
15
|
|
|
|
|
|
|
dfst: Sine Transform of RDFT (Real Anti-symmetric DFT) |
|
16
|
|
|
|
|
|
|
function prototypes |
|
17
|
|
|
|
|
|
|
void _cdft(int, int, double *, int *, double *); |
|
18
|
|
|
|
|
|
|
void _rdft(int, int, double *, int *, double *); |
|
19
|
|
|
|
|
|
|
void _ddct(int, int, double *, int *, double *); |
|
20
|
|
|
|
|
|
|
void _ddst(int, int, double *, int *, double *); |
|
21
|
|
|
|
|
|
|
void _dfct(int, double *, double *, int *, double *); |
|
22
|
|
|
|
|
|
|
void _dfst(int, double *, double *, int *, double *); |
|
23
|
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
-------- Complex DFT (Discrete Fourier Transform) -------- |
|
26
|
|
|
|
|
|
|
[definition] |
|
27
|
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
X[k] = sum_j=0^n-1 x[j]*exp(2*pi*i*j*k/n), 0<=k
|
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
X[k] = sum_j=0^n-1 x[j]*exp(-2*pi*i*j*k/n), 0<=k
|
|
31
|
|
|
|
|
|
|
(notes: sum_j=0^n-1 is a summation from j=0 to n-1) |
|
32
|
|
|
|
|
|
|
[usage] |
|
33
|
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
ip[0] = 0; // first time only |
|
35
|
|
|
|
|
|
|
_cdft(2*n, 1, a, ip, w); |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
ip[0] = 0; // first time only |
|
38
|
|
|
|
|
|
|
_cdft(2*n, -1, a, ip, w); |
|
39
|
|
|
|
|
|
|
[parameters] |
|
40
|
|
|
|
|
|
|
2*n :data length (int) |
|
41
|
|
|
|
|
|
|
n >= 1, n = power of 2 |
|
42
|
|
|
|
|
|
|
a[0...2*n-1] :input/output data (double *) |
|
43
|
|
|
|
|
|
|
input data |
|
44
|
|
|
|
|
|
|
a[2*j] = Re(x[j]), |
|
45
|
|
|
|
|
|
|
a[2*j+1] = Im(x[j]), 0<=j
|
|
46
|
|
|
|
|
|
|
output data |
|
47
|
|
|
|
|
|
|
a[2*k] = Re(X[k]), |
|
48
|
|
|
|
|
|
|
a[2*k+1] = Im(X[k]), 0<=k
|
|
49
|
|
|
|
|
|
|
ip[0...*] :work area for bit reversal (int *) |
|
50
|
|
|
|
|
|
|
length of ip >= 2+sqrt(n) |
|
51
|
|
|
|
|
|
|
strictly, |
|
52
|
|
|
|
|
|
|
length of ip >= |
|
53
|
|
|
|
|
|
|
2+(1<<(int)(log(n+0.5)/log(2))/2). |
|
54
|
|
|
|
|
|
|
ip[0],ip[1] are pointers of the cos/sin table. |
|
55
|
|
|
|
|
|
|
w[0...n/2-1] :cos/sin table (double *) |
|
56
|
|
|
|
|
|
|
w[],ip[] are initialized if ip[0] == 0. |
|
57
|
|
|
|
|
|
|
[remark] |
|
58
|
|
|
|
|
|
|
Inverse of |
|
59
|
|
|
|
|
|
|
_cdft(2*n, -1, a, ip, w); |
|
60
|
|
|
|
|
|
|
is |
|
61
|
|
|
|
|
|
|
_cdft(2*n, 1, a, ip, w); |
|
62
|
|
|
|
|
|
|
for (j = 0; j <= 2 * n - 1; j++) { |
|
63
|
|
|
|
|
|
|
a[j] *= 1.0 / n; |
|
64
|
|
|
|
|
|
|
} |
|
65
|
|
|
|
|
|
|
. |
|
66
|
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
-------- Real DFT / Inverse of Real DFT -------- |
|
69
|
|
|
|
|
|
|
[definition] |
|
70
|
|
|
|
|
|
|
RDFT |
|
71
|
|
|
|
|
|
|
R[k] = sum_j=0^n-1 a[j]*cos(2*pi*j*k/n), 0<=k<=n/2 |
|
72
|
|
|
|
|
|
|
I[k] = sum_j=0^n-1 a[j]*sin(2*pi*j*k/n), 0
|
|
73
|
|
|
|
|
|
|
IRDFT (excluding scale) |
|
74
|
|
|
|
|
|
|
a[k] = (R[0] + R[n/2]*cos(pi*k))/2 + |
|
75
|
|
|
|
|
|
|
sum_j=1^n/2-1 R[j]*cos(2*pi*j*k/n) + |
|
76
|
|
|
|
|
|
|
sum_j=1^n/2-1 I[j]*sin(2*pi*j*k/n), 0<=k
|
|
77
|
|
|
|
|
|
|
[usage] |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
ip[0] = 0; // first time only |
|
80
|
|
|
|
|
|
|
_rdft(n, 1, a, ip, w); |
|
81
|
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
ip[0] = 0; // first time only |
|
83
|
|
|
|
|
|
|
_rdft(n, -1, a, ip, w); |
|
84
|
|
|
|
|
|
|
[parameters] |
|
85
|
|
|
|
|
|
|
n :data length (int) |
|
86
|
|
|
|
|
|
|
n >= 2, n = power of 2 |
|
87
|
|
|
|
|
|
|
a[0...n-1] :input/output data (double *) |
|
88
|
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
output data |
|
90
|
|
|
|
|
|
|
a[2*k] = R[k], 0<=k
|
|
91
|
|
|
|
|
|
|
a[2*k+1] = I[k], 0
|
|
92
|
|
|
|
|
|
|
a[1] = R[n/2] |
|
93
|
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
input data |
|
95
|
|
|
|
|
|
|
a[2*j] = R[j], 0<=j
|
|
96
|
|
|
|
|
|
|
a[2*j+1] = I[j], 0
|
|
97
|
|
|
|
|
|
|
a[1] = R[n/2] |
|
98
|
|
|
|
|
|
|
ip[0...*] :work area for bit reversal (int *) |
|
99
|
|
|
|
|
|
|
length of ip >= 2+sqrt(n/2) |
|
100
|
|
|
|
|
|
|
strictly, |
|
101
|
|
|
|
|
|
|
length of ip >= |
|
102
|
|
|
|
|
|
|
2+(1<<(int)(log(n/2+0.5)/log(2))/2). |
|
103
|
|
|
|
|
|
|
ip[0],ip[1] are pointers of the cos/sin table. |
|
104
|
|
|
|
|
|
|
w[0...n/2-1] :cos/sin table (double *) |
|
105
|
|
|
|
|
|
|
w[],ip[] are initialized if ip[0] == 0. |
|
106
|
|
|
|
|
|
|
[remark] |
|
107
|
|
|
|
|
|
|
Inverse of |
|
108
|
|
|
|
|
|
|
_rdft(n, 1, a, ip, w); |
|
109
|
|
|
|
|
|
|
is |
|
110
|
|
|
|
|
|
|
_rdft(n, -1, a, ip, w); |
|
111
|
|
|
|
|
|
|
for (j = 0; j <= n - 1; j++) { |
|
112
|
|
|
|
|
|
|
a[j] *= 2.0 / n; |
|
113
|
|
|
|
|
|
|
} |
|
114
|
|
|
|
|
|
|
. |
|
115
|
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
-------- DCT (Discrete Cosine Transform) / Inverse of DCT -------- |
|
118
|
|
|
|
|
|
|
[definition] |
|
119
|
|
|
|
|
|
|
IDCT (excluding scale) |
|
120
|
|
|
|
|
|
|
C[k] = sum_j=0^n-1 a[j]*cos(pi*j*(k+1/2)/n), 0<=k
|
|
121
|
|
|
|
|
|
|
DCT |
|
122
|
|
|
|
|
|
|
C[k] = sum_j=0^n-1 a[j]*cos(pi*(j+1/2)*k/n), 0<=k
|
|
123
|
|
|
|
|
|
|
[usage] |
|
124
|
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
ip[0] = 0; // first time only |
|
126
|
|
|
|
|
|
|
_ddct(n, 1, a, ip, w); |
|
127
|
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
ip[0] = 0; // first time only |
|
129
|
|
|
|
|
|
|
_ddct(n, -1, a, ip, w); |
|
130
|
|
|
|
|
|
|
[parameters] |
|
131
|
|
|
|
|
|
|
n :data length (int) |
|
132
|
|
|
|
|
|
|
n >= 2, n = power of 2 |
|
133
|
|
|
|
|
|
|
a[0...n-1] :input/output data (double *) |
|
134
|
|
|
|
|
|
|
output data |
|
135
|
|
|
|
|
|
|
a[k] = C[k], 0<=k
|
|
136
|
|
|
|
|
|
|
ip[0...*] :work area for bit reversal (int *) |
|
137
|
|
|
|
|
|
|
length of ip >= 2+sqrt(n/2) |
|
138
|
|
|
|
|
|
|
strictly, |
|
139
|
|
|
|
|
|
|
length of ip >= |
|
140
|
|
|
|
|
|
|
2+(1<<(int)(log(n/2+0.5)/log(2))/2). |
|
141
|
|
|
|
|
|
|
ip[0],ip[1] are pointers of the cos/sin table. |
|
142
|
|
|
|
|
|
|
w[0...n*5/4-1] :cos/sin table (double *) |
|
143
|
|
|
|
|
|
|
w[],ip[] are initialized if ip[0] == 0. |
|
144
|
|
|
|
|
|
|
[remark] |
|
145
|
|
|
|
|
|
|
Inverse of |
|
146
|
|
|
|
|
|
|
_ddct(n, -1, a, ip, w); |
|
147
|
|
|
|
|
|
|
is |
|
148
|
|
|
|
|
|
|
a[0] *= 0.5; |
|
149
|
|
|
|
|
|
|
_ddct(n, 1, a, ip, w); |
|
150
|
|
|
|
|
|
|
for (j = 0; j <= n - 1; j++) { |
|
151
|
|
|
|
|
|
|
a[j] *= 2.0 / n; |
|
152
|
|
|
|
|
|
|
} |
|
153
|
|
|
|
|
|
|
. |
|
154
|
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
-------- DST (Discrete Sine Transform) / Inverse of DST -------- |
|
157
|
|
|
|
|
|
|
[definition] |
|
158
|
|
|
|
|
|
|
IDST (excluding scale) |
|
159
|
|
|
|
|
|
|
S[k] = sum_j=1^n A[j]*sin(pi*j*(k+1/2)/n), 0<=k
|
|
160
|
|
|
|
|
|
|
DST |
|
161
|
|
|
|
|
|
|
S[k] = sum_j=0^n-1 a[j]*sin(pi*(j+1/2)*k/n), 0
|
|
162
|
|
|
|
|
|
|
[usage] |
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
ip[0] = 0; // first time only |
|
165
|
|
|
|
|
|
|
_ddst(n, 1, a, ip, w); |
|
166
|
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
ip[0] = 0; // first time only |
|
168
|
|
|
|
|
|
|
_ddst(n, -1, a, ip, w); |
|
169
|
|
|
|
|
|
|
[parameters] |
|
170
|
|
|
|
|
|
|
n :data length (int) |
|
171
|
|
|
|
|
|
|
n >= 2, n = power of 2 |
|
172
|
|
|
|
|
|
|
a[0...n-1] :input/output data (double *) |
|
173
|
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
input data |
|
175
|
|
|
|
|
|
|
a[j] = A[j], 0
|
|
176
|
|
|
|
|
