| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
####################################################################### |
|
2
|
|
|
|
|
|
|
# $Id: DyckWords.pm,v 1.2 2010/04/14 03:41:06 mmertel Exp $ |
|
3
|
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
=head1 NAME |
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
Math::DyckWords - Perl module for generating Dyck words. Dyck words |
|
7
|
|
|
|
|
|
|
are named after the mathematician Walther von Dyck. |
|
8
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
10
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
use Math::DyckWords qw( dyck_words_by_lex |
|
12
|
|
|
|
|
|
|
dyck_words_by_position |
|
13
|
|
|
|
|
|
|
dyck_words_by_swap |
|
14
|
|
|
|
|
|
|
ranking |
|
15
|
|
|
|
|
|
|
unranking |
|
16
|
|
|
|
|
|
|
catalan_number ); |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
@words = dyck_words_by_lex( 4 ); |
|
19
|
|
|
|
|
|
|
@words = dyck_words_by_position( 4 ); |
|
20
|
|
|
|
|
|
|
@words = dyck_words_by_swap( 4 ); |
|
21
|
|
|
|
|
|
|
$rank = ranking( '01010101' ); |
|
22
|
|
|
|
|
|
|
$word = unranking( 3, 2 ); |
|
23
|
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
25
|
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
Dyck words are even numbered string of X's and Y's, or 0's and 1's, |
|
27
|
|
|
|
|
|
|
or any other binary alphabet for that matter, such that no initial |
|
28
|
|
|
|
|
|
|
segment has more Y's or 1's. The following are the Dyck words of |
|
29
|
|
|
|
|
|
|
length 2n where n = 3: |
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
000111 |
|
32
|
|
|
|
|
|
|
010011 |
|
33
|
|
|
|
|
|
|
010101 |
|
34
|
|
|
|
|
|
|
001101 |
|
35
|
|
|
|
|
|
|
001011 |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
Another common use of Dyck words is in dealing with the balanced |
|
38
|
|
|
|
|
|
|
parenthesis problem. Substituting the left and right parentheses |
|
39
|
|
|
|
|
|
|
for the 0's an 1's listed above we have: |
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
((())) |
|
42
|
|
|
|
|
|
|
()(()) |
|
43
|
|
|
|
|
|
|
()()() |
|
44
|
|
|
|
|
|
|
(())() |
|
45
|
|
|
|
|
|
|
(()()) |
|
46
|
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
There is also a relationship between Dyck words and Catalan numbers. |
|
48
|
|
|
|
|
|
|
Catalan numbers have many applications in combinatorics and consists |
|
49
|
|
|
|
|
|
|
of a sequence of ever increasing integers following the formula: |
|
50
|
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
(2n)!/(n!(n+1)!) |
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
The first few numbers in the Catalan sequence are: |
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
1, 1, 2, 5, 14, 132, 429, 1430, 4862, 16796, 58786, 208012 |
|
56
|
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
The relationship between Dyck words and the Catalan sequence can |
|
58
|
|
|
|
|
|
|
be easily seen as the nth Catalan number is equal to the number of |
|
59
|
|
|
|
|
|
|
permutations, or unique Dyck words of length 2n. For example, |
|
60
|
|
|
|
|
|
|
the 3rd Catalan number, using a zero index, is 5. This is the same |
|
61
|
|
|
|
|
|
|
number of Dyck words of length 2n where n = 3. |
|
62
|
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
