line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
=head1 Name |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
Math::Cartesian::Product - Generate the Cartesian product of zero or more lists. |
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
=head1 Synopsis |
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
use Math::Cartesian::Product; |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
cartesian {print "@_\n"} [qw(a b c)], [1..2]; |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
# a 1 |
12
|
|
|
|
|
|
|
# a 2 |
13
|
|
|
|
|
|
|
# b 1 |
14
|
|
|
|
|
|
|
# b 2 |
15
|
|
|
|
|
|
|
# c 1 |
16
|
|
|
|
|
|
|
# c 2 |
17
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
cartesian {print "@_\n"} ([0..1]) x 8; |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
# 0 0 0 0 0 0 0 0 |
21
|
|
|
|
|
|
|
# 0 0 0 0 0 0 0 1 |
22
|
|
|
|
|
|
|
# 0 0 0 0 0 0 1 0 |
23
|
|
|
|
|
|
|
# ... |
24
|
|
|
|
|
|
|
# 1 1 1 1 1 1 1 0 |
25
|
|
|
|
|
|
|
# 1 1 1 1 1 1 1 1 |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
print "@$_\n" for |
28
|
|
|
|
|
|
|
cartesian {"@{[reverse @_]}" eq "@_"} |
29
|
|
|
|
|
|
|
([' ', '*']) x 8; |
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
# * * |
32
|
|
|
|
|
|
|
# * * |
33
|
|
|
|
|
|
|
# * * * * |
34
|
|
|
|
|
|
|
# * * |
35
|
|
|
|
|
|
|
# * * * * |
36
|
|
|
|
|
|
|
# * * * * |
37
|
|
|
|
|
|
|
# * * * * * * |
38
|
|
|
|
|
|
|
# * * |
39
|
|
|
|
|
|
|
# * * * * |
40
|
|
|
|
|
|
|
# * * * * |
41
|
|
|
|
|
|
|
# * * * * * * |
42
|
|
|
|
|
|
|
# * * * * |
43
|
|
|
|
|
|
|
# * * * * * * |
44
|
|
|
|
|
|
|
# * * * * * * |
45
|
|
|
|
|
|
|
# * * * * * * * * |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
=cut |
48
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
package Math::Cartesian::Product; |
50
|
|
|
|
|
|
|
|
51
|
1
|
|
|
1
|
|
24147
|
use Carp; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
117
|
|
52
|
1
|
|
|
1
|
|
6
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
656
|
|
53
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
sub cartesian(&@) # Generate the Cartesian product of zero or more lists |
55
|
75
|
|
|
75
|
0
|
20681
|
{my $s = shift; # Subroutine to call to process each element of the product |
56
|
|
|
|
|
|
|
|
57
|
75
|
|
|
|
|
164
|
my @C = @_; # Lists to be multiplied |
58
|
75
|
|
|
|
|
99
|
my @c = (); # Current element of Cartesian product |
59
|
75
|
|
|
|
|
84
|
my @P = (); # Cartesian product |
60
|
75
|
|
|
|
|
88
|
my $n = 0; # Number of elements in product |
61
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
# return 0 if @C == 0; # Empty product per Philipp Rumpf |
63
|
|
|
|
|
|
|
|
64
|
75
|
50
|
|
|
|
137
|
@C == grep {ref eq 'ARRAY'} @C or croak("Arrays of things required by cartesian"); |
|
300
|
|
|
|
|
633
|
|
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
# Generate each Cartesian product when there are no prior Cartesian products. |
67
|
|
|
|
|
|
|
# The first variant builds the results array, the second does not per Justin Case |
68
|
|
|
|
|
|
|
|
69
|
75
|
|
|
|
|
74
|
my $p; $p = wantarray() ? sub |
70
|
560
|
100
|
|
560
|
|
815
|
{if (@c < @C) |
71
|
277
|
|
|
|
|
232
|
{for(@{$C[@c]}) |
|
277
|
|
|
|
|
538
|
|
72
|
549
|
|
|
|
|
565
|
{push @c, $_; |
73
|
549
|
|
|
|
|
681
|
&$p(); |
74
|
549
|
|
|
|
|
2777
|
pop @c; |
75
|
|
|
|
|
|
|
} |
76
|
|
|
|
|
|
|
} |
77
|
|
|
|
|
|
|
else |
78
|
283
|
|
|
|
|
555
|
{my $p = [@c]; |
79
|
283
|
100
|
|
|
|
525
|
push @P, bless $p if &$s(@$p); |
80
|
|
|
|
|
|
|
} |
81
|
|
|
|
|
|
|
} : sub # List not required per Justin Case |
82
|
6820057
|
100
|
|
6820057
|
|
8414887
|
{if (@c < @C) |
83
|
2162838
|
|
|
|
|
1535264
|
{for(@{$C[@c]}) |
|
2162838
|
|
|
|
|
3153390
|
|
84
|
6820004
|
|
|
|
|
5532081
|
{push @c, $_; |
85
|
6820004
|
|
|
|
|
7090727
|
&$p(); |
86
|
6820004
|
|
|
|
|
15928408
|
pop @c; |
87
|
|
|
|
|
|
|
} |
88
|
|
|
|
|
|
|
} |
89
|
|
|
|
|
|
|
else |
90
|
4657219
|
100
|
|
|
|
6046115
|
{++$n if &$s(@c); |
91
|
|
|
|
|
|
|
} |
92
|
75
|
100
|
|
|
|
332
|
}; |
93
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
# Generate each Cartesian product allowing for prior Cartesian products. |
95
|
|
|
|
|
|
|
|
96
|
75