|
|
a[0] = A[n] |
|
177
|
|
|
|
|
|
|
output data |
|
178
|
|
|
|
|
|
|
a[k] = S[k], 0<=k
|
|
179
|
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
output data |
|
181
|
|
|
|
|
|
|
a[k] = S[k], 0
|
|
182
|
|
|
|
|
|
|
a[0] = S[n] |
|
183
|
|
|
|
|
|
|
ip[0...*] :work area for bit reversal (int *) |
|
184
|
|
|
|
|
|
|
length of ip >= 2+sqrt(n/2) |
|
185
|
|
|
|
|
|
|
strictly, |
|
186
|
|
|
|
|
|
|
length of ip >= |
|
187
|
|
|
|
|
|
|
2+(1<<(int)(log(n/2+0.5)/log(2))/2). |
|
188
|
|
|
|
|
|
|
ip[0],ip[1] are pointers of the cos/sin table. |
|
189
|
|
|
|
|
|
|
w[0...n*5/4-1] :cos/sin table (double *) |
|
190
|
|
|
|
|
|
|
w[],ip[] are initialized if ip[0] == 0. |
|
191
|
|
|
|
|
|
|
[remark] |
|
192
|
|
|
|
|
|
|
Inverse of |
|
193
|
|
|
|
|
|
|
_ddst(n, -1, a, ip, w); |
|
194
|
|
|
|
|
|
|
is |
|
195
|
|
|
|
|
|
|
a[0] *= 0.5; |
|
196
|
|
|
|
|
|
|
_ddst(n, 1, a, ip, w); |
|
197
|
|
|
|
|
|
|
for (j = 0; j <= n - 1; j++) { |
|
198
|
|
|
|
|
|
|
a[j] *= 2.0 / n; |
|
199
|
|
|
|
|
|
|
} |
|
200
|
|
|
|
|
|
|
. |
|
201
|
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
-------- Cosine Transform of RDFT (Real Symmetric DFT) -------- |
|
204
|
|
|
|
|
|
|
[definition] |
|
205
|
|
|
|
|
|
|
C[k] = sum_j=0^n a[j]*cos(pi*j*k/n), 0<=k<=n |
|
206
|
|
|
|
|
|
|
[usage] |
|
207
|
|
|
|
|
|
|
ip[0] = 0; // first time only |
|
208
|
|
|
|
|
|
|
_dfct(n, a, t, ip, w); |
|
209
|
|
|
|
|
|
|
[parameters] |
|
210
|
|
|
|
|
|
|
n :data length - 1 (int) |
|
211
|
|
|
|
|
|
|
n >= 2, n = power of 2 |
|
212
|
|
|
|
|
|
|
a[0...n] :input/output data (double *) |
|
213
|
|
|
|
|
|
|
output data |
|
214
|
|
|
|
|
|
|
a[k] = C[k], 0<=k<=n |
|
215
|
|
|
|
|
|
|
t[0...n/2] :work area (double *) |
|
216
|
|
|
|
|
|
|
ip[0...*] :work area for bit reversal (int *) |
|
217
|
|
|
|
|
|
|
length of ip >= 2+sqrt(n/4) |
|
218
|
|
|
|
|
|
|
strictly, |
|
219
|
|
|
|
|
|
|
length of ip >= |
|
220
|
|
|
|
|
|
|
2+(1<<(int)(log(n/4+0.5)/log(2))/2). |
|
221
|
|
|
|
|
|
|
ip[0],ip[1] are pointers of the cos/sin table. |
|
222
|
|
|
|
|
|
|
w[0...n*5/8-1] :cos/sin table (double *) |
|
223
|
|
|
|
|
|
|
w[],ip[] are initialized if ip[0] == 0. |
|
224
|
|
|
|
|
|
|
[remark] |
|
225
|
|
|
|
|
|
|
Inverse of |
|
226
|
|
|
|
|
|
|
a[0] *= 0.5; |
|
227
|
|
|
|
|
|
|
a[n] *= 0.5; |
|
228
|
|
|
|
|
|
|
_dfct(n, a, t, ip, w); |
|
229
|
|
|
|
|
|
|
is |
|
230
|
|
|
|
|
|
|
a[0] *= 0.5; |
|
231
|
|
|
|
|
|
|
a[n] *= 0.5; |
|
232
|
|
|
|
|
|
|
_dfct(n, a, t, ip, w); |
|
233
|
|
|
|
|
|
|
for (j = 0; j <= n; j++) { |
|
234
|
|
|
|
|
|
|
a[j] *= 2.0 / n; |
|
235
|
|
|
|
|
|
|
} |
|
236
|
|
|
|
|
|
|
. |
|
237
|
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
-------- Sine Transform of RDFT (Real Anti-symmetric DFT) -------- |
|
240
|
|
|
|
|
|
|
[definition] |
|
241
|
|
|
|
|
|
|
S[k] = sum_j=1^n-1 a[j]*sin(pi*j*k/n), 0
|
|
242
|
|
|
|
|
|
|
[usage] |
|
243
|
|
|
|
|
|
|
ip[0] = 0; // first time only |
|
244
|
|
|
|
|
|
|
_dfst(n, a, t, ip, w); |
|
245
|
|
|
|
|
|
|
[parameters] |
|
246
|
|
|
|
|
|
|
n :data length + 1 (int) |
|
247
|
|
|
|
|
|
|
n >= 2, n = power of 2 |
|
248
|
|
|
|
|
|
|
a[0...n-1] :input/output data (double *) |
|
249
|
|
|
|
|
|
|
output data |
|
250
|
|
|
|
|
|
|
a[k] = S[k], 0
|
|
251
|
|
|
|
|
|
|
(a[0] is used for work area) |
|
252
|
|
|
|
|
|
|
t[0...n/2-1] :work area (double *) |
|
253
|
|
|
|
|
|
|
ip[0...*] :work area for bit reversal (int *) |
|
254
|
|
|
|
|
|
|
length of ip >= 2+sqrt(n/4) |
|
255
|
|
|
|
|
|
|
strictly, |
|
256
|
|
|
|
|
|
|
length of ip >= |
|
257
|
|
|
|
|
|
|
2+(1<<(int)(log(n/4+0.5)/log(2))/2). |
|
258
|
|
|
|
|
|
|
ip[0],ip[1] are pointers of the cos/sin table. |
|
259
|
|
|
|
|
|
|
w[0...n*5/8-1] :cos/sin table (double *) |
|
260
|
|
|
|
|
|
|
w[],ip[] are initialized if ip[0] == 0. |
|
261
|
|
|
|
|
|
|
[remark] |
|
262
|
|
|
|
|
|
|
Inverse of |
|
263
|
|
|
|
|
|
|
_dfst(n, a, t, ip, w); |
|
264
|
|
|
|
|
|
|
is |
|
265
|
|
|
|
|
|
|
_dfst(n, a, t, ip, w); |
|
266
|
|
|
|
|
|
|
for (j = 1; j <= n - 1; j++) { |
|
267
|
|
|
|
|
|
|
a[j] *= 2.0 / n; |
|
268
|
|
|
|
|
|
|
} |
|
269
|
|
|
|
|
|
|
. |
|
270
|
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
|
|
272
|
|
|
|
|
|
|
Appendix : |
|
273
|
|
|
|
|
|
|
The cos/sin table is recalculated when the larger table required. |
|
274
|
|
|
|
|
|
|
w[] and ip[] are compatible with all routines. |
|
275
|
|
|
|
|
|
|
*/ |
|
276
|
|
|
|
|
|
|
|
|
277
|
|
|
|
|
|
|
|
|
278
|
8
|
|
|
|
|
|
void _cdft(int n, int isgn, double *a, int *ip, double *w) |
|
279
|
|
|
|
|
|
|
{ |
|
280
|
|
|
|
|
|
|
void makewt(int nw, int *ip, double *w); |
|
281
|
|
|
|
|
|
|
void bitrv2(int n, int *ip, double *a); |
|
282
|
|
|
|
|
|
|
void bitrv2conj(int n, int *ip, double *a); |
|
283
|
|
|
|
|
|
|
void cftfsub(int n, double *a, double *w); |
|
284
|
|
|
|
|
|
|
void cftbsub(int n, double *a, double *w); |
|
285
|
|
|
|
|
|
|
|
|
286
|
8
|
100
|
|
|
|
|
if (n > (ip[0] << 2)) { |
|
287
|
3
|
|
|
|
|
|
makewt(n >> 2, ip, w); |
|
288
|
|
|
|
|
|
|
} |
|
289
|
8
|
50
|
|
|
|
|
if (n > 4) { |
|
290
|
8
|
100
|
|
|
|
|
if (isgn >= 0) { |
|
291
|
4
|
|
|
|
|
|
bitrv2(n, ip + 2, a); |
|
292
|
4
|
|
|
|
|
|
cftfsub(n, a, w); |
|
293
|
|
|
|
|
|
|
} else { |
|
294
|
4
|
|
|
|
|
|
bitrv2conj(n, ip + 2, a); |
|
295
|
8
|
|
|
|
|
|
cftbsub(n, a, w); |
|
296
|
|
|
|
|
|
|
} |
|
297
|
0
|
0
|
|
|
|
|
} else if (n == 4) { |
|
298
|
0
|
|
|
|
|
|
cftfsub(n, a, w); |
|
299
|
|
|
|
|
|
|
} |
|
300
|
8
|
|
|
|
|
|
} |
|
301
|
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
|
|
303
|
263
|
|
|
|
|
|
void _rdft(int n, int isgn, double *a, int *ip, double *w) |
|
304
|
|
|
|
|
|
|
{ |
|
305
|
|
|
|
|
|
|
void makewt(int nw, int *ip, double *w); |
|
306
|
|
|
|
|
|
|
void makect(int nc, int *ip, double *c); |
|
307
|
|
|
|
|
|
|
void bitrv2(int n, int *ip, double *a); |
|
308
|
|
|
|
|
|
|
void cftfsub(int n, double *a, double *w); |
|
309
|
|
|
|
|
|
|
void cftbsub(int n, double *a, double *w); |
|
310
|
|
|
|
|
|
|
void rftfsub(int n, double *a, int nc, double *c); |
|
311
|
|
|
|
|
|
|
void rftbsub(int n, double *a, int nc, double *c); |
|
312
|
|
|
|
|
|
|
int nw, nc; |
|
313
|
|
|
|
|
|
|
double xi; |
|
314
|
|
|
|
|
|
|
|
|
315
|
263
|
|
|
|
|
|
nw = ip[0]; |
|
316
|
263
|
100
|
|
|
|
|
if (n > (nw << 2)) { |
|
317
|
17
|
|
|
|
|
|
nw = n >> 2; |
|
318
|
17
|
|
|
|
|
|
makewt(nw, ip, w); |
|
319
|
|
|
|
|
|
|
} |
|
320
|
263
|
|
|
|
|
|
nc = ip[1]; |
|
321
|
263
|
100
|
|
|
|
|
if (n > (nc << 2)) { |
|
322
|
17
|
|
|
|
|
|
nc = n >> 2; |
|
323
|
17
|
|
|
|
|
|
makect(nc, ip, w + nw); |
|
324
|
|
|
|
|
|
|
} |
|
325
|
263
|
100
|
|
|
|
|
if (isgn >= 0) { |
|
326
|
253
|
50
|
|
|
|
|
if (n > 4) { |
|
327
|
253
|
|
|
|
|
|
bitrv2(n, ip + 2, a); |
|
328
|
253
|
|
|
|
|
|
cftfsub(n, a, w); |
|
329
|
253
|
|
|
|
|
|
rftfsub(n, a, nc, w + nw); |
|
330
|
0
|
0
|
|
|
|
|
} else if (n == 4) { |
|
331
|
0
|
|
|
|
|
|
cftfsub(n, a, w); |
|
332
|
|
|
|
|
|
|
} |
|
333
|
253
|
|
|
|
|
|
xi = a[0] - a[1]; |
|
334
|
253
|
|
|
|
|
|
a[0] += a[1]; |
|
335
|
253
|
|
|
|
|
|
a[1] = xi; |
|
336
|
|
|
|
|
|
|
} else { |
|
337
|
10
|
|
|
|
|
|
a[1] = 0.5 * (a[0] - a[1]); |
|
338
|
10
|
|
|
|
|
|
a[0] -= a[1]; |
|
339
|
10
|
50
|
|
|
|
|
if (n > 4) { |
|
340
|
10
|
|
|
|
|
|
rftbsub(n, a, nc, w + nw); |
|
341
|
10
|
|
|
|
|
|
bitrv2(n, ip + 2, a); |
|
342
|
10
|
|
|
|
|
|
cftbsub(n, a, w); |
