line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Math::Derivative; |
2
|
|
|
|
|
|
|
|
3
|
6
|
|
|
6
|
|
47794
|
use 5.010001; |
|
6
|
|
|
|
|
20
|
|
4
|
6
|
|
|
6
|
|
29
|
use Exporter; |
|
6
|
|
|
|
|
7
|
|
|
6
|
|
|
|
|
567
|
|
5
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
7
|
|
|
|
|
|
|
our %EXPORT_TAGS = (all => [qw( |
8
|
|
|
|
|
|
|
Derivative1 |
9
|
|
|
|
|
|
|
Derivative2 |
10
|
|
|
|
|
|
|
centraldiff |
11
|
|
|
|
|
|
|
forwarddiff |
12
|
|
|
|
|
|
|
)]); |
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
our @EXPORT_OK = (@{$EXPORT_TAGS{all}}); |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
our $VERSION = 0.04; |
17
|
|
|
|
|
|
|
|
18
|
6
|
|
|
6
|
|
33
|
use strict; |
|
6
|
|
|
|
|
16
|
|
|
6
|
|
|
|
|
155
|
|
19
|
6
|
|
|
6
|
|
28
|
use warnings; |
|
6
|
|
|
|
|
12
|
|
|
6
|
|
|
|
|
158
|
|
20
|
6
|
|
|
6
|
|
23
|
use Carp; |
|
6
|
|
|
|
|
9
|
|
|
6
|
|
|
|
|
3131
|
|
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
=head1 NAME |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
Math::Derivative - Numeric 1st and 2nd order differentiation |
25
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
=head1 SYNOPSIS |
27
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
use Math::Derivative qw(:all); |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
@dydx = forwarddiff(\@x, \@y); |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
@dydx = centraldiff(\@x, \@y); |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
@dydx = Derivative1(\@x, \@y); # A synonym for centraldiff() |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
@d2ydx2 = Derivative2(\@x, \@y, $yd0, $ydn); |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
=head1 DESCRIPTION |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
This Perl package exports functions that numerically approximate first |
41
|
|
|
|
|
|
|
and second order differentiation on vectors of data. The accuracy of |
42
|
|
|
|
|
|
|
the approximation will depend upon the differences between the |
43
|
|
|
|
|
|
|
successive values in the X array. |
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
=head2 FUNCTIONS |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
The functions may be imported by name or by using the tag ":all". |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
=head3 forwarddiff() |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
@dydx = forwarddiff(\@x, \@y); |
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
Take the references to two arrays containing the x and y ordinates of |
54
|
|
|
|
|
|
|
the data, and return an array of approximate first derivatives at the |
55
|
|
|
|
|
|
|
given x ordinates, using the forward difference approximation. |
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
The last term is actually formed using a backward difference formula, |
58
|
|
|
|
|
|
|
there being no array item to subtract from at the end of the array. |
59
|
|
|
|
|
|
|
If you want to use derivatives strictly formed from the forward |
60
|
|
|
|
|
|
|
difference formula, use only the values from [0 .. #y-1], e.g.: |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
@dydx = (forwarddiff(\@x, \@y))[0 .. $#y-1]; |
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
or, more simply, |
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
@dydx = forwarddiff(\@x, \@y); |
67
|
|
|
|
|
|
|
