line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Math::Business::BlackScholes::Binaries::Greeks::Vanna; |
2
|
1
|
|
|
1
|
|
456
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
28
|
|
3
|
1
|
|
|
1
|
|
5
|
use warnings; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
41
|
|
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
our $VERSION = '0.06'; ## VERSION |
6
|
|
|
|
|
|
|
|
7
|
1
|
|
|
1
|
|
6
|
use List::Util qw( max ); |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
48
|
|
8
|
1
|
|
|
1
|
|
5
|
use Math::CDF qw( pnorm ); |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
30
|
|
9
|
1
|
|
|
1
|
|
5
|
use Math::Trig; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
210
|
|
10
|
1
|
|
|
1
|
|
8
|
use Math::Business::BlackScholesMerton::Binaries; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
29
|
|
11
|
1
|
|
|
1
|
|
6
|
use Math::Business::BlackScholes::Binaries::Greeks::Delta; |
|
1
|
|
|
|
|
1
|
|
|
1
|
|
|
|
|
21
|
|
12
|
1
|
|
|
1
|
|
445
|
use Math::Business::BlackScholes::Binaries::Greeks::Vega; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
35
|
|
13
|
1
|
|
|
1
|
|
6
|
use Math::Business::BlackScholes::Binaries::Greeks::Math qw( dgauss ); |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
1961
|
|
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
=head1 NAME |
16
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::Greeks::Vanna |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
=head1 DESCRIPTION |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
Gets the Vanna for different options, Vanilla and Foreign for all our bet types |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
=head1 SUBROUTINES |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
See L |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
=cut |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
sub vanilla_call { |
30
|
12
|
|
|
12
|
0
|
3727
|
my ($S, $K, $t, $r_q, $mu, $vol) = @_; |
31
|
|
|
|
|
|
|
|
32
|
12
|
|
|
|
|
52
|
my $d1 = (log($S / $K) + ($mu + $vol * $vol / 2.0) * $t) / ($vol * sqrt($t)); |
33
|
12
|
|
|
|
|
24
|
my $d2 = $d1 - ($vol * sqrt($t)); |
34
|
|
|
|
|
|
|
|
35
|
12
|
|
|
|
|
37
|
my $vega = Math::Business::BlackScholes::Binaries::Greeks::Vega::vanilla_call($S, $K, $t, $r_q, $mu, $vol); |
36
|
12
|
|
|
|
|
26
|
my $vanna = -$vega * $d2 / ($S * $vol * sqrt($t)); |
37
|
12
|
|
|
|
|
26
|
return $vanna; |
38
|
|
|
|
|
|
|
} |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
sub vanilla_put { |
41
|
6
|
|
|
6
|
0
|
3645
|
my ($S, $K, $t, $r_q, $mu, $vol) = @_; |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
# Same as vanna of vanilla call (because vega_vanilla_call = vega_vanilla_put) |
44
|
6
|
|
|
|
|
16
|
return vanilla_call($S, $K, $t, $r_q, $mu, $vol); |
45
|
|
|
|
|
|
|
} |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
sub call { |
48
|
32
|
|
|
32
|
0
|
3904
|