|
343
|
0
|
0
|
|
|
|
|
} else if (n == 4) { |
|
344
|
0
|
|
|
|
|
|
cftfsub(n, a, w); |
|
345
|
|
|
|
|
|
|
} |
|
346
|
|
|
|
|
|
|
} |
|
347
|
263
|
|
|
|
|
|
} |
|
348
|
|
|
|
|
|
|
|
|
349
|
|
|
|
|
|
|
|
|
350
|
4
|
|
|
|
|
|
void _ddct(int n, int isgn, double *a, int *ip, double *w) |
|
351
|
|
|
|
|
|
|
{ |
|
352
|
|
|
|
|
|
|
void makewt(int nw, int *ip, double *w); |
|
353
|
|
|
|
|
|
|
void makect(int nc, int *ip, double *c); |
|
354
|
|
|
|
|
|
|
void bitrv2(int n, int *ip, double *a); |
|
355
|
|
|
|
|
|
|
void cftfsub(int n, double *a, double *w); |
|
356
|
|
|
|
|
|
|
void cftbsub(int n, double *a, double *w); |
|
357
|
|
|
|
|
|
|
void rftfsub(int n, double *a, int nc, double *c); |
|
358
|
|
|
|
|
|
|
void rftbsub(int n, double *a, int nc, double *c); |
|
359
|
|
|
|
|
|
|
void dctsub(int n, double *a, int nc, double *c); |
|
360
|
|
|
|
|
|
|
int j, nw, nc; |
|
361
|
|
|
|
|
|
|
double xr; |
|
362
|
|
|
|
|
|
|
|
|
363
|
4
|
|
|
|
|
|
nw = ip[0]; |
|
364
|
4
|
100
|
|
|
|
|
if (n > (nw << 2)) { |
|
365
|
2
|
|
|
|
|
|
nw = n >> 2; |
|
366
|
2
|
|
|
|
|
|
makewt(nw, ip, w); |
|
367
|
|
|
|
|
|
|
} |
|
368
|
4
|
|
|
|
|
|
nc = ip[1]; |
|
369
|
4
|
100
|
|
|
|
|
if (n > nc) { |
|
370
|
2
|
|
|
|
|
|
nc = n; |
|
371
|
2
|
|
|
|
|
|
makect(nc, ip, w + nw); |
|
372
|
|
|
|
|
|
|
} |
|
373
|
4
|
100
|
|
|
|
|
if (isgn < 0) { |
|
374
|
2
|
|
|
|
|
|
xr = a[n - 1]; |
|
375
|
16392
|
100
|
|
|
|
|
for (j = n - 2; j >= 2; j -= 2) { |
|
376
|
16390
|
|
|
|
|
|
a[j + 1] = a[j] - a[j - 1]; |
|
377
|
16390
|
|
|
|
|
|
a[j] += a[j - 1]; |
|
378
|
|
|
|
|
|
|
} |
|
379
|
2
|
|
|
|
|
|
a[1] = a[0] - xr; |
|
380
|
2
|
|
|
|
|
|
a[0] += xr; |
|
381
|
2
|
50
|
|
|
|
|
if (n > 4) { |
|
382
|
2
|
|
|
|
|
|
rftbsub(n, a, nc, w + nw); |
|
383
|
2
|
|
|
|
|
|
bitrv2(n, ip + 2, a); |
|
384
|
2
|
|
|
|
|
|
cftbsub(n, a, w); |
|
385
|
0
|
0
|
|
|
|
|
} else if (n == 4) { |
|
386
|
0
|
|
|
|
|
|
cftfsub(n, a, w); |
|
387
|
|
|
|
|
|
|
} |
|
388
|
|
|
|
|
|
|
} |
|
389
|
4
|
|
|
|
|
|
dctsub(n, a, nc, w + nw); |
|
390
|
4
|
100
|
|
|
|
|
if (isgn >= 0) { |
|
391
|
2
|
50
|
|
|
|
|
if (n > 4) { |
|
392
|
2
|
|
|
|
|
|
bitrv2(n, ip + 2, a); |
|
393
|
2
|
|
|
|
|
|
cftfsub(n, a, w); |
|
394
|
2
|
|
|
|
|
|
rftfsub(n, a, nc, w + nw); |
|
395
|
0
|
0
|
|
|
|
|
} else if (n == 4) { |
|
396
|
0
|
|
|
|
|
|
cftfsub(n, a, w); |
|
397
|
|
|
|
|
|
|
} |
|
398
|
2
|
|
|
|
|
|
xr = a[0] - a[1]; |
|
399
|
2
|
|
|
|
|
|
a[0] += a[1]; |
|
400
|
16392
|
100
|
|
|
|
|
for (j = 2; j < n; j += 2) { |
|
401
|
16390
|
|
|
|
|
|
a[j - 1] = a[j] - a[j + 1]; |
|
402
|
16390
|
|
|
|
|
|
a[j] += a[j + 1]; |
|
403
|
|
|
|
|
|
|
} |
|
404
|
2
|
|
|
|
|
|
a[n - 1] = xr; |
|
405
|
|
|
|
|
|
|
} |
|
406
|
4
|
|
|
|
|
|
} |
|
407
|
|
|
|
|
|
|
|
|
408
|
|
|
|
|
|
|
|
|
409
|
4
|
|
|
|
|
|
void _ddst(int n, int isgn, double *a, int *ip, double *w) |
|
410
|
|
|
|
|
|
|
{ |
|
411
|
|
|
|
|
|
|
void makewt(int nw, int *ip, double *w); |
|
412
|
|
|
|
|
|
|
void makect(int nc, int *ip, double *c); |
|
413
|
|
|
|
|
|
|
void bitrv2(int n, int *ip, double *a); |
|
414
|
|
|
|
|
|
|
void cftfsub(int n, double *a, double *w); |
|
415
|
|
|
|
|
|
|
void cftbsub(int n, double *a, double *w); |
|
416
|
|
|
|
|
|
|
void rftfsub(int n, double *a, int nc, double *c); |
|
417
|
|
|
|
|
|
|
void rftbsub(int n, double *a, int nc, double *c); |
|
418
|
|
|
|
|
|
|
void dstsub(int n, double *a, int nc, double *c); |
|
419
|
|
|
|
|
|
|
int j, nw, nc; |
|
420
|
|
|
|
|
|
|
double xr; |
|
421
|
|
|
|
|
|
|
|
|
422
|
4
|
|
|
|
|
|
nw = ip[0]; |
|
423
|
4
|
100
|
|
|
|
|
if (n > (nw << 2)) { |
|
424
|
2
|
|
|
|
|
|
nw = n >> 2; |
|
425
|
2
|
|
|
|
|
|
makewt(nw, ip, w); |
|
426
|
|
|
|
|
|
|
} |
|
427
|
4
|
|
|
|
|
|
nc = ip[1]; |
|
428
|
4
|
100
|
|
|
|
|
if (n > nc) { |
|
429
|
2
|
|
|
|
|
|
nc = n; |
|
430
|
2
|
|
|
|
|
|
makect(nc, ip, w + nw); |
|
431
|
|
|
|
|
|
|
} |
|
432
|
4
|
100
|
|
|
|
|
if (isgn < 0) { |
|
433
|
2
|
|
|
|
|
|
xr = a[n - 1]; |
|
434
|
16392
|
100
|
|
|
|
|
for (j = n - 2; j >= 2; j -= 2) { |
|
435
|
16390
|
|
|
|
|
|
a[j + 1] = -a[j] - a[j - 1]; |
|
436
|
16390
|
|
|
|
|
|
a[j] -= a[j - 1]; |
|
437
|
|
|
|
|
|
|
} |
|
438
|
2
|
|
|
|
|
|
a[1] = a[0] + xr; |
|
439
|
2
|
|
|
|
|
|
a[0] -= xr; |
|
440
|
2
|
50
|
|
|
|
|
if (n > 4) { |
|
441
|
2
|
|
|
|
|
|
rftbsub(n, a, nc, w + nw); |
|
442
|
2
|
|
|
|
|
|
bitrv2(n, ip + 2, a); |
|
443
|
2
|
|
|
|
|
|
cftbsub(n, a, w); |
|
444
|
0
|
0
|
|
|
|
|
} else if (n == 4) { |
|
445
|
0
|
|
|
|
|
|
cftfsub(n, a, w); |
|
446
|
|
|
|
|
|
|
} |
|
447
|
|
|
|
|
|
|
} |
|
448
|
4
|
|
|
|
|
|
dstsub(n, a, nc, w + nw); |
|
449
|
4
|
100
|
|
|
|
|
if (isgn >= 0) { |
|
450
|
2
|
50
|
|
|
|
|
if (n > 4) { |
|
451
|
2
|
|
|
|
|
|
bitrv2(n, ip + 2, a); |
|
452
|
2
|
|
|
|
|
|
cftfsub(n, a, w); |
|
453
|
2
|
|
|
|
|
|
rftfsub(n, a, nc, w + nw); |
|
454
|
0
|
0
|
|
|
|
|
} else if (n == 4) { |
|
455
|
0
|
|
|
|
|
|
cftfsub(n, a, w); |
|
456
|
|
|
|
|
|
|
} |
|
457
|
2
|
|
|
|
|
|
xr = a[0] - a[1]; |
|
458
|
2
|
|
|
|
|
|
a[0] += a[1]; |
|
459
|
16392
|
100
|
|
|
|
|
for (j = 2; j < n; j += 2) { |
|
460
|
16390
|
|
|
|
|
|
a[j - 1] = -a[j] - a[j + 1]; |
|
461
|
16390
|
|
|
|
|
|
a[j] -= a[j + 1]; |
|
462
|
|
|
|
|
|
|
} |
|
463
|
2
|
|
|
|
|
|
a[n - 1] = -xr; |
|
464
|
|
|
|
|
|
|
} |
|
465
|
4
|
|
|
|
|
|
} |
|
466
|
|
|
|
|
|
|
|
|
467
|
|
|
|
|
|
|
|
|
468
|
4
|
|
|
|
|
|
void _dfct(int n, double *a, double *t, int *ip, double *w) |
|
469
|
|
|
|
|
|
|
{ |
|
470
|
|
|
|
|
|
|
void makewt(int nw, int *ip, double *w); |
|
471
|
|
|
|
|
|
|
void makect(int nc, int *ip, double *c); |
|
472
|
|
|
|
|
|
|
void bitrv2(int n, int *ip, double *a); |
|
473
|
|
|
|
|
|
|
void cftfsub(int n, double *a, double *w); |
|
474
|
|
|
|
|
|
|
void rftfsub(int n, double *a, int nc, double *c); |
|
475
|
|
|
|
|
|
|
void dctsub(int n, double *a, int nc, double *c); |
|
476
|
|
|
|
|
|
|
int j, k, l, m, mh, nw, nc; |
|
477
|
|
|
|
|
|
|
double xr, xi, yr, yi; |
|
478
|
|
|
|
|
|
|
|
|
479
|
4
|
|
|
|
|
|
nw = ip[0]; |
|
480
|
4
|
100
|
|
|
|
|
if (n > (nw << 3)) { |
|
481
|
2
|
|
|
|
|
|
nw = n >> 3; |
|
482
|
2
|
|
|
|
|
|
makewt(nw, ip, w); |
|
483
|
|
|
|
|
|
|
} |
|
484
|
4
|
|
|
|
|
|
nc = ip[1]; |
|
485
|
4
|
100
|
|
|
|
|
if (n > (nc << 1)) { |
|
486
|
2
|
|
|
|
|
|
nc = n >> 1; |
|
487
|
2
|
|
|
|
|
|
makect(nc, ip, w + nw); |
|
488
|
|
|
|
|
|
|
} |
|
489
|
4
|
|
|
|
|
|
m = n >> 1; |
|
490
|
4
|
|
|
|
|
|
yi = a[m]; |
|
491
|
4
|
|
|
|
|
|
xi = a[0] + a[n]; |
|
492
|
4
|
|
|
|
|
|
a[0] -= a[n]; |
|
493
|
4
|
|
|
|
|
|
t[0] = xi - yi; |
|
494
|
4
|
|
|
|
|
|
t[m] = xi + yi; |
|
495
|
4
|
50
|
|
|
|
|
if (n > 2) { |
|
496
|
4
|
|
|
|
|
|
mh = m >> 1; |
|
497
|
16392
|
100
|
|
|
|
|
for (j = 1; j < mh; j++) { |
|
498
|
16388
|
|
|
|
|
|
k = m - j; |
|
499
|
16388
|
|
|
|
|
|
xr = a[j] - a[n - j]; |
|
500
|
16388
|
|
|
|
|
|
xi = a[j] + a[n - j]; |
|
501
|
16388
|
|
|
|
|
|
yr = a[k] - a[n - k]; |
|
502
|
16388
|
|
|
|
|
|
yi = a[k] + a[n - k]; |
|
503
|
16388
|
|
|
|
|
|
a[j] = xr; |
|
504
|
16388
|
|
|
|
|
|
a[k] = yr; |
|
505
|
16388
|
|
|
|
|
|
t[j] = xi - yi; |
|
506
|
16388
|
|
|
|
|
|
t[k] = xi + yi; |
|
507
|
|
|
|
|
|
|
} |
|
508
|
4
|
|
|
|
|
|
t[mh] = a[mh] + a[n - mh]; |
|
509
|
4
|
|
|
|
|
|
a[mh] -= a[n - mh]; |
|
510
|
4
|
|
|
|
|
|
dctsub(m, a, nc, w + nw); |
|
511
|
4
|
50
|
|
|
|
|
if (m > 4) { |
|
512
|
4
|
|
|
|
|