The algorithms in this module are based on those presented in the |
|
64
|
|
|
|
|
|
|
scholarly paper "Generating and ranking of Dyck words" by Zoltan Kasa |
|
65
|
|
|
|
|
|
|
available on-line at http://arxiv4.library.cornell.edu/pdf/1002.2625, |
|
66
|
|
|
|
|
|
|
and the provide three different Dyck word generators - lexigraphical, |
|
67
|
|
|
|
|
|
|
positional, and one that generates Dyck words by swapping characters. |
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
=head1 EXPORT |
|
70
|
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
None by default. |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
=cut |
|
74
|
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
package Math::DyckWords; |
|
76
|
|
|
|
|
|
|
|
|
77
|
1
|
|
|
1
|
|
30798
|
use 5.006; |
|
|
1
|
|
|
|
|
4
|
|
|
|
1
|
|
|
|
|
44
|
|
|
78
|
1
|
|
|
1
|
|
7
|
use strict; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
36
|
|
|
79
|
1
|
|
|
1
|
|
6
|
use warnings; |
|
|
1
|
|
|
|
|
7
|
|
|
|
1
|
|
|
|
|
43
|
|
|
80
|
|
|
|
|
|
|
|
|
81
|
1
|
|
|
1
|
|
5
|
use Carp; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
118
|
|
|
82
|
1
|
|
|
1
|
|
1834
|
use Data::Dumper; |
|
|
1
|
|
|
|
|
13282
|
|
|
|
1
|
|
|
|
|
86
|
|
|
83
|
1
|
|
|
1
|
|
4816
|
use Math::BigInt; |
|
|
1
|
|
|
|
|
26829
|
|
|
|
1
|
|
|
|
|
7
|
|
|
84
|
1
|
|
|
1
|
|
22058
|
use Exporter; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
1896
|
|
|
85
|
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
our $VERSION = '0.03'; |
|
87
|
|
|
|
|
|
|
our @ISA = qw( Exporter ); |
|
88
|
|
|
|
|
|
|
our @EXPORT_OK = qw( dyck_words_by_lex |
|
89
|
|
|
|
|
|
|
dyck_words_by_position |
|
90
|
|
|
|
|
|
|
dyck_words_by_swap |
|
91
|
|
|
|
|
|
|
ranking |
|
92
|
|
|
|
|
|
|
unranking |
|
93
|
|
|
|
|
|
|
catalan_number ); |
|
94
|
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
=head1 FUNCTIONS |
|
96
|
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
=over |
|
98
|
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
=item dyck_words_by_lex( $n ) |
|
100
|
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
This algorithm returns a list of all Dyck words of length 2n in ascending |
|
102
|
|
|
|
|
|
|
lexicographic order, i.e. 000111, 001011, 001101, 010011, 010101 |
|
103
|
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
=back |
|
105
|
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
=cut |
|
107
|
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
my @words; |
|
109
|
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
sub dyck_words_by_lex { |
|
111
|
195
|
|
|
195
|
1
|
292
|
my ( $n, $X, $i, $n0, $n1 ) = @_; |
|
112
|
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
# initialization - the first time called, the only argument |
|
114
|
|
|
|
|
|
|
# is the length 2n of the words |
|
115
|
195
|
100
|
|
|
|
360
|
if( not defined $X ) { |
|
116
|
1
|
|
|
|
|
3
|
( $X, $i, $n0, $n1 ) = ( '0', 1, 1, 0 ); |
|
117
|
1
|
|
|
|
|
3
|
@words = (); |
|
118
|
|
|
|
|
|
|
} |
|
119
|
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
# Case 1: We can continue by adding 0 and 1. |
|
121
|
195
|
100
|
66
|
|
|
689
|
if( $n0 < $n && $n1 < $n && $n0 > $n1 ) { |
|
|
|
|
100
|
|
|
|
|
|
122
|
41
|
|
|
|
|
132
|
dyck_words_by_lex( $n, $X . '0', $i++, $n0 + 1, $n1 ); |
|
123
|
41
|
|
