| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Math::Cephes::Polynomial; |
|
2
|
1
|
|
|
1
|
|
1697
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
21
|
|
|
3
|
1
|
|
|
1
|
|
2
|
use warnings; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
20
|
|
|
4
|
1
|
|
|
1
|
|
2
|
use vars qw(@EXPORT_OK $VERSION $MAXPOL $FMAXPOL $flag $fflag); |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
3294
|
|
|
5
|
|
|
|
|
|
|
eval {require Math::Complex; import Math::Complex qw(Re Im)}; |
|
6
|
|
|
|
|
|
|
eval {local $^W=0; require Math::Fraction;}; |
|
7
|
|
|
|
|
|
|
$MAXPOL = 256; |
|
8
|
|
|
|
|
|
|
$flag = 0; |
|
9
|
|
|
|
|
|
|
$FMAXPOL = 256; |
|
10
|
|
|
|
|
|
|
$fflag = 0; |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
require Exporter; |
|
13
|
|
|
|
|
|
|
*import = \&Exporter::import; |
|
14
|
|
|
|
|
|
|
@EXPORT_OK = qw(poly); |
|
15
|
|
|
|
|
|
|
$VERSION = '0.5305'; |
|
16
|
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
require Math::Cephes; |
|
18
|
|
|
|
|
|
|
require Math::Cephes::Fraction; |
|
19
|
|
|
|
|
|
|
require Math::Cephes::Complex; |
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
sub new { |
|
22
|
40
|
|
|
40
|
0
|
2218
|
my ($caller, $arr) = @_; |
|
23
|
40
|
|
|
|
|
38
|
my $refer = ref($caller); |
|
24
|
40
|
|
66
|
|
|
118
|
my $class = $refer || $caller; |
|
25
|
40
|
50
|
66
|
|
|
106
|
die "Must supply data for the polynomial" |
|
26
|
|
|
|
|
|
|
unless ($refer or $arr); |
|
27
|
40
|
|
|
|
|
36
|
my ($type, $ref, $data, $n); |
|
28
|
40
|
100
|
|
|
|
43
|
if ($refer) { |
|
29
|
|
|
|
|
|
|
($type, $ref, $n) = |
|
30
|
2
|
|
|
|
|
6
|
($caller->{type}, $caller->{ref}, $caller->{n}); |
|
31
|
2
|
|
|
|
|
2
|
my $cdata = $caller->{data}; |
|
32
|
2
|
100
|
|
|
|
5
|
if (ref($cdata) eq 'ARRAY') { |
|
33
|
1
|
|
|
|
|
3
|
$data = [ @$cdata ]; |
|
34
|
|
|
|
|
|
|
} |
|
35
|
|
|
|
|
|
|
else { |
|
36
|
1
|
50
|
|
|
|
4
|
my ($f, $s) = ($type eq 'fract') ? ('n', 'd') : ('r', 'i'); |
|
37
|
1
|
|
|
|
|
2
|
$data = {$f => [ @{$cdata->{$f}} ], |
|
38
|
1
|
|
|
|
|
1
|
$s => [ @{$cdata->{$s}} ], |
|
|
1
|
|
|
|
|
3
|
|
|
39
|
|
|
|
|
|
|
}; |
|
40
|
|
|
|
|
|
|
} |
|
41
|
|
|
|
|
|
|
} |
|
42
|
|
|
|
|
|
|
else { |
|
43
|
38
|
|
|
|
|
49
|
($type, $ref, $data, $n) = get_data($arr); |
|
44
|
|
|
|
|
|
|
} |
|
45
|
40
|
|
|
|
|
185
|
bless { type => $type, |
|
46
|
|
|
|
|
|
|
ref => $ref, |
|
47
|
|
|
|
|
|
|
data => $data, |
|
48
|
|
|
|
|
|
|
n => $n, |
|
49
|
|
|
|
|
|
|
}, $class; |
|
50
|
|
|
|
|
|
|
} |
|
51
|
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
sub poly { |
|
53
|
0
|
|
|
0
|
0
|
0
|
return Math::Cephes::Polynomial->new(shift); |
|
54
|
|
|
|
|
|
|
} |
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
sub coef { |
|
57
|
35
|
|
|
35
|
0
|
531
|
return $_[0]->{data}; |
|
58
|
|
|
|
|
|
|
} |
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
sub get_data { |
|
61
|
39
|
|
|
39
|
0
|
35
|
my ($arr, $ref_in) = @_; |
|
62
|
39
|
50
|
|
|
|
66
|
die "Must supply an array reference" unless ref($arr) eq 'ARRAY'; |
|
63
|
39
|
|
|
|
|
39
|
my $n = scalar @$arr - 1; |
|
64
|
39
|
|
|
|
|
45
|
my $ref = ref($arr->[0]); |
|
65
|
39
|
50
|
66
|
|
|
70
|
die "array data must be of type '$ref_in'" |
|
66
|
|
|
|
|
|
|
if (defined $ref_in and $ref_in ne $ref); |
|
67
|
39
|
|
|
|
|
24
|
my ($type, $data); |
|
68
|
|
|
|
|
|
|
SWITCH: { |
|
69
|
39
|
100
|
|
|
|
28
|
not $ref and do { |
|
|
39
|
|
|
|
|
47
|
|
|
70
|
21
|
|
|
|
|
14
|
$type = 'scalar'; |
|
71
|
21
|
|
|
|
|
28
|
foreach (@$arr) { |
|
72
|
3124
|
50
|
|
|
|
3269
|
die 'Found conflicting types in array data' |
|
73
|
|
|
|
|
|
|
if ref($_); |
|
74
|
|
|
|
|
|
|
} |
|
75
|
21
|
|
|
|
|
13
|
$data = $arr; |
|
76
|
21
|
100
|
|
|
|
37
|
set_max() unless $flag; |