|
bitrv2(m, ip + 2, a); |
|
513
|
4
|
|
|
|
|
|
cftfsub(m, a, w); |
|
514
|
4
|
|
|
|
|
|
rftfsub(m, a, nc, w + nw); |
|
515
|
0
|
0
|
|
|
|
|
} else if (m == 4) { |
|
516
|
0
|
|
|
|
|
|
cftfsub(m, a, w); |
|
517
|
|
|
|
|
|
|
} |
|
518
|
4
|
|
|
|
|
|
a[n - 1] = a[0] - a[1]; |
|
519
|
4
|
|
|
|
|
|
a[1] = a[0] + a[1]; |
|
520
|
16392
|
100
|
|
|
|
|
for (j = m - 2; j >= 2; j -= 2) { |
|
521
|
16388
|
|
|
|
|
|
a[2 * j + 1] = a[j] + a[j + 1]; |
|
522
|
16388
|
|
|
|
|
|
a[2 * j - 1] = a[j] - a[j + 1]; |
|
523
|
|
|
|
|
|
|
} |
|
524
|
4
|
|
|
|
|
|
l = 2; |
|
525
|
4
|
|
|
|
|
|
m = mh; |
|
526
|
34
|
100
|
|
|
|
|
while (m >= 2) { |
|
527
|
30
|
|
|
|
|
|
dctsub(m, t, nc, w + nw); |
|
528
|
30
|
100
|
|
|
|
|
if (m > 4) { |
|
529
|
22
|
|
|
|
|
|
bitrv2(m, ip + 2, t); |
|
530
|
22
|
|
|
|
|
|
cftfsub(m, t, w); |
|
531
|
22
|
|
|
|
|
|
rftfsub(m, t, nc, w + nw); |
|
532
|
8
|
100
|
|
|
|
|
} else if (m == 4) { |
|
533
|
4
|
|
|
|
|
|
cftfsub(m, t, w); |
|
534
|
|
|
|
|
|
|
} |
|
535
|
30
|
|
|
|
|
|
a[n - l] = t[0] - t[1]; |
|
536
|
30
|
|
|
|
|
|
a[l] = t[0] + t[1]; |
|
537
|
30
|
|
|
|
|
|
k = 0; |
|
538
|
16388
|
100
|
|
|
|
|
for (j = 2; j < m; j += 2) { |
|
539
|
16358
|
|
|
|
|
|
k += l << 2; |
|
540
|
16358
|
|
|
|
|
|
a[k - l] = t[j] - t[j + 1]; |
|
541
|
16358
|
|
|
|
|
|
a[k + l] = t[j] + t[j + 1]; |
|
542
|
|
|
|
|
|
|
} |
|
543
|
30
|
|
|
|
|
|
l <<= 1; |
|
544
|
30
|
|
|
|
|
|
mh = m >> 1; |
|
545
|
16418
|
100
|
|
|
|
|
for (j = 0; j < mh; j++) { |
|
546
|
16388
|
|
|
|
|
|
k = m - j; |
|
547
|
16388
|
|
|
|
|
|
t[j] = t[m + k] - t[m + j]; |
|
548
|
16388
|
|
|
|
|
|
t[k] = t[m + k] + t[m + j]; |
|
549
|
|
|
|
|
|
|
} |
|
550
|
30
|
|
|
|
|
|
t[mh] = t[m + mh]; |
|
551
|
30
|
|
|
|
|
|
m = mh; |
|
552
|
|
|
|
|
|
|
} |
|
553
|
4
|
|
|
|
|
|
a[l] = t[0]; |
|
554
|
4
|
|
|
|
|
|
a[n] = t[2] - t[1]; |
|
555
|
4
|
|
|
|
|
|
a[0] = t[2] + t[1]; |
|
556
|
|
|
|
|
|
|
} else { |
|
557
|
0
|
|
|
|
|
|
a[1] = a[0]; |
|
558
|
0
|
|
|
|
|
|
a[2] = t[0]; |
|
559
|
0
|
|
|
|
|
|
a[0] = t[1]; |
|
560
|
|
|
|
|
|
|
} |
|
561
|
4
|
|
|
|
|
|
} |
|
562
|
|
|
|
|
|
|
|
|
563
|
|
|
|
|
|
|
|
|
564
|
4
|
|
|
|
|
|
void _dfst(int n, double *a, double *t, int *ip, double *w) |
|
565
|
|
|
|
|
|
|
{ |
|
566
|
|
|
|
|
|
|
void makewt(int nw, int *ip, double *w); |
|
567
|
|
|
|
|
|
|
void makect(int nc, int *ip, double *c); |
|
568
|
|
|
|
|
|
|
void bitrv2(int n, int *ip, double *a); |
|
569
|
|
|
|
|
|
|
void cftfsub(int n, double *a, double *w); |
|
570
|
|
|
|
|
|
|
void rftfsub(int n, double *a, int nc, double *c); |
|
571
|
|
|
|
|
|
|
void dstsub(int n, double *a, int nc, double *c); |
|
572
|
|
|
|
|
|
|
int j, k, l, m, mh, nw, nc; |
|
573
|
|
|
|
|
|
|
double xr, xi, yr, yi; |
|
574
|
|
|
|
|
|
|
|
|
575
|
4
|
|
|
|
|
|
nw = ip[0]; |
|
576
|
4
|
100
|
|
|
|
|
if (n > (nw << 3)) { |
|
577
|
2
|
|
|
|
|
|
nw = n >> 3; |
|
578
|
2
|
|
|
|
|
|
makewt(nw, ip, w); |
|
579
|
|
|
|
|
|
|
} |
|
580
|
4
|
|
|
|
|
|
nc = ip[1]; |
|
581
|
4
|
100
|
|
|
|
|
if (n > (nc << 1)) { |
|
582
|
2
|
|
|
|
|
|
nc = n >> 1; |
|
583
|
2
|
|
|
|
|
|
makect(nc, ip, w + nw); |
|
584
|
|
|
|
|
|
|
} |
|
585
|
4
|
50
|
|
|
|
|
if (n > 2) { |
|
586
|
4
|
|
|
|
|
|
m = n >> 1; |
|
587
|
4
|
|
|
|
|
|
mh = m >> 1; |
|
588
|
16392
|
100
|
|
|
|
|
for (j = 1; j < mh; j++) { |
|
589
|
16388
|
|
|
|
|
|
k = m - j; |
|
590
|
16388
|
|
|
|
|
|
xr = a[j] + a[n - j]; |
|
591
|
16388
|
|
|
|
|
|
xi = a[j] - a[n - j]; |
|
592
|
16388
|
|
|
|
|
|
yr = a[k] + a[n - k]; |
|
593
|
16388
|
|
|
|
|
|
yi = a[k] - a[n - k]; |
|
594
|
16388
|
|
|
|
|
|
a[j] = xr; |
|
595
|
16388
|
|
|
|
|
|
a[k] = yr; |
|
596
|
16388
|
|
|
|
|
|
t[j] = xi + yi; |
|
597
|
16388
|
|
|
|
|
|
t[k] = xi - yi; |
|
598
|
|
|
|
|
|
|
} |
|
599
|
4
|
|
|
|
|
|
t[0] = a[mh] - a[n - mh]; |
|
600
|
4
|
|
|
|
|
|
a[mh] += a[n - mh]; |
|
601
|
4
|
|
|
|
|
|
a[0] = a[m]; |
|
602
|
4
|
|
|
|
|
|
dstsub(m, a, nc, w + nw); |
|
603
|
4
|
50
|
|
|
|
|
if (m > 4) { |
|
604
|
4
|
|
|
|
|
|
bitrv2(m, ip + 2, a); |
|
605
|
4
|
|
|
|
|
|
cftfsub(m, a, w); |
|
606
|
4
|
|
|
|
|
|
rftfsub(m, a, nc, w + nw); |
|
607
|
0
|
0
|
|
|
|
|
} else if (m == 4) { |
|
608
|
0
|
|
|
|
|
|
cftfsub(m, a, w); |
|
609
|
|
|
|
|
|
|
} |
|
610
|
4
|
|
|
|
|
|
a[n - 1] = a[1] - a[0]; |
|
611
|
4
|
|
|
|
|
|
a[1] = a[0] + a[1]; |
|
612
|
16392
|
100
|
|
|
|
|
for (j = m - 2; j >= 2; j -= 2) { |
|
613
|
16388
|
|
|
|
|
|
a[2 * j + 1] = a[j] - a[j + 1]; |
|
614
|
16388
|
|
|
|
|
|
a[2 * j - 1] = -a[j] - a[j + 1]; |
|
615
|
|
|
|
|
|
|
} |
|
616
|
4
|
|
|
|
|
|
l = 2; |
|
617
|
4
|
|
|
|
|
|
m = mh; |
|
618
|
34
|
100
|
|
|
|
|
while (m >= 2) { |
|
619
|
30
|
|
|
|
|
|
dstsub(m, t, nc, w + nw); |
|
620
|
30
|
100
|
|
|
|
|
if (m > 4) { |
|
621
|
22
|
|
|
|
|
|
bitrv2(m, ip + 2, t); |
|
622
|
22
|
|
|
|
|
|
cftfsub(m, t, w); |
|
623
|
22
|
|
|
|
|
|
rftfsub(m, t, nc, w + nw); |
|
624
|
8
|
100
|
|
|
|
|
} else if (m == 4) { |
|
625
|
4
|
|
|
|
|
|
cftfsub(m, t, w); |
|
626
|
|
|
|
|
|
|
} |
|
627
|
30
|
|
|
|
|
|
a[n - l] = t[1] - t[0]; |
|
628
|
30
|
|
|
|
|
|
a[l] = t[0] + t[1]; |
|
629
|
30
|
|
|
|
|
|
k = 0; |
|
630
|
16388
|
100
|
|
|
|
|
for (j = 2; j < m; j += 2) { |
|
631
|
16358
|
|
|
|
|
|
k += l << 2; |
|
632
|
16358
|
|
|
|
|
|
a[k - l] = -t[j] - t[j + 1]; |
|
633
|
16358
|
|
|
|
|
|
a[k + l] = t[j] - t[j + 1]; |
|
634
|
|
|
|
|
|
|
} |
|
635
|
30
|
|
|
|
|
|
l <<= 1; |
|
636
|
30
|
|
|
|
|
|
mh = m >> 1; |
|
637
|
16388
|
100
|
|
|
|
|
for (j = 1; j < mh; j++) { |
|
638
|
16358
|
|
|
|
|
|
k = m - j; |
|
639
|
16358
|
|
|
|
|
|
t[j] = t[m + k] + t[m + j]; |
|
640
|
16358
|
|
|
|
|
|
t[k] = t[m + k] - t[m + j]; |
|
641
|
|
|
|
|
|
|
} |
|
642
|
30
|
|
|
|
|
|
t[0] = t[m + mh]; |
|
643
|
30
|
|
|
|
|
|
m = mh; |
|
644
|
|
|
|
|
|
|
} |
|
645
|
4
|
|
|
|
|
|
a[l] = t[0]; |
|
646
|
|
|
|
|
|
|
} |
|
647
|
4
|
|
|
|
|
|
a[0] = 0; |
|
648
|
4
|
|
|
|
|
|
} |
|
649
|
|
|
|
|
|
|
|
|
650
|
|
|
|
|
|
|
|
|
651
|
|
|
|
|
|
|
/* -------- initializing routines -------- */ |
|
652
|
|
|
|
|
|
|
|
|
653
|
|
|
|
|
|
|
|
|
654
|
|
|
|
|
|
|
#include |
|
655
|
|
|
|
|
|
|
|
|
656
|
28
|
|
|
|
|
|
void makewt(int nw, int *ip, double *w) |
|
657
|
|
|
|
|
|
|
{ |
|
658
|
|
|
|
|
|
|
void bitrv2(int n, int *ip, double *a); |
|
659
|
|
|
|
|
|
|
int j, nwh; |
|
660
|
|
|
|
|
|
|
double delta, x, y; |
|
661
|
|
|
|
|
|
|
|
|
662
|
28
|
|
|
|
|
|
ip[0] = nw; |
|
663
|
28
|
|
|
|
|
|
ip[1] = 1; |
|
664
|
28
|
100
|
|
|
|
|
if (nw > 2) { |
|
665
|
26
|
|
|
|
|
|
nwh = nw >> 1; |
|
666
|
26
|
|
|
|
|
|
delta = atan(1.0) / nwh; |
|
667
|
26
|
|
|
|
|
|
w[0] = 1; |
|
668
|
26
|
|
|
|
|
|
w[1] = 0; |
|
669
|
26
|
|
|
|
|
|
w[nwh] = cos(delta * nwh); |
|
670
|
26
|
|
|
|
|
|
w[nwh + 1] = w[nwh]; |
|
671
|
26
|
100
|
|
|
|
|
if (nwh > 2) { |
|
672
|
12308
|
100
|
|
|
|
|
for (j = 2; j < nwh; j += 2) { |
|
673
|
12291
|
|
|
|
|
|
x = cos(delta * j); |
|
674
|
12291
|
|
|
|
|
|
y = sin(delta * j); |
|
675
|
12291
|
|
|
|
|
|
w[j] = x; |
|
676
|
12291
|
|
|
|
|
|
w[j + 1] = y; |
|
677
|
12291
|
|
|
|
|
|
w[nw - j] = y; |
|
678
|
12291
|
|
|
|
|
|
w[nw - j + 1] = x; |
|
679
|
|
|
|
|
|
|
} |
|
680
|
17
|
|
|
|
|
|
bitrv2(nw, ip + 2, w); |
|
681
|
|
|
|
|
|
|
} |
|
682
|
|
|
|
|
|
|
} |
|
683
|
28
|
|
|
|
|
|
} |
|
684
|
|
|
|
|
|
|
|
|
685
|
|
|
|
|
|
|
|
|
686
|
25
|
|
|
|
|
|
void makect(int nc, int *ip, double *c) |
|
687
|
|
|
|
|
|
|
{ |