|
|
|
120
|
dyck_words_by_lex( $n, $X . '1', $i++, $n0, $n1 + 1 ); |
|
124
|
|
|
|
|
|
|
} |
|
125
|
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
# Case 2: We can continue by adding 0 only. |
|
127
|
195
|
100
|
66
|
|
|
1107
|
if( ( $n0 < $n && $n1 < $n && $n0 == $n1 ) || |
|
|
|
|
100
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
128
|
|
|
|
|
|
|
( $n0 < $n && $n1 == $n ) ) |
|
129
|
|
|
|
|
|
|
{ |
|
130
|
22
|
|
|
|
|
58
|
dyck_words_by_lex( $n, $X . '0', $i++, $n0 + 1, $n1 ); |
|
131
|
|
|
|
|
|
|
} |
|
132
|
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
# Case 3: We can continue by adding 1 only. |
|
134
|
195
|
100
|
100
|
|
|
674
|
if( $n0 == $n && $n1 < $n ) { |
|
135
|
90
|
|
|
|
|
259
|
dyck_words_by_lex( $n, $X . '1', $i++, $n0, $n1 + 1 ); |
|
136
|
|
|
|
|
|
|
} |
|
137
|
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
# Case 5: A Dyck word is obtained. |
|
139
|
195
|
100
|
100
|
|
|
708
|
if( $n0 == $n && $n1 == $n ) { |
|
140
|
42
|
|
|
|
|
72
|
push @words, $X; |
|
141
|
|
|
|
|
|
|
} |
|
142
|
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
# All Dyck words have been obtained |
|
144
|
195
|
|
|
|
|
259
|
return @words; |
|
145
|
|
|
|
|
|
|
} |
|
146
|
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
=over |
|
148
|
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
=item dyck_words_by_position( $n ) |
|
150
|
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
This algorithm returns a list of all Dyck words of length 2n in descending |
|
152
|
|
|
|
|
|
|
lexicographic order, i.e. 010101, 010011, 001101, 001011, 000111. |
|
153
|
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
=back |
|
155
|
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
=cut |
|
157
|
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
sub dyck_words_by_position { |
|
159
|
1
|
|
|
1
|
1
|
382
|
my $n = shift; |
|
160
|
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
# reset the return list |
|
162
|
1
|
|
|
|
|
5
|
@words = (); |
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
# generate the maximum Dyck word of length n - which has 1s in all |
|
165
|
|
|
|
|
|
|
# even numbered positions, i.e. 2468 = 01010101 |
|
166
|
1
|
|
|
|
|
3
|
my @b = map { $_ * 2 } ( 1 .. $n ); |
|
|
5
|
|
|
|
|
10
|
|
|
167
|
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
# set a flag |
|
169
|
1
|
|
|
|
|
3
|
my $found = 1; |
|
170
|
|
|
|
|
|
|
|
|
171
|
1
|
|
|
|
|
5
|
while( $found ) { |
|
172
|
|
|
|
|
|
|
# save the Dyck word to the return list |
|
173
|
42
|
|
|
|
|
633
|
push @words, translate_positions( @b ); |
|
174
|
|
|
|
|
|
|
|
|
175
|
|
|
|
|
|
|
# reset flag |
|
176
|
42
|
|
|
|
|
54
|
$found = 0; |
|
177
|
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
# reverse iterate through the length of the word |
|
179
|
|
|
|
|
|
|
# setting the appropriate bits to 1's or 0's |
|
180
|
42
|
|
|
|
|
94
|
for( my $i = $n - 1; $i >= 1; $i-- ) { |
|
181
|
89
|
100
|
|
|
|
210
|
if( $b[ $i - 1 ] < $n + $i ) { |
|
182
|
41
|
|
|
|
|
43
|
$b[ $i - 1 ] += 1; |
|
183
|
|
|
|
|
|
|
|
|
184
|
41
|
|
|
|
|
88
|
for( my $j = $i + 1; $j <= $n - 1; $j++ ) { |
|
185
|
44
|
100
|
|
|
|
135
|
$b[ $j - 1 ] = $b[ $j - 2 ] + 1 > $j * 2 |
|
186
|
|
|
|
|
|
|
? $b[ $j - 2 ] + 1 |
|
187
|
|
|
|
|
|
|