|
77
|
21
|
|
|
|
|
25
|
last SWITCH; |
|
78
|
|
|
|
|
|
|
}; |
|
79
|
18
|
100
|
|
|
|
30
|
$ref eq 'Math::Cephes::Complex' and do { |
|
80
|
5
|
|
|
|
|
5
|
$type = 'cmplx'; |
|
81
|
5
|
|
|
|
|
6
|
foreach (@$arr) { |
|
82
|
15
|
50
|
|
|
|
25
|
die 'Found conflicting types in array data' |
|
83
|
|
|
|
|
|
|
unless ref($_) eq $ref; |
|
84
|
15
|
50
|
33
|
|
|
21
|
die "array data must be of type '$ref_in'" |
|
85
|
|
|
|
|
|
|
if (defined $ref_in and $ref_in ne $ref); |
|
86
|
15
|
|
|
|
|
8
|
push @{$data->{r}}, $_->r; |
|
|
15
|
|
|
|
|
31
|
|
|
87
|
15
|
|
|
|
|
16
|
push @{$data->{i}}, $_->i; |
|
|
15
|
|
|
|
|
28
|
|
|
88
|
|
|
|
|
|
|
} |
|
89
|
5
|
50
|
|
|
|
10
|
set_max() unless $flag; |
|
90
|
5
|
|
|
|
|
5
|
last SWITCH; |
|
91
|
|
|
|
|
|
|
}; |
|
92
|
13
|
100
|
|
|
|
17
|
$ref eq 'Math::Complex' and do { |
|
93
|
3
|
|
|
|
|
2
|
$type = 'cmplx'; |
|
94
|
3
|
|
|
|
|
6
|
foreach (@$arr) { |
|
95
|
9
|
50
|
|
|
|
39
|
die 'Found conflicting types in array data' |
|
96
|
|
|
|
|
|
|
unless ref($_) eq $ref; |
|
97
|
9
|
50
|
33
|
|
|
15
|
die "array data must be of type '$ref_in'" |
|
98
|
|
|
|
|
|
|
if (defined $ref_in and $ref_in ne $ref); |
|
99
|
9
|
|
|
|
|
4
|
push @{$data->{r}}, Re($_); |
|
|
9
|
|
|
|
|
22
|
|
|
100
|
9
|
|
|
|
|
50
|
push @{$data->{i}}, Im($_); |
|
|
9
|
|
|
|
|
17
|
|
|
101
|
|
|
|
|
|
|
} |
|
102
|
3
|
50
|
|
|
|
18
|
set_max() unless $flag; |
|
103
|
3
|
|
|
|
|
3
|
last SWITCH; |
|
104
|
|
|
|
|
|
|
}; |
|
105
|
10
|
50
|
|
|
|
16
|
$ref eq 'Math::Cephes::Fraction' and do { |
|
106
|
10
|
|
|
|
|
9
|
$type = 'fract'; |
|
107
|
10
|
|
|
|
|
11
|
foreach (@$arr) { |
|
108
|
33
|
50
|
|
|
|
49
|
die 'Found conflicting types in array data' |
|
109
|
|
|
|
|
|
|
unless ref($_) eq $ref; |
|
110
|
33
|
50
|
33
|
|
|
43
|
die "array data must be of type '$ref_in'" |
|
111
|
|
|
|
|
|
|
if (defined $ref_in and $ref_in ne $ref); |
|
112
|
33
|
|
|
|
|
58
|
my ($gcd, $n, $d) = Math::Cephes::euclid($_->n, $_->d); |
|
113
|
33
|
|
|
|
|
42
|
push @{$data->{n}}, $n; |
|
|
33
|
|
|
|
|
51
|
|
|
114
|
33
|
|
|
|
|
16
|
push @{$data->{d}}, $d; |
|
|
33
|
|
|
|
|
41
|
|
|
115
|
|
|
|
|
|
|
} |
|
116
|
10
|
100
|
|
|
|
18
|
set_fmax() unless $fflag; |
|
117
|
10
|
|
|
|
|
11
|
last SWITCH; |
|
118
|
|
|
|
|
|
|
}; |
|
119
|
0
|
0
|
|
|
|
0
|
$ref eq 'Math::Fraction' and do { |
|
120
|
0
|
|
|
|
|
0
|
$type = 'fract'; |
|
121
|
0
|
|
|
|
|
0
|
foreach (@$arr) { |
|
122
|
0
|
0
|
|
|
|
0
|
die 'Found conflicting types in array data' |
|
123
|
|
|
|
|
|
|
unless ref($_) eq $ref; |
|
124
|
0
|
0
|
0
|
|
|
0
|
die "array data must be of type '$ref_in'" |
|
125
|
|
|
|
|
|
|
if (defined $ref_in and $ref_in ne $ref); |
|
126
|
0
|
|
|
|
|
0
|
push @{$data->{n}}, $_->{frac}->[0]; |
|
|
0
|
|
|
|
|
0
|
|
|
127
|
0
|
|
|
|
|
0
|
push @{$data->{d}}, $_->{frac}->[1]; |
|
|
0
|
|
|
|
|
0
|
|
|
128
|
|
|
|
|
|
|
} |
|
129
|
0
|
0
|
|
|
|
0
|
set_fmax() unless $fflag; |
|
130
|
0
|
|
|
|
|
0
|
last SWITCH; |
|
131
|
|
|
|
|
|
|
}; |
|
132
|
0
|
|
|
|
|
0
|
die "Unknown type '$ref' in array data"; |
|
133
|
|
|
|
|
|
|
} |
|
134
|
39
|
|
|
|
|
85
|
return ($type, $ref, $data, $n); |
|
135
|
|
|
|
|
|
|
} |
|
136
|
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
sub as_string { |
|
138
|
0
|
|
|
0
|
0
|
0
|
my $self = shift; |
|
139
|
|
|
|
|
|
|
my ($type, $data, $n) = |
|
140
|
0
|
|
|
|
|
0
|
($self->{type}, $self->{data}, $self->{n}); |
|
141
|
0
|
|
0
|
|
|
0
|
my $d = shift || $n; |
|
142
|
0
|
0
|
|
|
|
0
|
$d = $n if $d > $n; |
|
143
|
0
|
|
|
|
|
0
|
my $string; |
|
144
|
0
|
|
|
|
|
0
|
for (my $j=0; $j<=$d; $j++) { |
|
145
|
0
|
|
|
|
|
0
|
my $coef; |
|
146
|
|
|
|
|
|
|
SWITCH: { |
|
147
|
0
|
0
|
|
|
|
0
|
$type eq 'fract' and do { |
|
|
0
|
|
|
|
|
0
|
|
|
148