|
688
|
|
|
|
|
|
|
int j, nch; |
|
689
|
|
|
|
|
|
|
double delta; |
|
690
|
|
|
|
|
|
|
|
|
691
|
25
|
|
|
|
|
|
ip[1] = nc; |
|
692
|
25
|
50
|
|
|
|
|
if (nc > 1) { |
|
693
|
25
|
|
|
|
|
|
nch = nc >> 1; |
|
694
|
25
|
|
|
|
|
|
delta = atan(1.0) / nch; |
|
695
|
25
|
|
|
|
|
|
c[0] = cos(delta * nch); |
|
696
|
25
|
|
|
|
|
|
c[nch] = 0.5 * c[0]; |
|
697
|
53324
|
100
|
|
|
|
|
for (j = 1; j < nch; j++) { |
|
698
|
53299
|
|
|
|
|
|
c[j] = 0.5 * cos(delta * j); |
|
699
|
53299
|
|
|
|
|
|
c[nc - j] = 0.5 * sin(delta * j); |
|
700
|
|
|
|
|
|
|
} |
|
701
|
|
|
|
|
|
|
} |
|
702
|
25
|
|
|
|
|
|
} |
|
703
|
|
|
|
|
|
|
|
|
704
|
|
|
|
|
|
|
|
|
705
|
|
|
|
|
|
|
/* -------- child routines -------- */ |
|
706
|
|
|
|
|
|
|
|
|
707
|
|
|
|
|
|
|
|
|
708
|
344
|
|
|
|
|
|
void bitrv2(int n, int *ip, double *a) |
|
709
|
|
|
|
|
|
|
{ |
|
710
|
|
|
|
|
|
|
int j, j1, k, k1, l, m, m2; |
|
711
|
|
|
|
|
|
|
double xr, xi, yr, yi; |
|
712
|
|
|
|
|
|
|
|
|
713
|
344
|
|
|
|
|
|
ip[0] = 0; |
|
714
|
344
|
|
|
|
|
|
l = n; |
|
715
|
344
|
|
|
|
|
|
m = 1; |
|
716
|
843
|
100
|
|
|
|
|
while ((m << 3) < l) { |
|
717
|
499
|
|
|
|
|
|
l >>= 1; |
|
718
|
2257
|
100
|
|
|
|
|
for (j = 0; j < m; j++) { |
|
719
|
1758
|
|
|
|
|
|
ip[m + j] = ip[j] + l; |
|
720
|
|
|
|
|
|
|
} |
|
721
|
499
|
|
|
|
|
|
m <<= 1; |
|
722
|
|
|
|
|
|
|
} |
|
723
|
344
|
|
|
|
|
|
m2 = 2 * m; |
|
724
|
344
|
100
|
|
|
|
|
if ((m << 3) == l) { |
|
725
|
1774
|
100
|
|
|
|
|
for (k = 0; k < m; k++) { |
|
726
|
24950
|
100
|
|
|
|
|
for (j = 0; j < k; j++) { |
|
727
|
23468
|
|
|
|
|
|
j1 = 2 * j + ip[k]; |
|
728
|
23468
|
|
|
|
|
|
k1 = 2 * k + ip[j]; |
|
729
|
23468
|
|
|
|
|
|
xr = a[j1]; |
|
730
|
23468
|
|
|
|
|
|
xi = a[j1 + 1]; |
|
731
|
23468
|
|
|
|
|
|
yr = a[k1]; |
|
732
|
23468
|
|
|
|
|
|
yi = a[k1 + 1]; |
|
733
|
23468
|
|
|
|
|
|
a[j1] = yr; |
|
734
|
23468
|
|
|
|
|
|
a[j1 + 1] = yi; |
|
735
|
23468
|
|
|
|
|
|
a[k1] = xr; |
|
736
|
23468
|
|
|
|
|
|
a[k1 + 1] = xi; |
|
737
|
23468
|
|
|
|
|
|
j1 += m2; |
|
738
|
23468
|
|
|
|
|
|
k1 += 2 * m2; |
|
739
|
23468
|
|
|
|
|
|
xr = a[j1]; |
|
740
|
23468
|
|
|
|
|
|
xi = a[j1 + 1]; |
|
741
|
23468
|
|
|
|
|
|
yr = a[k1]; |
|
742
|
23468
|
|
|
|
|
|
yi = a[k1 + 1]; |
|
743
|
23468
|
|
|
|
|
|
a[j1] = yr; |
|
744
|
23468
|
|
|
|
|
|
a[j1 + 1] = yi; |
|
745
|
23468
|
|
|
|
|
|
a[k1] = xr; |
|
746
|
23468
|
|
|
|
|
|
a[k1 + 1] = xi; |
|
747
|
23468
|
|
|
|
|
|
j1 += m2; |
|
748
|
23468
|
|
|
|
|
|
k1 -= m2; |
|
749
|
23468
|
|
|
|
|
|
xr = a[j1]; |
|
750
|
23468
|
|
|
|
|
|
xi = a[j1 + 1]; |
|
751
|
23468
|
|
|
|
|
|
yr = a[k1]; |
|
752
|
23468
|
|
|
|
|
|
yi = a[k1 + 1]; |
|
753
|
23468
|
|
|
|
|
|
a[j1] = yr; |
|
754
|
23468
|
|
|
|
|
|
a[j1 + 1] = yi; |
|
755
|
23468
|
|
|
|
|
|
a[k1] = xr; |
|
756
|
23468
|
|
|
|
|
|
a[k1 + 1] = xi; |
|
757
|
23468
|
|
|
|
|
|
j1 += m2; |
|
758
|
23468
|
|
|
|
|
|
k1 += 2 * m2; |
|
759
|
23468
|
|
|
|
|
|
xr = a[j1]; |
|
760
|
23468
|
|
|
|
|
|
xi = a[j1 + 1]; |
|
761
|
23468
|
|
|
|
|
|
yr = a[k1]; |
|
762
|
23468
|
|
|
|
|
|
yi = a[k1 + 1]; |
|
763
|
23468
|
|
|
|
|
|
a[j1] = yr; |
|
764
|
23468
|
|
|
|
|
|
a[j1 + 1] = yi; |
|
765
|
23468
|
|
|
|
|
|
a[k1] = xr; |
|
766
|
23468
|
|
|
|
|
|
a[k1 + 1] = xi; |
|
767
|
|
|
|
|
|
|
} |
|
768
|
1482
|
|
|
|
|
|
j1 = 2 * k + m2 + ip[k]; |
|
769
|
1482
|
|
|
|
|
|
k1 = j1 + m2; |
|
770
|
1482
|
|
|
|
|
|
xr = a[j1]; |
|
771
|
1482
|
|
|
|
|
|
xi = a[j1 + 1]; |
|
772
|
1482
|
|
|
|
|
|
yr = a[k1]; |
|
773
|
1482
|
|
|
|
|
|
yi = a[k1 + 1]; |
|
774
|
1482
|
|
|
|
|
|
a[j1] = yr; |
|
775
|
1482
|
|
|
|
|
|
a[j1 + 1] = yi; |
|
776
|
1482
|
|
|
|
|
|
a[k1] = xr; |
|
777
|
1482
|
|
|
|
|
|
a[k1 + 1] = xi; |
|
778
|
|
|
|
|
|
|
} |
|
779
|
|
|
|
|
|
|
} else { |
|
780
|
620
|
100
|
|
|
|
|
for (k = 1; k < m; k++) { |
|
781
|
12254
|
100
|
|
|
|
|
for (j = 0; j < k; j++) { |
|
782
|
11686
|
|
|
|
|
|
j1 = 2 * j + ip[k]; |
|
783
|
11686
|
|
|
|
|
|
k1 = 2 * k + ip[j]; |
|
784
|
11686
|
|
|
|
|
|
xr = a[j1]; |
|
785
|
11686
|
|
|
|
|
|
xi = a[j1 + 1]; |
|
786
|
11686
|
|
|
|
|
|
yr = a[k1]; |
|
787
|
11686
|
|
|
|
|
|
yi = a[k1 + 1]; |
|
788
|
11686
|
|
|
|
|
|
a[j1] = yr; |
|
789
|
11686
|
|
|
|
|
|
a[j1 + 1] = yi; |
|
790
|
11686
|
|
|
|
|
|
a[k1] = xr; |
|
791
|
11686
|
|
|
|
|
|
a[k1 + 1] = xi; |
|
792
|
11686
|
|
|
|
|
|
j1 += m2; |
|
793
|
11686
|
|
|
|
|
|
k1 += m2; |
|
794
|
11686
|
|
|
|
|
|
xr = a[j1]; |
|
795
|
11686
|
|
|
|
|
|
xi = a[j1 + 1]; |
|
796
|
11686
|
|
|
|
|
|
yr = a[k1]; |
|
797
|
11686
|
|
|
|
|
|
yi = a[k1 + 1]; |
|
798
|
11686
|
|
|
|
|
|
a[j1] = yr; |
|
799
|
11686
|
|
|
|
|
|
a[j1 + 1] = yi; |
|
800
|
11686
|
|
|
|
|
|
a[k1] = xr; |
|
801
|
11686
|
|
|
|
|
|
a[k1 + 1] = xi; |
|
802
|
|
|
|
|
|
|
} |
|
803
|
|
|
|
|
|
|
} |
|
804
|
|
|
|
|
|
|
} |
|
805
|
344
|
|
|
|
|
|
} |
|
806
|
|
|
|
|
|
|
|
|
807
|
|
|
|
|
|
|
|
|
808
|
4
|
|
|
|
|
|
void bitrv2conj(int n, int *ip, double *a) |
|
809
|
|
|
|
|
|
|
{ |
|
810
|
|
|
|
|
|
|
int j, j1, k, k1, l, m, m2; |
|
811
|
|
|
|
|
|
|
double xr, xi, yr, yi; |
|
812
|
|
|
|
|
|
|
|
|
813
|
4
|
|
|
|
|
|
ip[0] = 0; |
|
814
|
4
|
|
|
|
|
|
l = n; |
|
815
|
4
|
|
|
|
|
|
m = 1; |
|
816
|
23
|
100
|
|
|
|
|
while ((m << 3) < l) { |
|
817
|
19
|
|
|
|
|
|
l >>= 1; |
|
818
|
209
|
100
|
|
|
|
|
for (j = 0; j < m; j++) { |
|
819
|
190
|
|
|
|
|
|
ip[m + j] = ip[j] + l; |
|
820
|
|
|
|
|
|
|
} |
|
821
|
19
|
|
|
|
|
|
m <<= 1; |
|
822
|
|
|
|
|
|
|
} |
|
823
|
4
|
|
|
|
|
|
m2 = 2 * m; |
|
824
|
4
|
100
|
|
|
|
|
if ((m << 3) == l) { |
|
825
|
195
|
100
|
|
|
|
|
for (k = 0; k < m; k++) { |
|
826
|
6240
|
100
|
|
|
|
|
for (j = 0; j < k; j++) { |
|
827
|
6048
|
|
|
|
|
|
j1 = 2 * j + ip[k]; |
|
828
|
6048
|
|
|
|
|
|
k1 = 2 * k + ip[j]; |
|
829
|
6048
|
|
|
|
|
|
xr = a[j1]; |
|
830
|
6048
|
|
|
|
|
|
xi = -a[j1 + 1]; |
|
831
|
6048
|
|
|
|
|
|
yr = a[k1]; |
|
832
|
6048
|
|
|
|
|
|
yi = -a[k1 + 1]; |
|
833
|
6048
|
|
|
|
|
|
a[j1] = yr; |
|
834
|
6048
|
|
|
|
|
|
a[j1 + 1] = yi; |
|
835
|
6048
|
|
|
|
|
|
a[k1] = xr; |
|
836
|
6048
|
|
|
|
|
|
a[k1 + 1] = xi; |
|
837
|
6048
|
|
|
|
|
|
j1 += m2; |
|
838
|
6048
|
|
|
|
|
|
k1 += 2 * m2; |
|
839
|
6048
|
|
|
|
|
|
xr = a[j1]; |
|
840
|
6048
|
|
|
|
|
|
xi = -a[j1 + 1]; |
|
841
|
6048
|
|
|
|
|
|
yr = a[k1]; |
|
842
|
6048
|
|
|
|
|
|
yi = -a[k1 + 1]; |
|
843
|
6048
|
|
|
|
|
|
a[j1] = yr; |
|
844
|
6048
|
|
|
|
|
|
a[j1 + 1] = yi; |
|
845
|
6048
|
|
|
|
|
|
a[k1] = xr; |
|
846
|
6048
|
|
|
|
|
|
a[k1 + 1] = xi; |
|
847
|
6048
|
|
|
|
|
|
j1 += m2; |
|
848
|
6048
|
|
|
|
|
|
k1 -= m2; |
|
849
|
6048
|
|
|
|
|
|
xr = a[j1]; |
|
850
|
6048
|
|
|
|
|
|
xi = -a[j1 + 1]; |
|
851
|
6048
|
|
|
|
|
|
yr = a[k1]; |
|
852
|
6048
|
|
|
|
|
|
yi = -a[k1 + 1]; |
|
853
|
6048
|
|
|
|
|
|
a[j1] = yr; |
|
854
|
6048
|
|
|
|
|
|
a[j1 + 1] = yi; |
|
855
|
6048
|
|
|
|
|
|
a[k1] = xr; |
|
856
|
6048
|
|
|
|
|
|
a[k1 + 1] = xi; |
|
857
|
6048
|
|
|
|
|
|
j1 += m2; |
|
858
|
6048
|
|
|
|
|
|
k1 += 2 * m2; |
|
859
|
6048
|
|
|
|
|
|
xr = a[j1]; |
|
860
|
6048
|
|
|
|
|
|
xi = -a[j1 + 1]; |
|
861
|
6048
|
|
|
|
|
|
yr = a[k1]; |
|
862
|
6048
|
|
|
|
|
|
yi = -a[k1 + 1]; |
|
863
|
6048
|
|
|
|
|
|
a[j1] = yr; |
|
864
|
6048
|
|
|
|
|
|
a[j1 + 1] = yi; |
|
865
|
6048
|
|
|
|
|
|
a[k1] = xr; |
|
866
|
6048
|
|
|
|
|
|
a[k1 + 1] = xi; |
|
867
|
|
|
|
|
|
|
} |
|
868
|
192
|
|
|
|
|
|
k1 = 2 * k + ip[k]; |
|
869
|
192
|
|
|
|
|
|