: $j * 2; |
|
188
|
|
|
|
|
|
|
} |
|
189
|
41
|
|
|
|
|
38
|
$found = 1; |
|
190
|
41
|
|
|
|
|
86
|
last; |
|
191
|
|
|
|
|
|
|
} |
|
192
|
|
|
|
|
|
|
} |
|
193
|
|
|
|
|
|
|
} |
|
194
|
1
|
|
|
|
|
26
|
return @words; |
|
195
|
|
|
|
|
|
|
} |
|
196
|
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
=over |
|
198
|
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
=item translate_positions( @p ) |
|
200
|
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
This function translates an array of integer values indicating |
|
202
|
|
|
|
|
|
|
the position of 1's in the resultant Dyck word, and is called by |
|
203
|
|
|
|
|
|
|
the dyck_words_by_position function. |
|
204
|
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
=back |
|
206
|
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
=cut |
|
208
|
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
sub translate_positions( @ ) { |
|
210
|
43
|
|
|
43
|
1
|
54
|
my $n = scalar @_; |
|
211
|
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
# convert the list of positions to a hash for easier lookup |
|
213
|
43
|
|
|
|
|
42
|
my %position; |
|
214
|
43
|
|
|
|
|
193
|
@position{ @_ } = @_; |
|
215
|
|
|
|
|
|
|
|
|
216
|
43
|
|
|
|
|
56
|
my $word; |
|
217
|
43
|
|
|
|
|
96
|
for( my $i = 0; $i < $n * 2; $i++ ) { |
|
218
|
430
|
100
|
|
|
|
1084
|
$word .= exists $position{ $i + 1 } ? '1' : '0'; |
|
219
|
|
|
|
|
|
|
} |
|
220
|
43
|
|
|
|
|
140
|
return $word; |
|
221
|
|
|
|
|
|
|
} |
|
222
|
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
=over |
|
224
|
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
=item dyck_words_by_position( $n ) |
|
226
|
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
This algorithm returns a list of all Dyck words of length 2n in no |
|
228
|
|
|
|
|
|
|
particular order, i.e. 010101, 001101, 001011, 000111, 010011. This |
|
229
|
|
|
|
|
|
|
is done by changing the first occurrence of '10' to '01'. |
|
230
|
|
|
|
|
|
|
|
|
231
|
|
|
|
|
|
|
=back |
|
232
|
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
=cut |
|
234
|
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
sub dyck_words_by_swap { |
|
236
|
42
|
|
|
42
|
0
|
388
|
my ( $n, $X, $k ) = @_; |
|
237
|
|
|
|
|
|
|
|
|
238
|
42
|
100
|
|
|
|
84
|
if( not defined $X ) { |
|
239
|
1
|
|
|
|
|
5
|
$X = join '', ( '01' x $n ); |
|
240
|
1
|
|
|
|
|
2
|
$k = 0; |
|
241
|
1
|
|
|
|
|
5
|
@words = ( $X ); |
|
242
|
|
|
|
|
|
|
} |
|
243
|
|
|
|
|
|
|
|
|
244
|
42
|
|
|
|
|
50
|
my $i = $k; |
|
245
|
|
|
|
|
|
|
|
|
246
|
42
|
|
|
|
|
94
|
while( $i < $n * 2 ) { |
|
247
|
83
|
|
|
|
|
153
|
my $j = index( $X, '10', $i ); |
|
248
|
83
|
100
|
|
|
|
139
|
if( $j > 0 ) { |
|
249
|
41
|
|
|
|
|
204
|
my @Y = split //, $X; |
|
250
|
|
|
|
|
|
|
# swap |
|
251
|
41
|
|
|
|
|
125
|
( $Y[ $j ], $Y[ $j + 1 ] ) = |
|
252
|
|
|
|
|
|
|
( $Y[ $j + 1 ], $Y[ $j ] ); |
|
253
|
41
|
|
|
|
|
89
|
my $Y = join '', @Y; |
|
254
|
41
|
|
|
|
|
62
|
push @words, $Y; |
|
255
|
41
|
|
|
|
|
94
|
dyck_words_by_swap( $n, $Y, $j - 1 ); |
|
256
|
41
|
|
|
|
|
148
|
$i = $j + 2; |
|
257
|
|
|
|
|
|
|
} |
|
258
|
|
|
|
|
|
|
else { |
|
259
|
42
|
|
|
|
|
80
|
return @words; |
|
260
|
|
|
|
|
|
|
} |
|
261
|
|
|
|
|
|
|
} |
|
262
|
|
|
|
|
|
|
} |
|
263
|
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