|
0
|
|
|
|
|
0
|
my $n = $data->{n}->[$j]; |
|
149
|
0
|
|
|
|
|
0
|
my $d = $data->{d}->[$j]; |
|
150
|
0
|
0
|
|
|
|
0
|
my $sgn = $n < 0 ? ' -' : ' +'; |
|
151
|
0
|
0
|
|
|
|
0
|
$coef = $sgn . ($j == 0? '(' : ' (') . |
|
152
|
|
|
|
|
|
|
abs($n) . '/' . abs($d) . ')'; |
|
153
|
0
|
|
|
|
|
0
|
last SWITCH; |
|
154
|
|
|
|
|
|
|
}; |
|
155
|
0
|
0
|
|
|
|
0
|
$type eq 'cmplx' and do { |
|
156
|
0
|
|
|
|
|
0
|
my $re = $data->{r}->[$j]; |
|
157
|
0
|
|
|
|
|
0
|
my $im = $data->{i}->[$j]; |
|
158
|
0
|
0
|
|
|
|
0
|
my $sgn = $j == 0 ? ' ' : ' + '; |
|
159
|
0
|
0
|
|
|
|
0
|
$coef = $sgn . '(' . $re . |
|
|
|
0
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
( (int( $im / abs($im) ) == -1) ? '-' : '+' ) . |
|
161
|
|
|
|
|
|
|
( ($im < 0) ? abs($im) : $im) . 'I)'; |
|
162
|
0
|
|
|
|
|
0
|
last SWITCH; |
|
163
|
|
|
|
|
|
|
}; |
|
164
|
0
|
|
|
|
|
0
|
my $f = $data->[$j]; |
|
165
|
0
|
0
|
|
|
|
0
|
my $sgn = $f < 0 ? ' -' : ' +'; |
|
166
|
0
|
0
|
|
|
|
0
|
$coef = $j == 0 ? ' ' . $f : |
|
167
|
|
|
|
|
|
|
$sgn . ' ' . abs($f); |
|
168
|
|
|
|
|
|
|
} |
|
169
|
0
|
0
|
|
|
|
0
|
$string .= $coef . ($j > 0 ? "x^$j" : ''); |
|
170
|
|
|
|
|
|
|
} |
|
171
|
0
|
|
|
|
|
0
|
return $string . "\n"; |
|
172
|
|
|
|
|
|
|
} |
|
173
|
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
sub add { |
|
175
|
3
|
|
|
3
|
1
|
940
|
my ($self, $b) = @_; |
|
176
|
|
|
|
|
|
|
my ($atype, $aref, $adata, $na) = |
|
177
|
3
|
|
|
|
|
8
|
($self->{type}, $self->{ref}, $self->{data}, $self->{n}); |
|
178
|
|
|
|
|
|
|
my ($btype, $bref, $bdata, $nb) = |
|
179
|
|
|
|
|
|
|
ref($b) eq 'Math::Cephes::Polynomial' ? |
|
180
|
3
|
100
|
|
|
|
9
|
($b->{type}, $b->{ref}, $b->{data}, $b->{n}) : |
|
181
|
|
|
|
|
|
|
get_data($b, $aref); |
|
182
|
3
|
|
|
|
|
3
|
my $c = []; |
|
183
|
3
|
|
|
|
|
3
|
my $nc; |
|
184
|
|
|
|
|
|
|
SWITCH: { |
|
185
|
3
|
100
|
|
|
|
4
|
$atype eq 'fract' and do { |
|
|
3
|
|
|
|
|
7
|
|
|
186
|
1
|
50
|
|
|
|
3
|
$nc = $na > $nb ? $na: $nb; |
|
187
|
1
|
|
|
|
|
4
|
my $cn = [split //, 0 x ($nc+1)]; |
|
188
|
1
|
|
|
|
|
4
|
my $cd = [split //, 0 x ($nc+1)]; |
|
189
|
|
|
|
|
|
|
Math::Cephes::fpoladd_wrap($adata->{n}, $adata->{d}, $na, |
|
190
|
1
|
|
|
|
|
15
|
$bdata->{n}, $bdata->{d}, $nb, |
|
191
|
|
|
|
|
|
|
$cn, $cd, $nc); |
|
192
|
1
|
|
|
|
|
4
|
for (my $i=0; $i<=$nc; $i++) { |
|
193
|
3
|
|
|
|
|
7
|
my ($gcd, $n, $d) = Math::Cephes::euclid($cn->[$i], $cd->[$i]); |
|
194
|
3
|
50
|
|
|
|
8
|
push @$c, ($aref eq 'Math::Fraction' ? |
|
195
|
|
|
|
|
|
|
Math::Fraction->new($n, $d) : |
|
196
|
|
|
|
|
|
|
Math::Cephes::Fraction->new($n, $d) ); |
|
197
|
|
|
|
|
|
|
} |
|
198
|
1
|
|
|
|
|
2
|
last SWITCH; |
|
199
|
|
|
|
|
|
|
}; |
|
200
|
2
|
100
|
|
|
|
4
|
$atype eq 'cmplx' and do { |
|
201
|
1
|
50
|
|
|
|
4
|
$nc = $na > $nb ? $na: $nb; |
|
202
|
1
|
|
|
|
|
4
|
my $cr = [split //, 0 x ($nc+1)]; |
|
203
|
1
|
|
|
|
|
4
|
my $ci = [split //, 0 x ($nc+1)]; |
|
204
|
|
|
|
|
|
|
Math::Cephes::poladd($adata->{r}, $na, |
|
205
|
1
|
|
|
|
|
8
|
$bdata->{r}, $nb, $cr); |
|
206
|
|
|
|
|
|
|
Math::Cephes::poladd($adata->{i}, $na, |
|
207
|
1
|
|
|
|
|
5
|
$bdata->{i}, $nb, $ci); |
|
208
|
1
|
|
|
|
|
3
|
for (my $i=0; $i<=$nc; $i++) { |
|
209
|
3
|
50
|
|
|
|
8
|
push @$c, ($aref eq 'Math::Complex' ? |
|
210
|
|
|
|
|
|
|
Math::Complex->make($cr->[$i], $ci->[$i]) : |
|
211
|
|
|
|
|
|
|
Math::Cephes::Complex->new($cr->[$i], $ci->[$i]) ); |
|
212
|
|
|
|
|
|
|
} |
|
213
|
1
|
|
|
|
|
2
|
last SWITCH; |
|
214
|
|
|
|
|
|
|
}; |
|
215
|
1
|
50
|
|
|
|
3
|
$nc = $na > $nb ? $na + 1 : $nb + 1; |
|
216
|
1
|
|
|
|
|
8
|
$c = [split //, 0 x $nc]; |
|
217
|
1
|
|
|
|
|
16
|
Math::Cephes::poladd($adata, $na, $bdata, $nb, $c); |
|
218
|
|
|
|
|
|
|
} |
|
219
|
3
|
50
|
|
|