pop @dydx; |
68
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
=cut |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
sub forwarddiff |
72
|
|
|
|
|
|
|
{ |
73
|
1
|
|
|
1
|
1
|
146
|
my($x, $y) = @_; |
74
|
1
|
|
|
|
|
2
|
my @y2; |
75
|
1
|
|
|
|
|
3
|
my $n = $#{$x}; |
|
1
|
|
|
|
|
3
|
|
76
|
|
|
|
|
|
|
|
77
|
1
|
50
|
|
|
|
3
|
croak "X and Y array lengths don't match." unless ($n == $#{$y}); |
|
1
|
|
|
|
|
4
|
|
78
|
|
|
|
|
|
|
|
79
|
1
|
|
|
|
|
6
|
$y2[$n] = ($y->[$n] - $y->[$n-1])/($x->[$n] - $x->[$n-1]); |
80
|
|
|
|
|
|
|
|
81
|
1
|
|
|
|
|
6
|
for my $i (0 .. $n-1) |
82
|
|
|
|
|
|
|
{ |
83
|
8
|
|
|
|
|
22
|
$y2[$i] = ($y->[$i+1] - $y->[$i])/($x->[$i+1] - $x->[$i]); |
84
|
|
|
|
|
|
|
} |
85
|
|
|
|
|
|
|
|
86
|
1
|
|
|
|
|
6
|
return @y2; |
87
|
|
|
|
|
|
|
} |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
=head3 centraldiff() |
90
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
@dydx = centraldiff(\@x, \@y); |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
Take the references to two arrays containing the x and y ordinates of |
94
|
|
|
|
|
|
|
the data, and return an array of approximate first derivatives at the |
95
|
|
|
|
|
|
|
given x ordinates. |
96
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
The algorithm used three data points to calculate the derivative, except |
98
|
|
|
|
|
|
|
at the end points, where by necessity the forward difference algorithm |
99
|
|
|
|
|
|
|
is used instead. If you want to use derivatives strictly formed from |
100
|
|
|
|
|
|
|
the central difference formula, use only the values from [1 .. #y-1], |
101
|
|
|
|
|
|
|
e.g.: |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
@dydx = (centraldiff(\@x, \@y))[1 .. $#y-1]; |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
=cut |
106
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
sub centraldiff |
108
|
|
|
|
|
|
|
{ |
109
|
3
|
|
|
3
|
1
|
229
|
my($x, $y) = @_; |
110
|
3
|
|
|
|
|
6
|
my @y2; |
111
|
3
|
|
|
|
|
5
|
my $n = $#{$x}; |
|
3
|
|
|
|
|
7
|
|
112
|
|
|
|
|
|
|
|
113
|
3
|
50
|
|
|
|
5
|
croak "X and Y array lengths don't match." unless ($n == $#{$y}); |
|
3
|
|
|
|
|
9
|
|
114
|
|
|
|
|
|
|
|
115
|
3
|
|
|
|
|
12
|
$y2[0] = ($y->[1] - $y->[0])/($x->[1] - $x->[0]); |
116
|
3
|
|
|
|
|
12
|
$y2[$n] = ($y->[$n] - $y->[$n-1])/($x->[$n] - $x->[$n-1]); |
117
|
|
|
|
|
|
|
|
118
|
3
|
|
|
|
|
11
|
for my $i (1 .. $n-1) |
119
|
|
|
|
|
|
|
{ |
120
|
12
|
|
|
|
|
27
|
$y2[$i] = ($y->[$i+1] - $y->[$i-1])/($x->[$i+1] - $x->[$i-1]); |
121
|
|
|
|
|
|
|
} |
122
|
|
|
|
|
|
|
|
123
|
3
|
|
|
|
|
11
|
return @y2; |
124
|
|
|
|
|
|
|
} |
125
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
=head3 Derivative2() |
127
|
|
|
|
|
|
|
|
128
|
|
|
|
|
|
|
@d2ydx2 = Derivative2(\@x, \@y); |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
or |
131
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
@d2ydx2 = Derivative2(\@x, \@y, $yp0, $ypn); |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
Take references to two arrays containing the x and y ordinates of the |
135
|
|
|
|
|
|
|
data and return an array of approximate second derivatives at the given |
136
|
|
|
|
|
|
|
x ordinates. |
137
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
You may optionally give values to use as the first derivatives at the |
139
|
|
|
|
|
|
|
start and end points of the data. If you don't, first derivative values |