a[k1 + 1] = -a[k1 + 1]; |
|
870
|
192
|
|
|
|
|
|
j1 = k1 + m2; |
|
871
|
192
|
|
|
|
|
|
k1 = j1 + m2; |
|
872
|
192
|
|
|
|
|
|
xr = a[j1]; |
|
873
|
192
|
|
|
|
|
|
xi = -a[j1 + 1]; |
|
874
|
192
|
|
|
|
|
|
yr = a[k1]; |
|
875
|
192
|
|
|
|
|
|
yi = -a[k1 + 1]; |
|
876
|
192
|
|
|
|
|
|
a[j1] = yr; |
|
877
|
192
|
|
|
|
|
|
a[j1 + 1] = yi; |
|
878
|
192
|
|
|
|
|
|
a[k1] = xr; |
|
879
|
192
|
|
|
|
|
|
a[k1 + 1] = xi; |
|
880
|
192
|
|
|
|
|
|
k1 += m2; |
|
881
|
192
|
|
|
|
|
|
a[k1 + 1] = -a[k1 + 1]; |
|
882
|
|
|
|
|
|
|
} |
|
883
|
|
|
|
|
|
|
} else { |
|
884
|
1
|
|
|
|
|
|
a[1] = -a[1]; |
|
885
|
1
|
|
|
|
|
|
a[m2 + 1] = -a[m2 + 1]; |
|
886
|
2
|
100
|
|
|
|
|
for (k = 1; k < m; k++) { |
|
887
|
2
|
100
|
|
|
|
|
for (j = 0; j < k; j++) { |
|
888
|
1
|
|
|
|
|
|
j1 = 2 * j + ip[k]; |
|
889
|
1
|
|
|
|
|
|
k1 = 2 * k + ip[j]; |
|
890
|
1
|
|
|
|
|
|
xr = a[j1]; |
|
891
|
1
|
|
|
|
|
|
xi = -a[j1 + 1]; |
|
892
|
1
|
|
|
|
|
|
yr = a[k1]; |
|
893
|
1
|
|
|
|
|
|
yi = -a[k1 + 1]; |
|
894
|
1
|
|
|
|
|
|
a[j1] = yr; |
|
895
|
1
|
|
|
|
|
|
a[j1 + 1] = yi; |
|
896
|
1
|
|
|
|
|
|
a[k1] = xr; |
|
897
|
1
|
|
|
|
|
|
a[k1 + 1] = xi; |
|
898
|
1
|
|
|
|
|
|
j1 += m2; |
|
899
|
1
|
|
|
|
|
|
k1 += m2; |
|
900
|
1
|
|
|
|
|
|
xr = a[j1]; |
|
901
|
1
|
|
|
|
|
|
xi = -a[j1 + 1]; |
|
902
|
1
|
|
|
|
|
|
yr = a[k1]; |
|
903
|
1
|
|
|
|
|
|
yi = -a[k1 + 1]; |
|
904
|
1
|
|
|
|
|
|
a[j1] = yr; |
|
905
|
1
|
|
|
|
|
|
a[j1 + 1] = yi; |
|
906
|
1
|
|
|
|
|
|
a[k1] = xr; |
|
907
|
1
|
|
|
|
|
|
a[k1 + 1] = xi; |
|
908
|
|
|
|
|
|
|
} |
|
909
|
1
|
|
|
|
|
|
k1 = 2 * k + ip[k]; |
|
910
|
1
|
|
|
|
|
|
a[k1 + 1] = -a[k1 + 1]; |
|
911
|
1
|
|
|
|
|
|
a[k1 + m2 + 1] = -a[k1 + m2 + 1]; |
|
912
|
|
|
|
|
|
|
} |
|
913
|
|
|
|
|
|
|
} |
|
914
|
4
|
|
|
|
|
|
} |
|
915
|
|
|
|
|
|
|
|
|
916
|
|
|
|
|
|
|
|
|
917
|
321
|
|
|
|
|
|
void cftfsub(int n, double *a, double *w) |
|
918
|
|
|
|
|
|
|
{ |
|
919
|
|
|
|
|
|
|
void cft1st(int n, double *a, double *w); |
|
920
|
|
|
|
|
|
|
void cftmdl(int n, int l, double *a, double *w); |
|
921
|
|
|
|
|
|
|
int j, j1, j2, j3, l; |
|
922
|
|
|
|
|
|
|
double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; |
|
923
|
|
|
|
|
|
|
|
|
924
|
321
|
|
|
|
|
|
l = 2; |
|
925
|
321
|
100
|
|
|
|
|
if (n > 8) { |
|
926
|
305
|
|
|
|
|
|
cft1st(n, a, w); |
|
927
|
305
|
|
|
|
|
|
l = 8; |
|
928
|
435
|
100
|
|
|
|
|
while ((l << 2) < n) { |
|
929
|
130
|
|
|
|
|
|
cftmdl(n, l, a, w); |
|
930
|
130
|
|
|
|
|
|
l <<= 2; |
|
931
|
|
|
|
|
|
|
} |
|
932
|
|
|
|
|
|
|
} |
|
933
|
321
|
100
|
|
|
|
|
if ((l << 2) == n) { |
|
934
|
31274
|
100
|
|
|
|
|
for (j = 0; j < l; j += 2) { |
|
935
|
31000
|
|
|
|
|
|
j1 = j + l; |
|
936
|
31000
|
|
|
|
|
|
j2 = j1 + l; |
|
937
|
31000
|
|
|
|
|
|
j3 = j2 + l; |
|
938
|
31000
|
|
|
|
|
|
x0r = a[j] + a[j1]; |
|
939
|
31000
|
|
|
|
|
|
x0i = a[j + 1] + a[j1 + 1]; |
|
940
|
31000
|
|
|
|
|
|
x1r = a[j] - a[j1]; |
|
941
|
31000
|
|
|
|
|
|
x1i = a[j + 1] - a[j1 + 1]; |
|
942
|
31000
|
|
|
|
|
|
x2r = a[j2] + a[j3]; |
|
943
|
31000
|
|
|
|
|
|
x2i = a[j2 + 1] + a[j3 + 1]; |
|
944
|
31000
|
|
|
|
|
|
x3r = a[j2] - a[j3]; |
|
945
|
31000
|
|
|
|
|
|
x3i = a[j2 + 1] - a[j3 + 1]; |
|
946
|
31000
|
|
|
|
|
|
a[j] = x0r + x2r; |
|
947
|
31000
|
|
|
|
|
|
a[j + 1] = x0i + x2i; |
|
948
|
31000
|
|
|
|
|
|
a[j2] = x0r - x2r; |
|
949
|
31000
|
|
|
|
|
|
a[j2 + 1] = x0i - x2i; |
|
950
|
31000
|
|
|
|
|
|
a[j1] = x1r - x3i; |
|
951
|
31000
|
|
|
|
|
|
a[j1 + 1] = x1i + x3r; |
|
952
|
31000
|
|
|
|
|
|
a[j3] = x1r + x3i; |
|
953
|
31000
|
|
|
|
|
|
a[j3 + 1] = x1i - x3r; |
|
954
|
|
|
|
|
|
|
} |
|
955
|
|
|
|
|
|
|
} else { |
|
956
|
21955
|
100
|
|
|
|
|
for (j = 0; j < l; j += 2) { |
|
957
|
21908
|
|
|
|
|
|
j1 = j + l; |
|
958
|
21908
|
|
|
|
|
|
x0r = a[j] - a[j1]; |
|
959
|
21908
|
|
|
|
|
|
x0i = a[j + 1] - a[j1 + 1]; |
|
960
|
21908
|
|
|
|
|
|
a[j] += a[j1]; |
|
961
|
21908
|
|
|
|
|
|
a[j + 1] += a[j1 + 1]; |
|
962
|
21908
|
|
|
|
|
|
a[j1] = x0r; |
|
963
|
21908
|
|
|
|
|
|
a[j1 + 1] = x0i; |
|
964
|
|
|
|
|
|
|
} |
|
965
|
|
|
|
|
|
|
} |
|
966
|
321
|
|
|
|
|
|
} |
|
967
|
|
|
|
|
|
|
|
|
968
|
|
|
|
|
|
|
|
|
969
|
18
|
|
|
|
|
|
void cftbsub(int n, double *a, double *w) |
|
970
|
|
|
|
|
|
|
{ |
|
971
|
|
|
|
|
|
|
void cft1st(int n, double *a, double *w); |
|
972
|
|
|
|
|
|
|
void cftmdl(int n, int l, double *a, double *w); |
|
973
|
|
|
|
|
|
|
int j, j1, j2, j3, l; |
|
974
|
|
|
|
|
|
|
double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; |
|
975
|
|
|
|
|
|
|
|
|
976
|
18
|
|
|
|
|
|
l = 2; |
|
977
|
18
|
50
|
|
|
|
|
if (n > 8) { |
|
978
|
18
|
|
|
|
|
|
cft1st(n, a, w); |
|
979
|
18
|
|
|
|
|
|
l = 8; |
|
980
|
48
|
100
|
|
|
|
|
while ((l << 2) < n) { |
|
981
|
30
|
|
|
|
|
|
cftmdl(n, l, a, w); |
|
982
|
30
|
|
|
|
|
|
l <<= 2; |
|
983
|
|
|
|
|
|
|
} |
|
984
|
|
|
|
|
|
|
} |
|
985
|
18
|
100
|
|
|
|
|
if ((l << 2) == n) { |
|
986
|
24582
|
100
|
|
|
|
|
for (j = 0; j < l; j += 2) { |
|
987
|
24576
|
|
|
|
|
|
j1 = j + l; |
|
988
|
24576
|
|
|
|
|
|
j2 = j1 + l; |
|
989
|
24576
|
|
|
|
|
|
j3 = j2 + l; |
|
990
|
24576
|
|
|
|
|
|
x0r = a[j] + a[j1]; |
|
991
|
24576
|
|
|
|
|
|
x0i = -a[j + 1] - a[j1 + 1]; |
|
992
|
24576
|
|
|
|
|
|
x1r = a[j] - a[j1]; |
|
993
|
24576
|
|
|
|
|
|
x1i = -a[j + 1] + a[j1 + 1]; |
|
994
|
24576
|
|
|
|
|
|
x2r = a[j2] + a[j3]; |
|
995
|
24576
|
|
|
|
|
|
x2i = a[j2 + 1] + a[j3 + 1]; |
|
996
|
24576
|
|
|
|
|
|
x3r = a[j2] - a[j3]; |
|
997
|
24576
|
|
|
|
|
|
x3i = a[j2 + 1] - a[j3 + 1]; |
|
998
|
24576
|
|
|
|
|
|
a[j] = x0r + x2r; |
|
999
|
24576
|
|
|
|
|
|
a[j + 1] = x0i - x2i; |
|
1000
|
24576
|
|
|
|
|
|
a[j2] = x0r - x2r; |
|
1001
|
24576
|
|
|
|
|
|
a[j2 + 1] = x0i + x2i; |
|
1002
|
24576
|
|
|
|
|
|
a[j1] = x1r - x3i; |
|
1003
|
24576
|
|
|
|
|
|
a[j1 + 1] = x1i - x3r; |
|
1004
|
24576
|
|
|
|
|
|
a[j3] = x1r + x3i; |
|
1005
|
24576
|
|
|
|
|
|
a[j3 + 1] = x1i + x3r; |
|
1006
|
|
|
|
|
|
|
} |
|
1007
|
|
|
|
|
|
|
} else { |
|
1008
|
60
|
100
|
|
|
|
|
for (j = 0; j < l; j += 2) { |
|
1009
|
48
|
|
|
|
|
|
j1 = j + l; |
|
1010
|
48
|
|
|
|
|
|
x0r = a[j] - a[j1]; |
|
1011
|
48
|
|
|
|
|
|
x0i = -a[j + 1] + a[j1 + 1]; |
|
1012
|
48
|
|
|
|
|
|
a[j] += a[j1]; |
|
1013
|
48
|
|
|
|
|
|
a[j + 1] = -a[j + 1] - a[j1 + 1]; |
|
1014
|
48
|
|
|
|
|
|
a[j1] = x0r; |
|
1015
|
48
|
|
|
|
|
|
a[j1 + 1] = x0i; |
|
1016
|
|
|
|
|
|
|
} |
|
1017
|
|
|
|
|
|
|
} |
|
1018
|
18
|
|
|
|
|
|
} |
|
1019
|
|
|
|
|
|
|
|
|
1020
|
|
|
|
|
|
|
|
|
1021
|
323
|
|
|
|
|
|
void cft1st(int n, double *a, double *w) |
|
1022
|
|
|
|
|
|
|
{ |
|
1023
|
|
|
|
|
|
|
int j, k1, k2; |
|
1024
|
|
|
|
|
|
|
double wk1r, wk1i, wk2r, wk2i, wk3r, wk3i; |
|
1025
|
|
|
|
|
|
|
double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; |
|
1026
|
|
|
|
|
|
|
|
|
1027
|
323
|
|
|
|
|
|
x0r = a[0] + a[2]; |
|
1028
|
323
|
|
|
|
|
|
x0i = a[1] + a[3]; |
|
1029
|
323
|
|
|
|
|
|
x1r = a[0] - a[2]; |
|
1030
|
323
|
|
|
|
|
|
x1i = a[1] - a[3]; |
|
1031
|
323
|
|
|
|
|
|
x2r = a[4] + a[6]; |
|
1032
|
323
|
|
|
|
|
|
x2i = a[5] + a[7]; |
|
1033
|
323
|
|
|
|
|
|
x3r = a[4] - a[6]; |
|
1034
|
323
|
|
|
|
|
|
x3i = a[5] - a[7]; |
|
1035
|
323
|
|
|
|
|
|
a[0] = x0r + x2r; |
|
1036
|
323
|
|
|
|
|
|
a[1] = x0i + x2i; |
|
1037
|
323
|
|
|
|
|
|
a[4] = x0r - x2r; |
|
1038
|
323
|
|
|
|
|
|
a[5] = x0i - x2i; |
|
1039
|
323
|
|
|
|
|
|
a[2] = x1r - x3i; |