my ($S, $U, $t, $r_q, $mu, $vol) = @_; |
49
|
|
|
|
|
|
|
|
50
|
32
|
|
|
|
|
158
|
my $d1 = (log($S / $U) + ($mu + $vol * $vol / 2.0) * $t) / ($vol * sqrt($t)); |
51
|
32
|
|
|
|
|
64
|
my $d2 = $d1 - ($vol * sqrt($t)); |
52
|
|
|
|
|
|
|
|
53
|
32
|
|
|
|
|
89
|
my $vanna = -dgauss($d2) * exp(-$r_q * $t) * (1 - $d1 * $d2) / ($S * $vol * $vol * sqrt($t)); |
54
|
32
|
|
|
|
|
96
|
return $vanna; |
55
|
|
|
|
|
|
|
} |
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
sub put { |
58
|
16
|
|
|
16
|
0
|
3983
|
my ($S, $D, $t, $r_q, $mu, $vol) = @_; |
59
|
|
|
|
|
|
|
|
60
|
16
|
|
|
|
|
41
|
return -1 * call($S, $D, $t, $r_q, $mu, $vol); |
61
|
|
|
|
|
|
|
} |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
sub expirymiss { |
64
|
10
|
|
|
10
|
0
|
3961
|
my ($S, $U, $D, $t, $r_q, $mu, $vol) = @_; |
65
|
|
|
|
|
|
|
|
66
|
10
|
|
|
|
|
31
|
return call($S, $U, $t, $r_q, $mu, $vol) + put($S, $D, $t, $r_q, $mu, $vol); |
67
|
|
|
|
|
|
|
} |
68
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
sub expiryrange { |
70
|
5
|
|
|
5
|
0
|
3273
|
my ($S, $U, $D, $t, $r_q, $mu, $vol) = @_; |
71
|
|
|
|
|
|
|
|
72
|
5
|
|
|
|
|
18
|
return -1 * expirymiss($S, $U, $D, $t, $r_q, $mu, $vol); |
73
|
|
|
|
|
|
|
} |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
sub onetouch { |
76
|
13
|
|
|
13
|
0
|
4395
|
my ($S, $U, $t, $r_q, $mu, $vol, $w) = @_; |
77
|
|
|
|
|
|
|
|
78
|
13
|
100
|
|
|
|
43
|
if (not defined $w) { |
79
|
7
|
|
|
|
|
12
|
$w = 0; |
80
|
|
|
|
|
|
|
} |
81
|
|
|
|
|
|
|
|
82
|
13
|
|
|
|
|
26
|
my $sqrt_t = sqrt($t); |
83
|
|
|
|
|
|
|
|
84
|
13
|
|
|
|
|
36
|
my $theta = (($mu) / $vol) + (0.5 * $vol); |
85
|
|
|
|
|
|
|
|
86
|
13
|
|
|
|
|
31
|
my $theta_ = (($mu) / $vol) - (0.5 * $vol); |
87
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
# Floor v_ squared at just above zero in case negative interest rates push it negative. |
89
|
13
|
|
|
|
|
56
|
my $v_ = sqrt(max($Math::Business::BlackScholesMerton::Binaries::SMALL_VALUE_MU, ($theta_ * $theta_) + (2 * (1 - $w) * $r_q))); |
90
|
|
|
|
|
|
|
|
91
|
13
|
|
|
|
|
50
|
my $e = (log($S / $U) - ($vol * $v_ * $t)) / ($vol * $sqrt_t); |
92
|
13
|
|
|
|
|
36
|
my $e_ = (-log($S / $U) - ($vol * $v_ * $t)) / ($vol * $sqrt_t); |
93
|
|
|
|
|
|
|
|
94
|
13
|
100
|
|
|
|
39
|
my $eta = ($S > $U) ? 1 : -1; |
95
|
|
|
|
|
|
|
|
96
|
13
|
|
|
|
|
37
|
my $pa_e = (log($U / $S) / ($vol * $vol * $sqrt_t)) + (($theta_ * $theta) / ($vol * $v_) * $sqrt_t); |
97
|
13
|
|
|
|
|
34
|
my $pa_e_ = (-log($U / $S) / ($vol * $vol * $sqrt_t)) + (($theta_ * $theta) / ($vol * $v_) * $sqrt_t); |
98
|
|
|
|
|
|
|
|
99
|
13
|
|
|
|
|
34
|
my $A = -($theta + $theta_ + ($theta_ * $theta / $v_) + $v_) / ($vol * $vol); |
100
|
13
|
|
|
|
|
34
|
my $A_ = -($theta + $theta_ - ($theta_ * $theta / $v_) - $v_) / ($vol * $vol); |
101
|
|
|
|
|
|
|
|
102
|
13
|
|
|
|
|
32
|
my $d_ = (log($U / $S) - $vol * $theta_ * $t) / ($vol * $sqrt_t); |
103
|
|
|
|
|