|
6
|
return wantarray ? (Math::Cephes::Polynomial->new($c), $nc) : |
|
220
|
|
|
|
|
|
|
Math::Cephes::Polynomial->new($c); |
|
221
|
|
|
|
|
|
|
|
|
222
|
|
|
|
|
|
|
} |
|
223
|
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
sub sub { |
|
225
|
3
|
|
|
3
|
0
|
1396
|
my ($self, $b) = @_; |
|
226
|
|
|
|
|
|
|
my ($atype, $aref, $adata, $na) = |
|
227
|
3
|
|
|
|
|
7
|
($self->{type}, $self->{ref}, $self->{data}, $self->{n}); |
|
228
|
|
|
|
|
|
|
my ($btype, $bref, $bdata, $nb) = |
|
229
|
|
|
|
|
|
|
ref($b) eq 'Math::Cephes::Polynomial' ? |
|
230
|
3
|
50
|
|
|
|
9
|
($b->{type}, $b->{ref}, $b->{data}, $b->{n}) : |
|
231
|
|
|
|
|
|
|
get_data($b, $aref); |
|
232
|
3
|
|
|
|
|
3
|
my $c = []; |
|
233
|
3
|
|
|
|
|
4
|
my $nc; |
|
234
|
|
|
|
|
|
|
SWITCH: { |
|
235
|
3
|
100
|
|
|
|
2
|
$atype eq 'fract' and do { |
|
|
3
|
|
|
|
|
7
|
|
|
236
|
1
|
50
|
|
|
|
6
|
$nc = $na > $nb ? $na: $nb; |
|
237
|
1
|
|
|
|
|
5
|
my $cn = [split //, 0 x ($nc+1)]; |
|
238
|
1
|
|
|
|
|
8
|
my $cd = [split //, 0 x ($nc+1)]; |
|
239
|
|
|
|
|
|
|
Math::Cephes::fpolsub_wrap($bdata->{n}, $bdata->{d}, $nb, |
|
240
|
1
|
|
|
|
|
16
|
$adata->{n}, $adata->{d}, $na, |
|
241
|
|
|
|
|
|
|
$cn, $cd, $nc); |
|
242
|
1
|
|
|
|
|
4
|
for (my $i=0; $i<=$nc; $i++) { |
|
243
|
3
|
|
|
|
|
12
|
my ($gcd, $n, $d) = Math::Cephes::euclid($cn->[$i], $cd->[$i]); |
|
244
|
3
|
50
|
|
|
|
9
|
push @$c, ($aref eq 'Math::Fraction' ? |
|
245
|
|
|
|
|
|
|
Math::Fraction->new($n, $d) : |
|
246
|
|
|
|
|
|
|
Math::Cephes::Fraction->new($n, $d) ); |
|
247
|
|
|
|
|
|
|
} |
|
248
|
1
|
|
|
|
|
3
|
last SWITCH; |
|
249
|
|
|
|
|
|
|
}; |
|
250
|
2
|
100
|
|
|
|
11
|
$atype eq 'cmplx' and do { |
|
251
|
1
|
50
|
|
|
|
3
|
$nc = $na > $nb ? $na: $nb; |
|
252
|
1
|
|
|
|
|
4
|
my $cr = [split //, 0 x ($nc+1)]; |
|
253
|
1
|
|
|
|
|
3
|
my $ci = [split //, 0 x ($nc+1)]; |
|
254
|
|
|
|
|
|
|
Math::Cephes::polsub($bdata->{r}, $nb, |
|
255
|
1
|
|
|
|
|
8
|
$adata->{r}, $na, $cr); |
|
256
|
|
|
|
|
|
|
Math::Cephes::polsub($bdata->{i}, $nb, |
|
257
|
1
|
|
|
|
|
4
|
$adata->{i}, $na, $ci); |
|
258
|
1
|
|
|
|
|
7
|
for (my $i=0; $i<=$nc; $i++) { |
|
259
|
3
|
50
|
|
|
|
9
|
push @$c, ($aref eq 'Math::Complex' ? |
|
260
|
|
|
|
|
|
|
Math::Complex->make($cr->[$i], $ci->[$i]) : |
|
261
|
|
|
|
|
|
|
Math::Cephes::Complex->new($cr->[$i], $ci->[$i]) ); |
|
262
|
|
|
|
|
|
|
} |
|
263
|
1
|
|
|
|
|
2
|
last SWITCH; |
|
264
|
|
|
|
|
|
|
}; |
|
265
|
1
|
50
|
|
|
|
2
|
$nc = $na > $nb ? $na + 1 : $nb + 1; |
|
266
|
1
|
|
|
|
|
5
|
$c = [split //, 0 x $nc]; |
|
267
|
1
|
|
|
|
|
10
|
Math::Cephes::polsub($bdata, $nb, $adata, $na, $c); |
|
268
|
|
|
|
|
|
|
} |
|
269
|
3
|
50
|
|
|
|
10
|
return wantarray ? (Math::Cephes::Polynomial->new($c), $nc) : |
|
270
|
|
|
|
|
|
|
Math::Cephes::Polynomial->new($c); |
|
271
|
|
|
|
|
|
|
|
|
272
|
|
|
|
|
|
|
} |
|
273
|
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
sub mul { |
|
275
|
4
|
|
|
4
|
0
|
849
|
my ($self, $b) = @_; |
|
276
|
|
|
|
|
|
|
my ($atype, $aref, $adata, $na) = |
|
277
|
4
|
|
|
|
|
8
|
($self->{type}, $self->{ref}, $self->{data}, $self->{n}); |
|
278
|
|
|
|
|
|
|
my ($btype, $bref, $bdata, $nb) = |
|
279
|
|
|
|
|
|
|
ref($b) eq 'Math::Cephes::Polynomial' ? |
|
280
|
4
|
50
|
|
|
|
12
|
($b->{type}, $b->{ref}, $b->{data}, $b->{n}) : |
|
281
|
|
|
|
|
|
|
get_data($b, $aref); |
|
282
|
4
|
|
|
|
|
5
|
my $c = []; |
|
283
|
4
|
|
|
|
|
3
|
my $nc; |
|
284
|
|
|
|
|
|
|
SWITCH: { |
|
285
|
4
|
100
|
|
|
|
4
|
$atype eq 'fract' and do { |
|
|
4
|
|
|
|
|
9
|
|
|
286
|
1
|
|
|
|
|
2
|
$nc = $na + $nb; |
|
287
|
1
|
|
|
|
|
5
|
my $cn = [split //, 0 x ($nc+1)]; |
|
288
|
1
|
|
|
|
|
4
|
my $cd = [split //, 1 x ($nc+1)]; |
|
289
|
|
|
|
|
|
|
Math::Cephes::fpolmul_wrap($adata->{n}, $adata->{d}, $na, |