|
1040
|
323
|
|
|
|
|
|
a[3] = x1i + x3r; |
|
1041
|
323
|
|
|
|
|
|
a[6] = x1r + x3i; |
|
1042
|
323
|
|
|
|
|
|
a[7] = x1i - x3r; |
|
1043
|
323
|
|
|
|
|
|
wk1r = w[2]; |
|
1044
|
323
|
|
|
|
|
|
x0r = a[8] + a[10]; |
|
1045
|
323
|
|
|
|
|
|
x0i = a[9] + a[11]; |
|
1046
|
323
|
|
|
|
|
|
x1r = a[8] - a[10]; |
|
1047
|
323
|
|
|
|
|
|
x1i = a[9] - a[11]; |
|
1048
|
323
|
|
|
|
|
|
x2r = a[12] + a[14]; |
|
1049
|
323
|
|
|
|
|
|
x2i = a[13] + a[15]; |
|
1050
|
323
|
|
|
|
|
|
x3r = a[12] - a[14]; |
|
1051
|
323
|
|
|
|
|
|
x3i = a[13] - a[15]; |
|
1052
|
323
|
|
|
|
|
|
a[8] = x0r + x2r; |
|
1053
|
323
|
|
|
|
|
|
a[9] = x0i + x2i; |
|
1054
|
323
|
|
|
|
|
|
a[12] = x2i - x0i; |
|
1055
|
323
|
|
|
|
|
|
a[13] = x0r - x2r; |
|
1056
|
323
|
|
|
|
|
|
x0r = x1r - x3i; |
|
1057
|
323
|
|
|
|
|
|
x0i = x1i + x3r; |
|
1058
|
323
|
|
|
|
|
|
a[10] = wk1r * (x0r - x0i); |
|
1059
|
323
|
|
|
|
|
|
a[11] = wk1r * (x0r + x0i); |
|
1060
|
323
|
|
|
|
|
|
x0r = x3i + x1r; |
|
1061
|
323
|
|
|
|
|
|
x0i = x3r - x1i; |
|
1062
|
323
|
|
|
|
|
|
a[14] = wk1r * (x0i - x0r); |
|
1063
|
323
|
|
|
|
|
|
a[15] = wk1r * (x0i + x0r); |
|
1064
|
323
|
|
|
|
|
|
k1 = 0; |
|
1065
|
33271
|
100
|
|
|
|
|
for (j = 16; j < n; j += 16) { |
|
1066
|
32948
|
|
|
|
|
|
k1 += 2; |
|
1067
|
32948
|
|
|
|
|
|
k2 = 2 * k1; |
|
1068
|
32948
|
|
|
|
|
|
wk2r = w[k1]; |
|
1069
|
32948
|
|
|
|
|
|
wk2i = w[k1 + 1]; |
|
1070
|
32948
|
|
|
|
|
|
wk1r = w[k2]; |
|
1071
|
32948
|
|
|
|
|
|
wk1i = w[k2 + 1]; |
|
1072
|
32948
|
|
|
|
|
|
wk3r = wk1r - 2 * wk2i * wk1i; |
|
1073
|
32948
|
|
|
|
|
|
wk3i = 2 * wk2i * wk1r - wk1i; |
|
1074
|
32948
|
|
|
|
|
|
x0r = a[j] + a[j + 2]; |
|
1075
|
32948
|
|
|
|
|
|
x0i = a[j + 1] + a[j + 3]; |
|
1076
|
32948
|
|
|
|
|
|
x1r = a[j] - a[j + 2]; |
|
1077
|
32948
|
|
|
|
|
|
x1i = a[j + 1] - a[j + 3]; |
|
1078
|
32948
|
|
|
|
|
|
x2r = a[j + 4] + a[j + 6]; |
|
1079
|
32948
|
|
|
|
|
|
x2i = a[j + 5] + a[j + 7]; |
|
1080
|
32948
|
|
|
|
|
|
x3r = a[j + 4] - a[j + 6]; |
|
1081
|
32948
|
|
|
|
|
|
x3i = a[j + 5] - a[j + 7]; |
|
1082
|
32948
|
|
|
|
|
|
a[j] = x0r + x2r; |
|
1083
|
32948
|
|
|
|
|
|
a[j + 1] = x0i + x2i; |
|
1084
|
32948
|
|
|
|
|
|
x0r -= x2r; |
|
1085
|
32948
|
|
|
|
|
|
x0i -= x2i; |
|
1086
|
32948
|
|
|
|
|
|
a[j + 4] = wk2r * x0r - wk2i * x0i; |
|
1087
|
32948
|
|
|
|
|
|
a[j + 5] = wk2r * x0i + wk2i * x0r; |
|
1088
|
32948
|
|
|
|
|
|
x0r = x1r - x3i; |
|
1089
|
32948
|
|
|
|
|
|
x0i = x1i + x3r; |
|
1090
|
32948
|
|
|
|
|
|
a[j + 2] = wk1r * x0r - wk1i * x0i; |
|
1091
|
32948
|
|
|
|
|
|
a[j + 3] = wk1r * x0i + wk1i * x0r; |
|
1092
|
32948
|
|
|
|
|
|
x0r = x1r + x3i; |
|
1093
|
32948
|
|
|
|
|
|
x0i = x1i - x3r; |
|
1094
|
32948
|
|
|
|
|
|
a[j + 6] = wk3r * x0r - wk3i * x0i; |
|
1095
|
32948
|
|
|
|
|
|
a[j + 7] = wk3r * x0i + wk3i * x0r; |
|
1096
|
32948
|
|
|
|
|
|
wk1r = w[k2 + 2]; |
|
1097
|
32948
|
|
|
|
|
|
wk1i = w[k2 + 3]; |
|
1098
|
32948
|
|
|
|
|
|
wk3r = wk1r - 2 * wk2r * wk1i; |
|
1099
|
32948
|
|
|
|
|
|
wk3i = 2 * wk2r * wk1r - wk1i; |
|
1100
|
32948
|
|
|
|
|
|
x0r = a[j + 8] + a[j + 10]; |
|
1101
|
32948
|
|
|
|
|
|
x0i = a[j + 9] + a[j + 11]; |
|
1102
|
32948
|
|
|
|
|
|
x1r = a[j + 8] - a[j + 10]; |
|
1103
|
32948
|
|
|
|
|
|
x1i = a[j + 9] - a[j + 11]; |
|
1104
|
32948
|
|
|
|
|
|
x2r = a[j + 12] + a[j + 14]; |
|
1105
|
32948
|
|
|
|
|
|
x2i = a[j + 13] + a[j + 15]; |
|
1106
|
32948
|
|
|
|
|
|
x3r = a[j + 12] - a[j + 14]; |
|
1107
|
32948
|
|
|
|
|
|
x3i = a[j + 13] - a[j + 15]; |
|
1108
|
32948
|
|
|
|
|
|
a[j + 8] = x0r + x2r; |
|
1109
|
32948
|
|
|
|
|
|
a[j + 9] = x0i + x2i; |
|
1110
|
32948
|
|
|
|
|
|
x0r -= x2r; |
|
1111
|
32948
|
|
|
|
|
|
x0i -= x2i; |
|
1112
|
32948
|
|
|
|
|
|
a[j + 12] = -wk2i * x0r - wk2r * x0i; |
|
1113
|
32948
|
|
|
|
|
|
a[j + 13] = -wk2i * x0i + wk2r * x0r; |
|
1114
|
32948
|
|
|
|
|
|
x0r = x1r - x3i; |
|
1115
|
32948
|
|
|
|
|
|
x0i = x1i + x3r; |
|
1116
|
32948
|
|
|
|
|
|
a[j + 10] = wk1r * x0r - wk1i * x0i; |
|
1117
|
32948
|
|
|
|
|
|
a[j + 11] = wk1r * x0i + wk1i * x0r; |
|
1118
|
32948
|
|
|
|
|
|
x0r = x1r + x3i; |
|
1119
|
32948
|
|
|
|
|
|
x0i = x1i - x3r; |
|
1120
|
32948
|
|
|
|
|
|
a[j + 14] = wk3r * x0r - wk3i * x0i; |
|
1121
|
32948
|
|
|
|
|
|
a[j + 15] = wk3r * x0i + wk3i * x0r; |
|
1122
|
|
|
|
|
|
|
} |
|
1123
|
323
|
|
|
|
|
|
} |
|
1124
|
|
|
|
|
|
|
|
|
1125
|
|
|
|
|
|
|
|
|
1126
|
160
|
|
|
|
|
|
void cftmdl(int n, int l, double *a, double *w) |
|
1127
|
|
|
|
|
|
|
{ |
|
1128
|
|
|
|
|
|
|
int j, j1, j2, j3, k, k1, k2, m, m2; |
|
1129
|
|
|
|
|
|
|
double wk1r, wk1i, wk2r, wk2i, wk3r, wk3i; |
|
1130
|
|
|
|
|
|
|
double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; |
|
1131
|
|
|
|
|
|
|
|
|
1132
|
160
|
|
|
|
|
|
m = l << 2; |
|
1133
|
25568
|
100
|
|
|
|
|
for (j = 0; j < l; j += 2) { |
|
1134
|
25408
|
|
|
|
|
|
j1 = j + l; |
|
1135
|
25408
|
|
|
|
|
|
j2 = j1 + l; |
|
1136
|
25408
|
|
|
|
|
|
j3 = j2 + l; |
|
1137
|
25408
|
|
|
|
|
|
x0r = a[j] + a[j1]; |
|
1138
|
25408
|
|
|
|
|
|
x0i = a[j + 1] + a[j1 + 1]; |
|
1139
|
25408
|
|
|
|
|
|
x1r = a[j] - a[j1]; |
|
1140
|
25408
|
|
|
|
|
|
x1i = a[j + 1] - a[j1 + 1]; |
|
1141
|
25408
|
|
|
|
|
|
x2r = a[j2] + a[j3]; |
|
1142
|
25408
|
|
|
|
|
|
x2i = a[j2 + 1] + a[j3 + 1]; |
|
1143
|
25408
|
|
|
|
|
|
x3r = a[j2] - a[j3]; |
|
1144
|
25408
|
|
|
|
|
|
x3i = a[j2 + 1] - a[j3 + 1]; |
|
1145
|
25408
|
|
|
|
|
|
a[j] = x0r + x2r; |
|
1146
|
25408
|
|
|
|
|
|
a[j + 1] = x0i + x2i; |
|
1147
|
25408
|
|
|
|
|
|
a[j2] = x0r - x2r; |
|
1148
|
25408
|
|
|
|
|
|
a[j2 + 1] = x0i - x2i; |
|
1149
|
25408
|
|
|
|
|
|
a[j1] = x1r - x3i; |
|
1150
|
25408
|
|
|
|
|
|
a[j1 + 1] = x1i + x3r; |
|
1151
|
25408
|
|
|
|
|
|
a[j3] = x1r + x3i; |
|
1152
|
25408
|
|
|
|
|
|
a[j3 + 1] = x1i - x3r; |
|
1153
|
|
|
|
|
|
|
} |
|
1154
|
160
|
|
|
|
|
|
wk1r = w[2]; |
|
1155
|
25568
|
100
|
|
|
|
|
for (j = m; j < l + m; j += 2) { |
|
1156
|
25408
|
|
|
|
|
|
j1 = j + l; |
|
1157
|
25408
|
|
|
|
|
|
j2 = j1 + l; |
|
1158
|
25408
|
|
|
|
|
|
j3 = j2 + l; |
|
1159
|
25408
|
|
|
|
|
|
x0r = a[j] + a[j1]; |
|
1160
|
25408
|
|
|
|
|
|
x0i = a[j + 1] + a[j1 + 1]; |
|
1161
|
25408
|
|
|
|
|
|
x1r = a[j] - a[j1]; |
|
1162
|
25408
|
|
|
|
|
|
x1i = a[j + 1] - a[j1 + 1]; |
|
1163
|
25408
|
|
|
|
|
|
x2r = a[j2] + a[j3]; |
|
1164
|
25408
|
|
|
|
|
|
x2i = a[j2 + 1] + a[j3 + 1]; |
|
1165
|
25408
|
|
|
|
|
|
x3r = a[j2] - a[j3]; |
|
1166
|
25408
|
|
|
|
|
|
x3i = a[j2 + 1] - a[j3 + 1]; |
|
1167
|
25408
|
|
|
|
|
|
a[j] = x0r + x2r; |
|
1168
|
25408
|
|
|
|
|
|
a[j + 1] = x0i + x2i; |
|
1169
|
25408
|
|
|
|
|
|
a[j2] = x2i - x0i; |
|
1170
|
25408
|
|
|
|
|
|
a[j2 + 1] = x0r - x2r; |
|
1171
|
25408
|
|
|
|
|
|
x0r = x1r - x3i; |
|
1172
|
25408
|
|
|
|
|
|
x0i = x1i + x3r; |
|
1173
|
25408
|
|
|
|
|
|
a[j1] = wk1r * (x0r - x0i); |
|
1174
|
25408
|
|
|
|
|
|
a[j1 + 1] = wk1r * (x0r + x0i); |
|
1175
|
25408
|
|
|
|
|
|
x0r = x3i + x1r; |
|
1176
|
25408
|
|
|
|
|
|
x0i = x3r - x1i; |
|
1177
|
25408
|
|
|
|
|
|
a[j3] = wk1r * (x0i - x0r); |
|
1178
|
25408
|
|
|
|
|
|
a[j3 + 1] = wk1r * (x0i + x0r); |
|
1179
|
|
|
|
|
|
|
} |
|
1180
|
160
|
|
|
|
|
|
k1 = 0; |
|
1181
|
160
|
|
|
|
|
|
m2 = 2 * m; |
|
1182
|
10892
|
100
|
|
|
|
|
for (k = m2; k < n; k += m2) { |
|
1183
|
10732
|
|
|
|
|
|
k1 += 2; |
|
1184
|
10732
|
|
|
|
|
|
k2 = 2 * k1; |
|
1185
|
10732
|
|
|
|
|
|
wk2r = w[k1]; |
|
1186
|
10732
|
|