=over |
|
265
|
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
=item monotonic_path_count( $n, $i, $j ) |
|
267
|
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
Ranking Dyck words means to determine the position of a Dyck |
|
269
|
|
|
|
|
|
|
word in a given ordered sequence of all Dyck words. |
|
270
|
|
|
|
|
|
|
For ranking these words we will use the following function, |
|
271
|
|
|
|
|
|
|
where f(n,i,j) represents the number of paths between (0,0) |
|
272
|
|
|
|
|
|
|
and (i,j) not crossing the diagonal x = y of the grid. |
|
273
|
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
=back |
|
275
|
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
=cut |
|
277
|
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
sub monotonic_path_count { |
|
279
|
141
|
|
|
141
|
1
|
151
|
my ( $n, $i, $j ) = @_; |
|
280
|
|
|
|
|
|
|
|
|
281
|
141
|
100
|
33
|
|
|
861
|
if( $n >= $i and $i >= 0 and $j == 0 ) { |
|
|
|
|
66
|
|
|
|
|
|
282
|
58
|
|
|
|
|
163
|
return 1; |
|
283
|
|
|
|
|
|
|
} |
|
284
|
83
|
100
|
66
|
|
|
381
|
if( $n >= $i and $i > $j and $j >= 1 ) { |
|
|
|
|
66
|
|
|
|
|
|
285
|
47
|
|
|
|
|
101
|
return monotonic_path_count( $n, $i - 1, $j ) + |
|
286
|
|
|
|
|
|
|
monotonic_path_count( $n, $i, $j - 1 ); |
|
287
|
|
|
|
|
|
|
} |
|
288
|
36
|
50
|
33
|
|
|
181
|
if( $n >= $i and $i >= 1 and $j == $i ) { |
|
|
|
|
33
|
|
|
|
|
|
289
|
36
|
|
|
|
|
73
|
return monotonic_path_count( $n, $i, $i - 1 ); |
|
290
|
|
|
|
|
|
|
} |
|
291
|
0
|
0
|
0
|
|
|
0
|
if( $n >= $j and $j > $i and $i >= 0 ) { |
|
|
|
|
0
|
|
|
|
|
|
292
|
0
|
|
|
|
|
0
|
return 0; |
|
293
|
|
|
|
|
|
|
} |
|
294
|
|
|
|
|
|
|
} |
|
295
|
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
=over |
|
297
|
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
=item positions( $w ) |
|
299
|
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
This function converts a Dyck word string of 1's and 0's into a list |
|
301
|
|
|
|
|
|
|
of positions where the 1's are located, i.e. 2468 => 01010101 |
|
302
|
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
=back |
|
304
|
|
|
|
|
|
|
|
|
305
|
|
|
|
|
|
|
=cut |
|
306
|
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
sub positions( $ ) { |
|
308
|
1
|
|
|
1
|
1
|
3
|
my $w = shift; |
|
309
|
|
|
|
|
|
|
|
|
310
|
1
|
|
|
|
|
5
|
my ( $i, @p ) = ( 1, () ); |
|
311
|
1
|
|
|
|
|
10
|
foreach my $p ( split //, $w ) { |
|
312
|
10
|
100
|
|
|
|
24
|
if( $p == 1 ) { |
|
313
|
5
|
|
|
|
|
10
|
push @p, $i; |
|
314
|
|
|
|
|
|
|
} |
|
315
|
10
|
|
|
|
|
16
|
$i++; |
|
316
|
|
|
|
|
|
|
} |
|
317
|
1
|
|
|
|
|
6
|
return @p; |
|
318
|
|
|
|
|
|
|
} |
|
319
|
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
=over |
|
321
|
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
=item ranking( $w ) |
|
323
|
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
This function returns the rank of an individual Dyck word $w in the |
|
325
|
|
|
|
|
|
|
list of all Dyck words of the same length. |
|
326
|
|
|
|
|
|
|
|
|
327
|
|
|
|
|
|
|
=back |
|
328
|
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
=cut |
|
330
|
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
sub ranking( $ ) { |
|
332
|
1
|
|
|
1
|
1
|
1037
|
my @b = positions( shift ); |
|
333
|
|
|
|
|
|