|
|
|
|
|
93
|
my $q; $q = wantarray() ? sub |
97
|
903
|
100
|
|
903
|
|
1452
|
{if (@c < @C) |
98
|
126
|
|
|
|
|
115
|
{for(@{$C[@c]}) |
|
126
|
|
|
|
|
259
|
|
99
|
897
|
|
|
|
|
914
|
{push @c, $_; |
100
|
897
|
|
|
|
|
1149
|
&$q(); |
101
|
897
|
|
|
|
|
7154
|
pop @c; |
102
|
|
|
|
|
|
|
} |
103
|
|
|
|
|
|
|
} |
104
|
|
|
|
|
|
|
else |
105
|
777
|
100
|
|
|
|
806
|
{my $p = [map {ref eq __PACKAGE__ ? @$_ : $_} @c]; |
|
2283
|
|
|
|
|
5642
|
|
106
|
777
|
100
|
|
|
|
2298
|
push @P, bless $p if &$s(@$p); |
107
|
|
|
|
|
|
|
} |
108
|
|
|
|
|
|
|
} : sub # List not required per Justin Case |
109
|
623
|
100
|
|
623
|
|
920
|
{if (@c < @C) |
110
|
89
|
|
|
|
|
110
|
{for(@{$C[@c]}) |
|
89
|
|
|
|
|
181
|
|
111
|
618
|
|
|
|
|
622
|
{push @c, $_; |
112
|
618
|
|
|
|
|
768
|
&$q(); |
113
|
618
|
|
|
|
|
3320
|
pop @c; |
114
|
|
|
|
|
|
|
} |
115
|
|
|
|
|
|
|
} |
116
|
|
|
|
|
|
|
else |
117
|
534
|
100
|
|
|
|
560
|
{++$n if &$s(map {ref eq __PACKAGE__ ? @$_ : $_} @c); |
|
1554
|
100
|
|
|
|
3738
|
|
118
|
|
|
|
|
|
|
} |
119
|
75
|
100
|
|
|
|
280
|
}; |
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
# Determine optimal method of forming Cartesian products for this call |
122
|
|
|
|
|
|
|
|
123
|
75
|
100
|
|
|
|
107
|
if (grep {grep {ref eq __PACKAGE__} @$_} @C) |
|
300
|
|
|
|
|
345
|
|
|
842
|
|
|
|
|
1184
|
|
124
|
11
|
|
|
|
|
25
|
{&$q |
125
|
|
|
|
|
|
|
} |
126
|
|
|
|
|
|
|
else |
127
|
64
|
|
|
|
|
112
|
{&$p |
128
|
|
|
|
|
|
|
} |
129
|
|
|
|
|
|
|
|
130
|
75
|
|
|
|
|
172
|
$p = $q = undef; # Break memory loops per Philipp Rumpf |
131
|
75
|
100
|
|
|
|
1502
|
wantarray() ? @P : $n # Product or count per Justin Case |
132
|
|
|
|
|
|
|
} |
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
# Export details |
135
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
require 5; |
137
|
|
|
|
|
|
|
require Exporter; |
138
|
|
|
|
|
|
|
|
139
|
1
|
|
|
1
|
|
7
|
use vars qw(@ISA @EXPORT $VERSION); |
|
1
|
|
|
|
|
19
|
|
|
1
|
|
|
|
|
150
|
|
140
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
@ISA = qw(Exporter); |
142
|
|
|
|
|
|
|
@EXPORT = qw(cartesian); |
143
|
|
|
|
|
|
|
$VERSION = '1.009'; # Tuesday 18 Aug 2015 |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
=head1 Description |
146
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
Generate the Cartesian product of zero or more lists. |
148
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
Given two lists, say: [a,b] and [1,2,3], the Cartesian product is the |
150
|
|
|
|
|
|
|
set of all ordered pairs: |
151
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
(a,1), (a,2), (a,3), (b,1), (b,2), (b,3) |
153
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
which select their first element from all the possibilities listed in |
155
|
|
|
|
|
|
|
the first list, and select their second element from all the |
156
|
|
|
|
|
|
|
possibilities in the second list. |
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
The idea can be generalized to n-tuples selected from n lists where all the |
159
|
|
|
|
|
|
|
elements of the first list are combined with all the elements of the second |
160
|
|
|
|
|
|
|
list, the results of which are then combined with all the member of the third |
161
|
|
|
|
|
|
|
list and so on over all the input lists. |
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
It should be noted that Cartesian product of one or more lists where one or |
164
|
|
|
|
|
|
|
more of the lists are empty (representing the empty set) is the empty set |
165
|
|
|
|
|
|
|
and thus has zero members; and that the Cartesian product of zero lists is a |
166
|
|
|
|
|
|
|
set with exactly one member, namely the empty set. |
167
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
C<cartesian()> takes the following parameters: |
169
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
1. A block of code to process each n-tuple. this code should return true |
171
|
|
|
|
|
|
|
if the current n-tuple should be included in the returned value of the |
172
|
|
|
|
|
|
|
C<cartesian()> function, otherwise false. |
173
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
2. Zero or more lists. |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