|
290
|
1
|
|
|
|
|
17
|
$bdata->{n}, $bdata->{d}, $nb, |
|
291
|
|
|
|
|
|
|
$cn, $cd, $nc); |
|
292
|
1
|
|
|
|
|
4
|
for (my $i=0; $i<=$nc; $i++) { |
|
293
|
4
|
|
|
|
|
12
|
my ($gcd, $n, $d) = Math::Cephes::euclid($cn->[$i], $cd->[$i]); |
|
294
|
4
|
50
|
|
|
|
12
|
push @$c, ($aref eq 'Math::Fraction' ? |
|
295
|
|
|
|
|
|
|
Math::Fraction->new($n, $d) : |
|
296
|
|
|
|
|
|
|
Math::Cephes::Fraction->new($n, $d) ); |
|
297
|
|
|
|
|
|
|
} |
|
298
|
1
|
|
|
|
|
2
|
last SWITCH; |
|
299
|
|
|
|
|
|
|
}; |
|
300
|
3
|
100
|
|
|
|
5
|
$atype eq 'cmplx' and do { |
|
301
|
2
|
|
|
|
|
3
|
my $dc = $na + $nb + 3; |
|
302
|
2
|
|
|
|
|
7
|
my $cr = [split //, 0 x $dc]; |
|
303
|
2
|
|
|
|
|
9
|
my $ci = [split //, 0 x $dc]; |
|
304
|
|
|
|
|
|
|
$nc = Math::Cephes::cpmul_wrap($adata->{r}, $adata->{i}, $na+1, |
|
305
|
2
|
|
|
|
|
29
|
$bdata->{r}, $bdata->{i}, $nb+1, |
|
306
|
|
|
|
|
|
|
$cr, $ci, $dc); |
|
307
|
2
|
|
|
|
|
5
|
$cr = [ @{$cr}[0..$nc] ]; |
|
|
2
|
|
|
|
|
4
|
|
|
308
|
2
|
|
|
|
|
4
|
$ci = [ @{$ci}[0..$nc] ]; |
|
|
2
|
|
|
|
|
2
|
|
|
309
|
2
|
|
|
|
|
5
|
for (my $i=0; $i<=$nc; $i++) { |
|
310
|
8
|
100
|
|
|
|
111
|
push @$c, ($aref eq 'Math::Complex' ? |
|
311
|
|
|
|
|
|
|
Math::Complex->make($cr->[$i], $ci->[$i]) : |
|
312
|
|
|
|
|
|
|
Math::Cephes::Complex->new($cr->[$i], $ci->[$i]) ); |
|
313
|
|
|
|
|
|
|
} |
|
314
|
2
|
|
|
|
|
28
|
last SWITCH; |
|
315
|
|
|
|
|
|
|
}; |
|
316
|
1
|
|
|
|
|
2
|
$nc = $na + $nb + 1; |
|
317
|
1
|
|
|
|
|
5
|
$c = [split //, 0 x $nc]; |
|
318
|
1
|
|
|
|
|
10
|
Math::Cephes::polmul($adata, $na, $bdata, $nb, $c); |
|
319
|
|
|
|
|
|
|
} |
|
320
|
4
|
50
|
|
|
|
10
|
return wantarray ? (Math::Cephes::Polynomial->new($c), $nc) : |
|
321
|
|
|
|
|
|
|
Math::Cephes::Polynomial->new($c); |
|
322
|
|
|
|
|
|
|
} |
|
323
|
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
sub div { |
|
325
|
1
|
|
|
1
|
0
|
131
|
my ($self, $b) = @_; |
|
326
|
|
|
|
|
|
|
my ($atype, $aref, $adata, $na) = |
|
327
|
1
|
|
|
|
|
2
|
($self->{type}, $self->{ref}, $self->{data}, $self->{n}); |
|
328
|
|
|
|
|
|
|
my ($btype, $bref, $bdata, $nb) = |
|
329
|
|
|
|
|
|
|
ref($b) eq 'Math::Cephes::Polynomial' ? |
|
330
|
1
|
50
|
|
|
|
6
|
($b->{type}, $b->{ref}, $b->{data}, $b->{n}) : |
|
331
|
|
|
|
|
|
|
get_data($b, $aref); |
|
332
|
1
|
|
|
|
|
2
|
my $c = []; |
|
333
|
1
|
|
|
|
|
1
|
my $nc; |
|
334
|
|
|
|
|
|
|
SWITCH: { |
|
335
|
1
|
50
|
|
|
|
1
|
$atype eq 'fract' and do { |
|
|
1
|
|
|
|
|
3
|
|
|
336
|
0
|
|
|
|
|
0
|
$nc = $MAXPOL; |
|
337
|
0
|
|
|
|
|
0
|
my $cn = [split //, 0 x ($nc+1)]; |
|
338
|
0
|
|
|
|
|
0
|
my $cd = [split //, 0 x ($nc+1)]; |
|
339
|
|
|
|
|
|
|
Math::Cephes::fpoldiv_wrap($adata->{n}, $adata->{d}, $na, |
|
340
|
0
|
|
|
|
|
0
|
$bdata->{n}, $bdata->{d}, $nb, |
|
341
|
|
|
|
|
|
|
$cn, $cd, $nc); |
|
342
|
0
|
|
|
|
|
0
|
for (my $i=0; $i<=$nc; $i++) { |
|
343
|
0
|
|
|
|
|
0
|
my ($gcd, $n, $d) = Math::Cephes::euclid($cn->[$i], $cd->[$i]); |
|
344
|
0
|
0
|
|
|
|
0
|
push @$c, ($aref eq 'Math::Fraction' ? |
|
345
|
|
|
|
|
|
|
Math::Fraction->new($n, $d) : |
|
346
|
|
|
|
|
|
|
Math::Cephes::Fraction->new($n, $d) ); |
|
347
|
|
|
|
|
|
|
} |
|
348
|
0
|
|
|
|
|
0
|
last SWITCH; |
|
349
|
|
|
|
|
|
|
}; |
|
350
|
1
|
50
|
|
|
|
7
|
$atype eq 'cmplx' and do { |
|
351
|
0
|
|
|
|
|
0
|
die "Cannot do complex division"; |
|
352
|
0
|
|
|
|
|
0
|
last SWITCH; |
|
353
|
|
|
|
|
|
|
}; |
|
354
|
1
|
|
|
|
|
1
|
$nc = $MAXPOL; |
|
355
|
1
|
|
|
|
|
61
|
$c = [split //, 0 x ($nc+1)]; |
|
356
|
1
|
|
|
|
|
290
|
Math::Cephes::poldiv($adata, $na, $bdata, $nb, $c); |
|
357
|
|
|
|
|
|
|
} |
|
358
|
1
|
50
|
|
|
|
10
|
return wantarray ? (Math::Cephes::Polynomial->new($c), $nc) : |
|
359
|
|
|
|
|
|
|