|
|
|
104
|
13
|
|
|
|
|
22
|
my ($part1, $part2, $subpart_1_1, $subpart_1_2, $subpart_2_1, $subpart_2_2); |
105
|
|
|
|
|
|
|
|
106
|
13
|
|
|
|
|
82
|
$subpart_1_1 = |
107
|
|
|
|
|
|
|
pnorm(-$eta * $e) * $A * (-$vol - ($theta_ + $v_) * log($U / $S)); |
108
|
13
|
|
|
|
|
53
|
$subpart_1_2 = $eta * dgauss($e) / $sqrt_t * ($d_ * $pa_e + $A * log($U / $S) - 1.0 / $vol); |
109
|
|
|
|
|
|
|
|
110
|
13
|
|
|
|
|
53
|
$subpart_2_1 = pnorm($eta * $e_) * $A_ * (-$vol - ($theta_ - $v_) * log($U / $S)); |
111
|
13
|
|
|
|
|
35
|
$subpart_2_2 = $eta * dgauss($e_) / $sqrt_t * ($d_ * $pa_e_ - $A_ * log($U / $S) + 1.0 / $vol); |
112
|
|
|
|
|
|
|
|
113
|
13
|
|
|
|
|
37
|
$part1 = (($U / $S)**(($theta_ + $v_) / $vol)) * ($subpart_1_1 - $subpart_1_2); |
114
|
13
|
|
|
|
|
37
|
$part2 = (($U / $S)**(($theta_ - $v_) / $vol)) * ($subpart_2_1 + $subpart_2_2); |
115
|
|
|
|
|
|
|
|
116
|
13
|
|
|
|
|
47
|
return ($part1 + $part2) * exp(-$w * $r_q * $t) / ($vol * $S); |
117
|
|
|
|
|
|
|
} |
118
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
sub notouch { |
120
|
6
|
|
|
6
|
0
|
4016
|
my ($S, $U, $t, $r_q, $mu, $vol, $w) = @_; |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
# No touch bet always pay out at end |
123
|
6
|
|
|
|
|
15
|
$w = 1; |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
# Since the value VALUE_NOTOUCH = D(T) - VALUE_ONETOUCH, where D(T) |
126
|
|
|
|
|
|
|
# is the discount from time T, any derivative (other than with |
127
|
|
|
|
|
|
|
# respect to time or discount rate) of the value of notouch |
128
|
|
|
|
|
|
|
# is just the negative of the onetouch derivative. |
129
|
6
|
|
|
|
|
29
|
return (-1 * onetouch($S, $U, $t, $r_q, $mu, $vol, $w)); |
130
|
|
|
|
|
|
|
} |
131
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
sub upordown { |
133
|
13
|
|
|
13
|
0
|
4684
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
# $w = 0, paid at hit |
136
|
|
|
|
|
|
|
# $w = 1, paid at end |
137
|
13
|
100
|
|
|
|
45
|
if (not defined $w) { $w = 0; } |
|
7
|
|
|
|
|
17
|
|
138
|
|
|
|
|
|
|
|
139
|
13
|
|
|
|
|
44
|
return ot_up_ko_down_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w) + ot_down_ko_up_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w); |
140
|
|
|
|
|
|
|
} |
141
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
sub xw_common_function_pelsser_1997 { |
143
|
26
|
|
|
26
|
0
|
79
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w, $eta) = @_; |
144
|
|
|
|
|
|
|
|
145
|
26
|
|
|
|
|
37
|
my $pi = Math::Trig::pi; |
146
|
|
|
|
|
|
|
|
147
|
26
|
|
|
|
|
43
|
my $h = log($U / $D); |
148
|
26
|
|
|
|
|
42
|
my $x = log($S / $D); |
149
|
|
|
|
|
|
|
|
150
|
|
|
|
|
|
|
# $eta = 1, onetouch up knockout down |
151
|
|
|
|
|
|
|
# $eta = 0, onetouch down knockout up |
152
|
|
|
|
|
|
|
# This variable used to check stability |
153
|
26
|
50
|
|
|
|
62
|
if (not defined $eta) { |
154
|
0
|
|
|
|
|
0
|
die |
155
|
|
|
|
|
|
|