|
|
|
334
|
1
|
|
|
|
|
3
|
my @c = ( 2 ); |
|
335
|
1
|
|
|
|
|
13
|
my $n = scalar @b; |
|
336
|
1
|
|
|
|
|
6
|
for( my $j = 2; $j <= $n; $j++ ) { |
|
337
|
4
|
100
|
|
|
|
21
|
$c[ $j - 1 ] = $b[ $j - 2 ] + 1 > $j * 2 |
|
338
|
|
|
|
|
|
|
? $b[ $j - 2 ] + 1 |
|
339
|
|
|
|
|
|
|
: $j * 2; |
|
340
|
|
|
|
|
|
|
} |
|
341
|
1
|
|
|
|
|
2
|
my $nr = 1; |
|
342
|
1
|
|
|
|
|
5
|
for( my $i = 1; $i <= $n - 1; $i++ ) { |
|
343
|
4
|
|
|
|
|
209
|
for( my $j = $c[ $i - 1]; $j <= $b[ $i - 1] - 1; $j++ ) { |
|
344
|
3
|
|
|
|
|
9
|
$nr = $nr + monotonic_path_count( $n, $n - $i, $n + $i - $j ); |
|
345
|
|
|
|
|
|
|
} |
|
346
|
|
|
|
|
|
|
} |
|
347
|
1
|
|
|
|
|
4
|
return $nr; |
|
348
|
|
|
|
|
|
|
} |
|
349
|
|
|
|
|
|
|
|
|
350
|
|
|
|
|
|
|
=over |
|
351
|
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
=item unranking( $n, $r ) |
|
353
|
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
This function returns the rank $r Dyck word of length $n. |
|
355
|
|
|
|
|
|
|
|
|
356
|
|
|
|
|
|
|
=back |
|
357
|
|
|
|
|
|
|
|
|
358
|
|
|
|
|
|
|
=cut |
|
359
|
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
sub unranking( $$ ) { |
|
361
|
1
|
|
|
1
|
1
|
361
|
my ( $n, $nr ) = @_; |
|
362
|
|
|
|
|
|
|
|
|
363
|
|
|
|
|
|
|
# initialize the dyck word to all '0' |
|
364
|
1
|
|
|
|
|
6
|
my @b = ( '0' x ( $n * 2 ) ); |
|
365
|
|
|
|
|
|
|
|
|
366
|
1
|
|
|
|
|
2
|
$nr--; |
|
367
|
|
|
|
|
|
|
|
|
368
|
1
|
|
|
|
|
6
|
for( my $i = 1; $i <= $n; $i++ ) { |
|
369
|
5
|
100
|
|
|
|
18
|
$b[ $i ] = $b[ $i - 1 ] + 1 > $i * 2 |
|
370
|
|
|
|
|
|
|
? $b[ $i - 1 ] + 1 |
|
371
|
|
|
|
|
|
|
: $i * 2; |
|
372
|
|
|
|
|
|
|
|
|
373
|
5
|
|
|
|
|
9
|
my $j = $n + $i - $b[ $i ]; |
|
374
|
5
|
|
|
|
|
11
|
my $np = monotonic_path_count( $n, $n - $i, $j ); |
|
375
|
|
|
|
|
|
|
|
|
376
|
5
|
|
66
|
|
|
26
|
while( $nr >= $np && ( $b[ $i ] < $n + $i ) ) { |
|
377
|
3
|
|
|
|
|
4
|
$nr = $nr - $np; |
|
378
|
3
|
|
|
|
|
4
|
$b[ $i ] = $b[ $i ] + 1; |
|
379
|
3
|
|
|
|
|
5
|
$j = $j - 1; |
|
380
|
3
|
|
|
|
|
6
|
$np = monotonic_path_count( $n, $n - $i, $j ); |
|
381
|
|
|
|
|
|
|
} |
|
382
|
|
|
|
|
|
|
} |
|
383
|
|
|
|
|
|
|
# discard the zeroth element of the list of positions |
|
384
|
1
|
|
|
|
|
3
|
shift @b; |
|
385
|
|
|
|
|
|
|
|
|
386
|
1
|
|
|
|
|
5
|
return translate_positions( @b ); |
|
387
|
|
|
|
|
|
|
} |
|
388
|
|
|
|
|
|
|
|
|
389
|
|
|
|
|
|
|
=over |
|
390
|
|
|
|
|
|
|
|
|
391
|
|
|
|
|
|
|
=item catalan_number( $n ) |
|
392
|
|
|
|
|
|
|
|
|
393
|
|
|
|
|
|
|
Using the formula - (2n)!/(n!(n+1)!) - this function returns the |
|
394
|
|
|
|
|
|
|
corresponding number $n from the Catalan sequence. |
|
395
|
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
=back |
|
397
|
|
|
|
|
|
|
|
|
398
|
|
|
|
|
|
|
=cut |
|
399
|
|
|
|
|
|
|
|
|
400
|
|
|
|
|
|
|
sub catalan_number( $ ) { |
|
401
|
1
|
|
|
1
|
1
|
261
|
my $x = shift; |
|
402
|
|
|
|
|
|
|
|
|
403
|
1
|
|
|
|
|
13
|
my $X = Math::BigInt->new( $x ); |
|
404
|
1
|
|
|
|
|
110
|
my $Y = $X->copy; |
|
405
|
1
|
|
|
|
|
21
|
my $Z = $X->copy; |
|
406
|
|
|
|
|
|
|
|
|
407
|
1
|
|
|
|
|
16
|
return $X->bmul( 2 )->bfac->bdiv( |
|
408
|
|
|
|
|
|
|
$Y->bfac->bmul( $Z->badd( 1 )->bfac ) |
|
409
|
|
|
|
|
|
|
); |
|
410
|
|
|
|
|
|
|
} |
|
411
|
|
|
|
|
|
|
|
|
412
|
|
|
|
|
|
|
1; |