Math::Cephes::Polynomial->new($c); |
|
360
|
|
|
|
|
|
|
} |
|
361
|
|
|
|
|
|
|
|
|
362
|
|
|
|
|
|
|
sub clr { |
|
363
|
2
|
|
|
2
|
0
|
458
|
my $self = shift; |
|
364
|
|
|
|
|
|
|
my ($atype, $aref, $adata, $na) = |
|
365
|
2
|
|
|
|
|
8
|
($self->{type}, $self->{ref}, $self->{data}, $self->{n}); |
|
366
|
2
|
50
|
|
|
|
6
|
set_max() unless $flag; |
|
367
|
2
|
|
33
|
|
|
3
|
my $n = shift || $na; |
|
368
|
2
|
100
|
|
|
|
4
|
$n = $na if $n > $na; |
|
369
|
|
|
|
|
|
|
SWITCH: { |
|
370
|
2
|
100
|
|
|
|
2
|
$atype eq 'fract' and do { |
|
|
2
|
|
|
|
|
5
|
|
|
371
|
1
|
|
|
|
|
4
|
for (my $i=0; $i<=$n; $i++) { |
|
372
|
2
|
|
|
|
|
3
|
$self->{data}->{n}->[$i] = 0; |
|
373
|
2
|
|
|
|
|
4
|
$self->{data}->{d}->[$i] = 1; |
|
374
|
|
|
|
|
|
|
} |
|
375
|
1
|
|
|
|
|
2
|
last SWITCH; |
|
376
|
|
|
|
|
|
|
}; |
|
377
|
1
|
50
|
|
|
|
2
|
$atype eq 'cmplx' and do { |
|
378
|
0
|
|
|
|
|
0
|
for (my $i=0; $i<=$n; $i++) { |
|
379
|
0
|
|
|
|
|
0
|
$self->{data}->{r}->[$i] = 0; |
|
380
|
0
|
|
|
|
|
0
|
$self->{data}->{i}->[$i] = 0; |
|
381
|
|
|
|
|
|
|
} |
|
382
|
0
|
|
|
|
|
0
|
last SWITCH; |
|
383
|
|
|
|
|
|
|
}; |
|
384
|
1
|
|
|
|
|
3
|
for (my $i=0; $i<=$n; $i++) { |
|
385
|
3
|
|
|
|
|
7
|
$self->{data}->[$i] = 0; |
|
386
|
|
|
|
|
|
|
} |
|
387
|
|
|
|
|
|
|
} |
|
388
|
|
|
|
|
|
|
} |
|
389
|
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
sub sbt { |
|
391
|
3
|
|
|
3
|
0
|
125
|
my ($self, $b) = @_; |
|
392
|
|
|
|
|
|
|
my ($atype, $aref, $adata, $na) = |
|
393
|
3
|
|
|
|
|
7
|
($self->{type}, $self->{ref}, $self->{data}, $self->{n}); |
|
394
|
|
|
|
|
|
|
my ($btype, $bref, $bdata, $nb) = |
|
395
|
|
|
|
|
|
|
ref($b) eq 'Math::Cephes::Polynomial' ? |
|
396
|
3
|
50
|
|
|
|
12
|
($b->{type}, $b->{ref}, $b->{data}, $b->{n}) : |
|
397
|
|
|
|
|
|
|
get_data($b, $aref); |
|
398
|
3
|
50
|
|
|
|
7
|
set_max() unless $flag; |
|
399
|
3
|
|
|
|
|
4
|
my $c = []; |
|
400
|
3
|
|
|
|
|
3
|
my $nc; |
|
401
|
|
|
|
|
|
|
SWITCH: { |
|
402
|
3
|
100
|
|
|
|
3
|
$atype eq 'fract' and do { |
|
|
3
|
|
|
|
|
6
|
|
|
403
|
2
|
|
|
|
|
3
|
$nc = ($na+1)*($nb+1); |
|
404
|
2
|
|
|
|
|
13
|
my $cn = [split //, 0 x ($nc+1)]; |
|
405
|
2
|
|
|
|
|
8
|
my $cd = [split //, 0 x ($nc+1)]; |
|
406
|
|
|
|
|
|
|
Math::Cephes::fpolsbt_wrap($bdata->{n}, $bdata->{d}, $nb, |
|
407
|
2
|
|
|
|
|
45
|
$adata->{n}, $adata->{d}, $na, |
|
408
|
|
|
|
|
|
|
$cn, $cd, $nc); |
|
409
|
2
|
|
|
|
|
2
|
$nc = $na * $nb; |
|
410
|
2
|
|
|
|
|
6
|
for (my $i=0; $i<=$nc; $i++) { |
|
411
|
6
|
|
|
|
|
13
|
my ($gcd, $n, $d) = Math::Cephes::euclid($cn->[$i], $cd->[$i]); |
|
412
|
6
|
50
|
|
|
|
18
|
push @$c, ($aref eq 'Math::Fraction' ? |
|
413
|
|
|
|
|
|
|
Math::Fraction->new($n, $d) : |
|
414
|
|
|
|
|
|
|
Math::Cephes::Fraction->new($n, $d) ); |
|
415
|
|
|
|
|
|
|
} |
|
416
|
2
|
|
|
|
|
4
|
last SWITCH; |
|
417
|
|
|
|
|
|
|
}; |
|
418
|
1
|
50
|
|
|
|
4
|
$atype eq 'cmplx' and do { |
|
419
|
0
|
|
|
|
|
0
|
die "Cannot do complex substitution"; |
|
420
|
0
|
|
|
|
|
0
|
last SWITCH; |
|
421
|
|
|
|
|
|
|
}; |
|
422
|
1
|
|
|
|
|
2
|
$nc = ($na+1)*($nb+1); |
|
423
|
1
|
|
|
|
|
6
|
$c = [split //, 0 x $nc]; |
|
424
|
1
|
|
|
|
|
14
|
Math::Cephes::polsbt($bdata, $nb, $adata, $na, $c); |
|
425
|
1
|
|
|
|
|
1
|
$nc = $na*$nb; |
|
426
|
1
|
|
|
|
|
4
|
$c = [@$c[0..$nc]]; |
|
427
|
|
|
|
|
|
|
} |
|
428
|
3
|
50
|
|
|
|
10
|
return wantarray ? (Math::Cephes::Polynomial->new($c), $nc) : |
|
429
|
|
|
|
|
|
|
Math::Cephes::Polynomial->new($c); |
|
430
|
|
|
|
|
|
|
} |
|
431
|
|
|
|
|
|
|
|
|
432
|
|
|
|
|
|
|
sub set_max { |
|
433
|
1
|
|
|
1
|
0
|
21
|
Math::Cephes::polini($MAXPOL); |
|
434
|
1
|
|
|
|
|
1
|
$flag = 1; |
|
435
|
|
|
|
|
|
|
} |
|
436
|
|
|
|
|
|
|
|
|
437
|
|
|
|
|
|
|
sub set_fmax { |
|
438
|
1
|