140
|
|
|
|
|
|
|
will be assumed to be zero. |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
=cut |
143
|
|
|
|
|
|
|
|
144
|
|
|
|
|
|
|
sub seconddx |
145
|
|
|
|
|
|
|
{ |
146
|
1
|
|
|
1
|
0
|
372
|
my($x, $y, $yp1, $ypn) = @_; |
147
|
1
|
|
|
|
|
2
|
my(@y2, @u); |
148
|
1
|
|
|
|
|
2
|
my $n = $#{$x}; |
|
1
|
|
|
|
|
1
|
|
149
|
|
|
|
|
|
|
|
150
|
1
|
50
|
|
|
|
2
|
croak "X and Y array lengths don't match." unless ($n == $#{$y}); |
|
1
|
|
|
|
|
3
|
|
151
|
|
|
|
|
|
|
|
152
|
1
|
50
|
|
|
|
3
|
if (defined $yp1) |
153
|
|
|
|
|
|
|
{ |
154
|
1
|
|
|
|
|
2
|
$y2[0] = -0.5; |
155
|
1
|
|
|
|
|
4
|
$u[0] = (3/($x->[1] - $x->[0])) * |
156
|
|
|
|
|
|
|
(($y->[1] - $y->[0])/($x->[1] - $x->[0]) - $yp1); |
157
|
|
|
|
|
|
|
} |
158
|
|
|
|
|
|
|
else |
159
|
|
|
|
|
|
|
{ |
160
|
0
|
|
|
|
|
0
|
$y2[0] = 0; |
161
|
0
|
|
|
|
|
0
|
$u[0] = 0; |
162
|
|
|
|
|
|
|
} |
163
|
|
|
|
|
|
|
|
164
|
1
|
|
|
|
|
3
|
for my $i (1 .. $n-1) |
165
|
|
|
|
|
|
|
{ |
166
|
23
|
|
|
|
|
35
|
my $sig = ($x->[$i] - $x->[$i-1])/($x->[$i+1] - $x->[$i-1]); |
167
|
23
|
|
|
|
|
29
|
my $p = $sig * $y2[$i-1] + 2.0; |
168
|
|
|
|
|
|
|
|
169
|
23
|
|
|
|
|
27
|
$y2[$i] = ($sig - 1.0)/$p; |
170
|
23
|
|
|
|
|
57
|
$u[$i] = (6.0 * ( |
171
|
|
|
|
|
|
|
($y->[$i+1] - $y->[$i])/($x->[$i+1] - $x->[$i]) - |
172
|
|
|
|
|
|
|
($y->[$i] - $y->[$i-1])/($x->[$i] - $x->[$i-1]))/ |
173
|
|
|
|
|
|
|
($x->[$i+1] - $x->[$i-1]) - $sig * $u[$i-1])/$p; |
174
|
|
|
|
|
|
|
} |
175
|
|
|
|
|
|
|
|
176
|
1
|
50
|
|
|
|
3
|
if (defined $ypn) |
177
|
|
|
|
|
|
|
{ |
178
|
1
|
|
|
|
|
2
|
my $qn = 0.5; |
179
|
1
|
|
|
|
|
3
|
my $un = (3.0/($x->[$n]-$x->[$n-1])) * |
180
|
|
|
|
|
|
|
($ypn - ($y->[$n] - $y->[$n-1])/($x->[$n] - $x->[$n-1])); |
181
|
1
|
|
|
|
|
3
|
$y2[$n] = ($un - $qn * $u[$n-1])/($qn * $y2[$n-1] + 1.0); |
182
|
|
|
|
|
|
|
} |
183
|
|
|
|
|
|
|
else |
184
|
|
|
|
|
|
|
{ |
185
|
0
|
|
|
|
|
0
|
$y2[$n] = 0; |
186
|
|
|
|
|
|
|
} |
187
|
|
|
|
|
|
|
|
188
|
1
|
|
|
|
|
2
|
for my $i (reverse 0 .. $n-1) |
189
|
|
|
|
|
|
|
{ |
190
|
24
|
|
|
|
|
31
|
$y2[$i] = $y2[$i] * $y2[$i+1] + $u[$i]; |
191
|
|
|
|
|
|
|
} |
192
|
|
|
|
|
|
|
|
193
|
1
|
|
|
|
|
5
|
return @y2; |
194
|
|
|
|
|
|
|
} |
195
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
=head3 Derivative1() |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
A synonym for centraldiff(). |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
=cut |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
# |
203
|
|
|
|
|
|
|
# Alias Derivative1() to centraldiff(), and Derivative2() to |
204
|
|
|
|
|
|
|
# seconddx(), preserving the old names. Not exporting the |
205
|
|
|
|
|
|
|
# seconddx name now, as I'm not convinced it's a good name. |
206
|
|
|
|
|
|
|
# |
207
|
|
|
|
|
|
|
*Derivative1 = \¢raldiff; |
208
|
|
|
|
|
|
|
*Derivative2 = \&seconddx; |
209
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
=head1 REFERENCES |
211
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
L |
213
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
L |
215
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
=head1 AUTHOR |
217
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
John A.R. Williams B |
219
|
|
|
|
|
|
|
|
220
|
|
|
|
|
|
|
John M. Gamble B (current maintainer) |
221
|
|
|
|
|
|
|
|
222
|
|
|
|
|
|
|
=cut |
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
1; |