C<cartesian()> returns an array of references to all the n-tuples selected by |
177
|
|
|
|
|
|
|
the code block supplied as parameter 1 if called in list context, else it |
178
|
|
|
|
|
|
|
returns a count of the selected n-tuples. |
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
C<cartesian()> croaks if you try to form the Cartesian product of |
181
|
|
|
|
|
|
|
something other than lists of things or prior Cartesian products. |
182
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
The cartesian product of lists A,B,C is associative, that is: |
184
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
(A X B) X C = A X (B X C) |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
C<cartesian()> respects associativity by allowing you to include a |
188
|
|
|
|
|
|
|
Cartesian product produced by an earlier call to C<cartesian()> in the |
189
|
|
|
|
|
|
|
set of lists whose Cartesian product is to be formed, at the cost of a |
190
|
|
|
|
|
|
|
performance penalty if this option is chosen. |
191
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
use Math::Cartesian::Product; |
193
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
my $a = [qw(a b)]; |
195
|
|
|
|
|
|
|
my $b = [cartesian {1} $a, $a]; |
196
|
|
|
|
|
|
|
cartesian {print "@_\n"} $b, $b; |
197
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
# a a a a |
199
|
|
|
|
|
|
|
# a a a b |
200
|
|
|
|
|
|
|
# a a b a |
201
|
|
|
|
|
|
|
# ... |
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
C<cartesian()> is easy to use and fast. It is written in 100% Pure Perl. |
204
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
=head1 Export |
206
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
The C<cartesian()> function is exported. |
208
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
=head1 Installation |
210
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
Standard Module::Build process for building and installing modules: |
212
|
|
|
|
|
|
|
|
213
|
|
|
|
|
|
|
perl Build.PL |
214
|
|
|
|
|
|
|
./Build |
215
|
|
|
|
|
|
|
./Build test |
216
|
|
|
|
|
|
|
./Build install |
217
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
Or, if you're on a platform (like DOS or Windows) that doesn't require |
219
|
|
|
|
|
|
|
the "./" notation, you can do this: |
220
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
perl Build.PL |
222
|
|
|
|
|
|
|
Build |
223
|
|
|
|
|
|
|
Build test |
224
|
|
|
|
|
|
|
Build install |
225
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
=head1 Author |
227
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
Philip R Brenan at gmail dot com |
229
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
http://www.appaapps.com |
231
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
=head1 Acknowledgements |
233
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
With much help and good natured advice from Philipp Rumpf and Justin Case to |
235
|
|
|
|
|
|
|
whom I am indebted. |
236
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
=head1 See Also |
238
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
=over |
240
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
=item L<Math::Disarrange::List> |
242
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
=item L<Math::Permute::List> |
244
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
=item L<Math::Permute::Lists> |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
=item L<Math::Permute::Partitions> |
248
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
=item L<Math::Subsets::List> |
250
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
=item L<Math::Transform::List> |
252
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
=back |
254
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
=head1 Copyright |
256
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
Copyright (c) 2009-2015 Philip R Brenan. |
258
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
This module is free software. It may be used, redistributed and/or |
260
|
|
|
|
|
|
|
modified under the same terms as Perl itself. |
261
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
=cut |