|
|
1
|
0
|
13
|
Math::Cephes::fpolini($FMAXPOL); |
|
439
|
1
|
|
|
|
|
1
|
$fflag = 1; |
|
440
|
|
|
|
|
|
|
} |
|
441
|
|
|
|
|
|
|
|
|
442
|
|
|
|
|
|
|
sub eval { |
|
443
|
10
|
|
|
10
|
0
|
3083
|
my $self = shift; |
|
444
|
10
|
|
|
|
|
9
|
my $x = 0 || shift; |
|
445
|
|
|
|
|
|
|
my ($atype, $aref, $adata, $na) = |
|
446
|
10
|
|
|
|
|
20
|
($self->{type}, $self->{ref}, $self->{data}, $self->{n}); |
|
447
|
10
|
|
|
|
|
8
|
my $y; |
|
448
|
|
|
|
|
|
|
SWITCH: { |
|
449
|
10
|
100
|
|
|
|
6
|
$atype eq 'fract' and do { |
|
|
10
|
|
|
|
|
23
|
|
|
450
|
4
|
|
|
|
|
5
|
my $xref = ref($x); |
|
451
|
4
|
|
|
|
|
10
|
$y = Math::Cephes::Fraction->new(0, 1); |
|
452
|
|
|
|
|
|
|
FRACT: { |
|
453
|
4
|
100
|
|
|
|
4
|
not $xref and do { |
|
|
4
|
|
|
|
|
6
|
|
|
454
|
2
|
|
|
|
|
5
|
$x = Math::Cephes::Fraction->new($x, 1); |
|
455
|
2
|
|
|
|
|
3
|
last FRACT; |
|
456
|
|
|
|
|
|
|
}; |
|
457
|
2
|
50
|
|
|
|
4
|
$xref eq 'Math::Cephes::Fraction' and do { |
|
458
|
2
|
|
|
|
|
3
|
last FRACT; |
|
459
|
|
|
|
|
|
|
}; |
|
460
|
0
|
0
|
|
|
|
0
|
$xref eq 'Math::Fraction' and do { |
|
461
|
0
|
|
|
|
|
0
|
$x = Math::Cephes::Fraction->new($x->{frac}->[0], $x->{frac}->[1]); |
|
462
|
0
|
|
|
|
|
0
|
last FRACT; |
|
463
|
|
|
|
|
|
|
}; |
|
464
|
0
|
|
|
|
|
0
|
die "Unknown data type '$xref' for x"; |
|
465
|
|
|
|
|
|
|
} |
|
466
|
4
|
|
|
|
|
45
|
Math::Cephes::fpoleva_wrap($adata->{n}, $adata->{d}, $na, $x, $y); |
|
467
|
4
|
50
|
|
|
|
7
|
$y = Math::Fraction->new($y->n, $y->d) if $aref eq 'Math::Fraction'; |
|
468
|
4
|
|
|
|
|
4
|
last SWITCH; |
|
469
|
|
|
|
|
|
|
}; |
|
470
|
6
|
100
|
|
|
|
10
|
$atype eq 'cmplx' and do { |
|
471
|
2
|
|
|
|
|
13
|
my $r = Math::Cephes::poleva($adata->{r}, $na, $x); |
|
472
|
2
|
|
|
|
|
5
|
my $i = Math::Cephes::poleva($adata->{i}, $na, $x); |
|
473
|
2
|
100
|
|
|
|
10
|
$y = $aref eq 'Math::Complex' ? |
|
474
|
|
|
|
|
|
|
Math::Complex->make($r, $i) : |
|
475
|
|
|
|
|
|
|
Math::Cephes::Complex->new($r, $i); |
|
476
|
2
|
|
|
|
|
38
|
last SWITCH; |
|
477
|
|
|
|
|
|
|
}; |
|
478
|
4
|
|
|
|
|
23
|
$y = Math::Cephes::poleva($adata, $na, $x); |
|
479
|
|
|
|
|
|
|
} |
|
480
|
10
|
|
|
|
|
21
|
return $y; |
|
481
|
|
|
|
|
|
|
} |
|
482
|
|
|
|
|
|
|
|
|
483
|
|
|
|
|
|
|
sub fract_to_real { |
|
484
|
9
|
|
|
9
|
0
|
8
|
my $in = shift; |
|
485
|
9
|
|
|
|
|
10
|
my $a = []; |
|
486
|
9
|
|
|
|
|
10
|
my $n = scalar @{$in->{n}} - 1; |
|
|
9
|
|
|
|
|
10
|
|
|
487
|
9
|
|
|
|
|
16
|
for (my $i=0; $i<=$n; $i++) { |
|
488
|
39
|
|
|
|
|
74
|
push @$a, $in->{n}->[$i] / $in->{d}->[$i]; |
|
489
|
|
|
|
|
|
|
} |
|
490
|
9
|
|
|
|
|
11
|
return $a; |
|
491
|
|
|
|
|
|
|
} |
|
492
|
|
|
|
|
|
|
|
|
493
|
|
|
|
|
|
|
sub atn { |
|
494
|
2
|
|
|
2
|
0
|
603
|
my ($self, $bin) = @_; |
|
495
|
2
|
|
|
|
|
3
|
my $type = $self->{type}; |
|
496
|
2
|
50
|
|
|
|
9
|
die "Cannot take the atan of a complex polynomial" |
|
497
|
|
|
|
|
|
|
if $type eq 'cmplx'; |
|
498
|
2
|
|
|
|
|
49
|
my ($a, $b); |
|
499
|
|
|
|
|
|
|
my ($atype, $aref, $adata, $na) = |
|
500
|
2
|
|
|
|
|
5
|
($self->{type}, $self->{ref}, $self->{data}, $self->{n}); |
|
501
|
2
|
50
|
|
|
|
4
|
die "Cannot take the atan of a complex polynomial" |
|
502
|
|
|
|
|
|
|
if $atype eq 'cmplx'; |
|
503
|
2
|
100
|
|
|
|
6
|
$a = $atype eq 'fract' ? fract_to_real($adata) : $adata; |
|
504
|
|
|
|
|
|
|
|
|
505
|
|
|
|
|
|
|
my ($btype, $bref, $bdata, $nb) = |
|
506
|
|
|
|
|
|
|
ref($bin) eq 'Math::Cephes::Polynomial' ? |
|
507
|
2
|
50
|
|
|
|
8
|
($bin->{type}, $bin->{ref}, $bin->{data}, $bin->{n}) : |
|
508
|
|
|
|
|
|
|
get_data($bin); |
|
509
|
|
|
|
|
|
|
|
|
510
|
2
|
50
|
|
|
|
3
|
die "Cannot take the atan of a complex polynomial" |
|
511
|
|
|
|
|
|
|
if $btype eq 'cmplx'; |
|
512
|
2
|
100