|
|
|
|
wk2i = w[k1 + 1]; |
|
1187
|
10732
|
|
|
|
|
|
wk1r = w[k2]; |
|
1188
|
10732
|
|
|
|
|
|
wk1i = w[k2 + 1]; |
|
1189
|
10732
|
|
|
|
|
|
wk3r = wk1r - 2 * wk2i * wk1i; |
|
1190
|
10732
|
|
|
|
|
|
wk3i = 2 * wk2i * wk1r - wk1i; |
|
1191
|
143708
|
100
|
|
|
|
|
for (j = k; j < l + k; j += 2) { |
|
1192
|
132976
|
|
|
|
|
|
j1 = j + l; |
|
1193
|
132976
|
|
|
|
|
|
j2 = j1 + l; |
|
1194
|
132976
|
|
|
|
|
|
j3 = j2 + l; |
|
1195
|
132976
|
|
|
|
|
|
x0r = a[j] + a[j1]; |
|
1196
|
132976
|
|
|
|
|
|
x0i = a[j + 1] + a[j1 + 1]; |
|
1197
|
132976
|
|
|
|
|
|
x1r = a[j] - a[j1]; |
|
1198
|
132976
|
|
|
|
|
|
x1i = a[j + 1] - a[j1 + 1]; |
|
1199
|
132976
|
|
|
|
|
|
x2r = a[j2] + a[j3]; |
|
1200
|
132976
|
|
|
|
|
|
x2i = a[j2 + 1] + a[j3 + 1]; |
|
1201
|
132976
|
|
|
|
|
|
x3r = a[j2] - a[j3]; |
|
1202
|
132976
|
|
|
|
|
|
x3i = a[j2 + 1] - a[j3 + 1]; |
|
1203
|
132976
|
|
|
|
|
|
a[j] = x0r + x2r; |
|
1204
|
132976
|
|
|
|
|
|
a[j + 1] = x0i + x2i; |
|
1205
|
132976
|
|
|
|
|
|
x0r -= x2r; |
|
1206
|
132976
|
|
|
|
|
|
x0i -= x2i; |
|
1207
|
132976
|
|
|
|
|
|
a[j2] = wk2r * x0r - wk2i * x0i; |
|
1208
|
132976
|
|
|
|
|
|
a[j2 + 1] = wk2r * x0i + wk2i * x0r; |
|
1209
|
132976
|
|
|
|
|
|
x0r = x1r - x3i; |
|
1210
|
132976
|
|
|
|
|
|
x0i = x1i + x3r; |
|
1211
|
132976
|
|
|
|
|
|
a[j1] = wk1r * x0r - wk1i * x0i; |
|
1212
|
132976
|
|
|
|
|
|
a[j1 + 1] = wk1r * x0i + wk1i * x0r; |
|
1213
|
132976
|
|
|
|
|
|
x0r = x1r + x3i; |
|
1214
|
132976
|
|
|
|
|
|
x0i = x1i - x3r; |
|
1215
|
132976
|
|
|
|
|
|
a[j3] = wk3r * x0r - wk3i * x0i; |
|
1216
|
132976
|
|
|
|
|
|
a[j3 + 1] = wk3r * x0i + wk3i * x0r; |
|
1217
|
|
|
|
|
|
|
} |
|
1218
|
10732
|
|
|
|
|
|
wk1r = w[k2 + 2]; |
|
1219
|
10732
|
|
|
|
|
|
wk1i = w[k2 + 3]; |
|
1220
|
10732
|
|
|
|
|
|
wk3r = wk1r - 2 * wk2r * wk1i; |
|
1221
|
10732
|
|
|
|
|
|
wk3i = 2 * wk2r * wk1r - wk1i; |
|
1222
|
143708
|
100
|
|
|
|
|
for (j = k + m; j < l + (k + m); j += 2) { |
|
1223
|
132976
|
|
|
|
|
|
j1 = j + l; |
|
1224
|
132976
|
|
|
|
|
|
j2 = j1 + l; |
|
1225
|
132976
|
|
|
|
|
|
j3 = j2 + l; |
|
1226
|
132976
|
|
|
|
|
|
x0r = a[j] + a[j1]; |
|
1227
|
132976
|
|
|
|
|
|
x0i = a[j + 1] + a[j1 + 1]; |
|
1228
|
132976
|
|
|
|
|
|
x1r = a[j] - a[j1]; |
|
1229
|
132976
|
|
|
|
|
|
x1i = a[j + 1] - a[j1 + 1]; |
|
1230
|
132976
|
|
|
|
|
|
x2r = a[j2] + a[j3]; |
|
1231
|
132976
|
|
|
|
|
|
x2i = a[j2 + 1] + a[j3 + 1]; |
|
1232
|
132976
|
|
|
|
|
|
x3r = a[j2] - a[j3]; |
|
1233
|
132976
|
|
|
|
|
|
x3i = a[j2 + 1] - a[j3 + 1]; |
|
1234
|
132976
|
|
|
|
|
|
a[j] = x0r + x2r; |
|
1235
|
132976
|
|
|
|
|
|
a[j + 1] = x0i + x2i; |
|
1236
|
132976
|
|
|
|
|
|
x0r -= x2r; |
|
1237
|
132976
|
|
|
|
|
|
x0i -= x2i; |
|
1238
|
132976
|
|
|
|
|
|
a[j2] = -wk2i * x0r - wk2r * x0i; |
|
1239
|
132976
|
|
|
|
|
|
a[j2 + 1] = -wk2i * x0i + wk2r * x0r; |
|
1240
|
132976
|
|
|
|
|
|
x0r = x1r - x3i; |
|
1241
|
132976
|
|
|
|
|
|
x0i = x1i + x3r; |
|
1242
|
132976
|
|
|
|
|
|
a[j1] = wk1r * x0r - wk1i * x0i; |
|
1243
|
132976
|
|
|
|
|
|
a[j1 + 1] = wk1r * x0i + wk1i * x0r; |
|
1244
|
132976
|
|
|
|
|
|
x0r = x1r + x3i; |
|
1245
|
132976
|
|
|
|
|
|
x0i = x1i - x3r; |
|
1246
|
132976
|
|
|
|
|
|
a[j3] = wk3r * x0r - wk3i * x0i; |
|
1247
|
132976
|
|
|
|
|
|
a[j3 + 1] = wk3r * x0i + wk3i * x0r; |
|
1248
|
|
|
|
|
|
|
} |
|
1249
|
|
|
|
|
|
|
} |
|
1250
|
160
|
|
|
|
|
|
} |
|
1251
|
|
|
|
|
|
|
|
|
1252
|
|
|
|
|
|
|
|
|
1253
|
309
|
|
|
|
|
|
void rftfsub(int n, double *a, int nc, double *c) |
|
1254
|
|
|
|
|
|
|
{ |
|
1255
|
|
|
|
|
|
|
int j, k, kk, ks, m; |
|
1256
|
|
|
|
|
|
|
double wkr, wki, xr, xi, yr, yi; |
|
1257
|
|
|
|
|
|
|
|
|
1258
|
309
|
|
|
|
|
|
m = n >> 1; |
|
1259
|
309
|
|
|
|
|
|
ks = 2 * nc / m; |
|
1260
|
309
|
|
|
|
|
|
kk = 0; |
|
1261
|
59320
|
100
|
|
|
|
|
for (j = 2; j < m; j += 2) { |
|
1262
|
59011
|
|
|
|
|
|
k = n - j; |
|
1263
|
59011
|
|
|
|
|
|
kk += ks; |
|
1264
|
59011
|
|
|
|
|
|
wkr = 0.5 - c[nc - kk]; |
|
1265
|
59011
|
|
|
|
|
|
wki = c[kk]; |
|
1266
|
59011
|
|
|
|
|
|
xr = a[j] - a[k]; |
|
1267
|
59011
|
|
|
|
|
|
xi = a[j + 1] + a[k + 1]; |
|
1268
|
59011
|
|
|
|
|
|
yr = wkr * xr - wki * xi; |
|
1269
|
59011
|
|
|
|
|
|
yi = wkr * xi + wki * xr; |
|
1270
|
59011
|
|
|
|
|
|
a[j] -= yr; |
|
1271
|
59011
|
|
|
|
|
|
a[j + 1] -= yi; |
|
1272
|
59011
|
|
|
|
|
|
a[k] += yr; |
|
1273
|
59011
|
|
|
|
|
|
a[k + 1] -= yi; |
|
1274
|
|
|
|
|
|
|
} |
|
1275
|
309
|
|
|
|
|
|
} |
|
1276
|
|
|
|
|
|
|
|
|
1277
|
|
|
|
|
|
|
|
|
1278
|
14
|
|
|
|
|
|
void rftbsub(int n, double *a, int nc, double *c) |
|
1279
|
|
|
|
|
|
|
{ |
|
1280
|
|
|
|
|
|
|
int j, k, kk, ks, m; |
|
1281
|
|
|
|
|
|
|
double wkr, wki, xr, xi, yr, yi; |
|
1282
|
|
|
|
|
|
|
|
|
1283
|
14
|
|
|
|
|
|
a[1] = -a[1]; |
|
1284
|
14
|
|
|
|
|
|
m = n >> 1; |
|
1285
|
14
|
|
|
|
|
|
ks = 2 * nc / m; |
|
1286
|
14
|
|
|
|
|
|
kk = 0; |
|
1287
|
24620
|
100
|
|
|
|
|
for (j = 2; j < m; j += 2) { |
|
1288
|
24606
|
|
|
|
|
|
k = n - j; |
|
1289
|
24606
|
|
|
|
|
|
kk += ks; |
|
1290
|
24606
|
|
|
|
|
|
wkr = 0.5 - c[nc - kk]; |
|
1291
|
24606
|
|
|
|
|
|
wki = c[kk]; |
|
1292
|
24606
|
|
|
|
|
|
xr = a[j] - a[k]; |
|
1293
|
24606
|
|
|
|
|
|
xi = a[j + 1] + a[k + 1]; |
|
1294
|
24606
|
|
|
|
|
|
yr = wkr * xr + wki * xi; |
|
1295
|
24606
|
|
|
|
|
|
yi = wkr * xi - wki * xr; |
|
1296
|
24606
|
|
|
|
|
|
a[j] -= yr; |
|
1297
|
24606
|
|
|
|
|
|
a[j + 1] = yi - a[j + 1]; |
|
1298
|
24606
|
|
|
|
|
|
a[k] += yr; |
|
1299
|
24606
|
|
|
|
|
|
a[k + 1] = yi - a[k + 1]; |
|
1300
|
|
|
|
|
|
|
} |
|
1301
|
14
|
|
|
|
|
|
a[m + 1] = -a[m + 1]; |
|
1302
|
14
|
|
|
|
|
|
} |
|
1303
|
|
|
|
|
|
|
|
|
1304
|
|
|
|
|
|
|
|
|
1305
|
38
|
|
|
|
|
|
void dctsub(int n, double *a, int nc, double *c) |
|
1306
|
|
|
|
|
|
|
{ |
|
1307
|
|
|
|
|
|
|
int j, k, kk, ks, m; |
|
1308
|
|
|
|
|
|
|
double wkr, wki, xr; |
|
1309
|
|
|
|
|
|
|
|
|
1310
|
38
|
|
|
|
|
|
m = n >> 1; |
|
1311
|
38
|
|
|
|
|
|
ks = nc / n; |
|
1312
|
38
|
|
|
|
|
|
kk = 0; |
|
1313
|
65564
|
100
|
|
|
|
|
for (j = 1; j < m; j++) { |
|
1314
|
65526
|
|
|
|
|
|
k = n - j; |
|
1315
|
65526
|
|
|
|
|
|
kk += ks; |
|
1316
|
65526
|
|
|
|
|
|
wkr = c[kk] - c[nc - kk]; |
|
1317
|
65526
|
|
|
|
|
|
wki = c[kk] + c[nc - kk]; |
|
1318
|
65526
|
|
|
|
|
|
xr = wki * a[j] - wkr * a[k]; |
|
1319
|
65526
|
|
|
|
|
|
a[j] = wkr * a[j] + wki * a[k]; |
|
1320
|
65526
|
|
|
|
|
|
a[k] = xr; |
|
1321
|
|
|
|
|
|
|
} |
|
1322
|
38
|
|
|
|
|
|
a[m] *= c[0]; |
|
1323
|
38
|
|
|
|
|
|
} |
|
1324
|
|
|
|
|
|
|
|
|
1325
|
|
|
|
|
|
|
|
|
1326
|
38
|
|
|
|
|
|
void dstsub(int n, double *a, int nc, double *c) |
|
1327
|
|
|
|
|
|
|
{ |
|
1328
|
|
|
|
|
|
|
int j, k, kk, ks, m; |
|
1329
|
|
|
|
|
|
|
double wkr, wki, xr; |
|
1330
|
|
|
|
|
|
|
|
|
1331
|
38
|
|
|
|
|
|
m = n >> 1; |
|
1332
|
38
|
|
|
|
|
|
ks = nc / n; |
|
1333
|
38
|
|
|
|
|
|
kk = 0; |
|
1334
|
65564
|
100
|
|
|
|
|
for (j = 1; j < m; j++) { |
|
1335
|
65526
|
|
|
|
|
|
k = n - j; |
|
1336
|
65526
|
|
|
|
|
|
kk += ks; |
|
1337
|
65526
|
|
|
|
|
|
wkr = c[kk] - c[nc - kk]; |
|
1338
|
65526
|
|
|
|
|
|
wki = c[kk] + c[nc - kk]; |
|
1339
|
65526
|
|
|
|
|
|
xr = wki * a[k] - wkr * a[j]; |
|
1340
|
65526
|
|
|
|
|
|
a[k] = wkr * a[k] + wki * a[j]; |
|
1341
|
65526
|
|
|
|
|
|
a[j] = xr; |
|
1342
|
|
|
|
|
|
|
} |
|
1343
|
38
|
|
|
|
|
|
a[m] *= c[0]; |
|
1344
|
38
|
|
|
|
|
|
} |
|
1345
|
|
|
|
|
|
|
|