|
|
|
|
6
|
$b = $btype eq 'fract' ? fract_to_real($bdata) : $bdata; |
|
513
|
|
|
|
|
|
|
|
|
514
|
2
|
|
|
|
|
89
|
my $c = [split //, 0 x ($MAXPOL+1)]; |
|
515
|
2
|
|
|
|
|
1490
|
Math::Cephes::polatn($a, $b, $c, 16); |
|
516
|
2
|
|
|
|
|
7
|
return Math::Cephes::Polynomial->new($c); |
|
517
|
|
|
|
|
|
|
} |
|
518
|
|
|
|
|
|
|
|
|
519
|
|
|
|
|
|
|
sub sqt { |
|
520
|
3
|
|
|
3
|
0
|
1003
|
my $self = shift; |
|
521
|
3
|
|
|
|
|
6
|
my $type = $self->{type}; |
|
522
|
3
|
50
|
|
|
|
8
|
die "Cannot take the sqrt of a complex polynomial" |
|
523
|
|
|
|
|
|
|
if $type eq 'cmplx'; |
|
524
|
3
|
100
|
|
|
|
8
|
my $a = $type eq 'fract' ? fract_to_real($self->{data}) : $self->coef; |
|
525
|
3
|
|
|
|
|
137
|
my $b = [split //, 0 x ($MAXPOL+1)]; |
|
526
|
3
|
|
|
|
|
1135
|
Math::Cephes::polsqt($a, $b, 16); |
|
527
|
3
|
|
|
|
|
8
|
return Math::Cephes::Polynomial->new($b); |
|
528
|
|
|
|
|
|
|
} |
|
529
|
|
|
|
|
|
|
|
|
530
|
|
|
|
|
|
|
sub sin { |
|
531
|
3
|
|
|
3
|
0
|
1084
|
my $self = shift; |
|
532
|
3
|
|
|
|
|
5
|
my $type = $self->{type}; |
|
533
|
3
|
50
|
|
|
|
8
|
die "Cannot take the sin of a complex polynomial" |
|
534
|
|
|
|
|
|
|
if $type eq 'cmplx'; |
|
535
|
3
|
100
|
|
|
|
10
|
my $a = $type eq 'fract' ? fract_to_real($self->{data}) : $self->coef; |
|
536
|
3
|
|
|
|
|
154
|
my $b = [split //, 0 x ($MAXPOL+1)]; |
|
537
|
3
|
|
|
|
|
1878
|
Math::Cephes::polsin($a, $b, 16); |
|
538
|
3
|
|
|
|
|
11
|
return Math::Cephes::Polynomial->new($b); |
|
539
|
|
|
|
|
|
|
} |
|
540
|
|
|
|
|
|
|
|
|
541
|
|
|
|
|
|
|
sub cos { |
|
542
|
3
|
|
|
3
|
0
|
956
|
my $self = shift; |
|
543
|
3
|
|
|
|
|
6
|
my $type = $self->{type}; |
|
544
|
3
|
50
|
|
|
|
8
|
die "Cannot take the cos of a complex polynomial" |
|
545
|
|
|
|
|
|
|
if $type eq 'cmplx'; |
|
546
|
3
|
100
|
|
|
|
9
|
my $a = $type eq 'fract' ? fract_to_real($self->{data}) : $self->coef; |
|
547
|
3
|
|
|
|
|
157
|
my $b = [split //, 0 x ($MAXPOL+1)]; |
|
548
|
3
|
|
|
|
|
2322
|
Math::Cephes::polcos($a, $b, 16); |
|
549
|
3
|
|
|
|
|
10
|
return Math::Cephes::Polynomial->new($b); |
|
550
|
|
|
|
|
|
|
} |
|
551
|
|
|
|
|
|
|
|
|
552
|
|
|
|
|
|
|
sub rts { |
|
553
|
2
|
|
|
2
|
0
|
8
|
my $self = shift; |
|
554
|
|
|
|
|
|
|
my ($atype, $aref, $adata, $na) = |
|
555
|
2
|
|
|
|
|
5
|
($self->{type}, $self->{ref}, $self->{data}, $self->{n}); |
|
556
|
2
|
|
|
|
|
2
|
my ($a, $b, $ret); |
|
557
|
2
|
|
|
|
|
8
|
my $cof = [split //, 0 x ($na+1)]; |
|
558
|
2
|
|
|
|
|
7
|
my $r = [split //, 0 x ($na+1)]; |
|
559
|
2
|
|
|
|
|
5
|
my $i = [split //, 0 x ($na+1)]; |
|
560
|
|
|
|
|
|
|
SWITCH: { |
|
561
|
2
|
100
|
|
|
|
3
|
$atype eq 'fract' and do { |
|
|
2
|
|
|
|
|
6
|
|
|
562
|
1
|
|
|
|
|
2
|
$adata = fract_to_real($adata); |
|
563
|
1
|
|
|
|
|
18
|
$ret = Math::Cephes::polrt_wrap($adata, $cof, $na, $r, $i); |
|
564
|
1
|
|
|
|
|
4
|
for (my $j=0; $j<$na; $j++) { |
|
565
|
6
|
|
|
|
|
13
|
push @$b, |
|
566
|
|
|
|
|
|
|
Math::Cephes::Complex->new($r->[$j], $i->[$j]); |
|
567
|
|
|
|
|
|
|
} |
|
568
|
1
|
|
|
|
|
2
|
last SWITCH; |
|
569
|
|
|
|
|
|
|
}; |
|
570
|
1
|
50
|
|
|
|
2
|
$atype eq 'cmplx' and do { |
|
571
|
0
|
|
|
|
|
0
|
die "Cannot do complex root finding"; |
|
572
|
0
|
|
|
|
|
0
|
last SWITCH; |
|
573
|
|
|
|
|
|
|
}; |
|
574
|
1
|
|
|
|
|
21
|
$ret = Math::Cephes::polrt_wrap($adata, $cof, $na, $r, $i); |
|
575
|
1
|
|
|
|
|
4
|
for (my $j=0; $j<$na; $j++) { |
|
576
|
4
|
|
|
|
|
14
|
push @$b, |
|
577
|
|
|
|
|
|
|
Math::Cephes::Complex->new($r->[$j], $i->[$j]); |
|
578
|
|
|
|
|
|
|
} |
|
579
|
|
|
|
|
|
|
} |
|
580
|
2
|
50
|
|
|
|
9
|
return wantarray ? ($ret, $b) : $b; |
|
581
|
|
|
|
|
|
|
} |
|
582
|
|
|
|
|
|
|
|
|
583
|
|
|
|
|
|
|
1; |
|
584
|
|
|
|
|
|
|
|
|
585
|
|
|
|
|
|
|
__END__ |