"$0: (xw_common_function_pelsser_1997) Wrong usage of this function for S=$S, U=$U, D=$D, t=$t, r_q=$r_q, mu=$mu, vol=$vol, w=$w. eta not defined."; |
156
|
|
|
|
|
|
|
} |
157
|
26
|
100
|
|
|
|
54
|
if ($eta == 0) { $x = $h - $x; } |
|
13
|
|
|
|
|
25
|
|
158
|
|
|
|
|
|
|
|
159
|
26
|
|
|
|
|
40
|
my $r_dash = $r_q * (1 - $w); |
160
|
26
|
|
|
|
|
53
|
my $mu_new = $mu - (0.5 * $vol * $vol); |
161
|
26
|
|
|
|
|
98
|
my $mu_dash = sqrt(max($Math::Business::BlackScholesMerton::Binaries::SMALL_VALUE_MU, ($mu_new * $mu_new) + (2 * $vol * $vol * $r_dash))); |
162
|
|
|
|
|
|
|
|
163
|
26
|
|
|
|
|
47
|
my $omega = ($vol * $vol); |
164
|
|
|
|
|
|
|
|
165
|
26
|
|
|
|
|
39
|
my $series_part = 0; |
166
|
26
|
|
|
|
|
39
|
my $hyp_part = 0; |
167
|
|
|
|
|
|
|
|
168
|
26
|
|
|
|
|
70
|
my $stability_constant = |
169
|
|
|
|
|
|
|
Math::Business::BlackScholesMerton::Binaries::get_stability_constant_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, $eta, 1); |
170
|
|
|
|
|
|
|
|
171
|
26
|
|
|
|
|
555
|
my $iterations_required = Math::Business::BlackScholesMerton::Binaries::get_min_iterations_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w); |
172
|
|
|
|
|
|
|
|
173
|
26
|
|
|
|
|
2043
|
for (my $k = 1; $k < $iterations_required; $k++) { |
174
|
570
|
|
|
|
|
1117
|
my $lambda_k_dash = (0.5 * (($mu_dash * $mu_dash) / ($vol * $vol) + ($k * $k * $pi * $pi * $vol * $vol) / ($h * $h))); |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
# d{lambda_k}/dw |
177
|
570
|
|
|
|
|
1031
|
my $dlambdak_domega = 0.5 * (-($mu_new / $omega) - (($mu_new * $mu_new) / ($omega * $omega)) + (($k * $k * $pi * $pi) / ($h * $h))); |
178
|
|
|
|
|
|
|
|
179
|
570
|
|
|
|
|
868
|
my $beta_k = exp(-$lambda_k_dash * $t) / $lambda_k_dash; |
180
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
# d{beta_k}/d{lambda_k} |
182
|
570
|
|
|
|
|
971
|
my $dbetak_dlambdak = -exp(-$lambda_k_dash * $t) * (($t * $lambda_k_dash + 1) / ($lambda_k_dash**2)); |
183
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
# d{beta_k}/dw |
185
|
570
|
|
|
|
|
725
|
my $dbetak_domega = $dlambdak_domega * $dbetak_dlambdak; |
186
|
|
|
|
|
|
|
|
187
|
570
|
|
|
|
|
945
|
my $phi = (1.0 / ($h * $h * $h)) * ($omega * $dbetak_domega + $beta_k) * $k * $k; |
188
|
|
|
|
|
|
|
|
189
|
570
|
|
|
|
|
949
|
$series_part += $phi * $pi * $pi * cos($k * $pi * ($h - $x) / $h); |
190
|
|
|
|
|
|
|
|
191
|
570
|
50
|
66
|
|
|
1489
|
if ($k == 1 |
192
|
|
|
|
|
|
|
and (not(abs(2 * $vol * $phi / $S) < $stability_constant))) |
193
|
|
|
|
|
|
|
{ |
194
|
0
|
|
|
|
|
0
|
die |
195
|
|
|
|
|
|
|
"$0: PELSSER VANNA formula for S=$S, U=$U, D=$D, t=$t, r_q=$r_q, mu=$mu, vol=$vol, w=$w, eta=$eta cannot be evaluated because PELSSER VANNA stability conditions (2 * $vol * $phi / $S less than $stability_constant) not met. This could be due to barriers too big, volatilities too low, interest/dividend rates too high, or machine accuracy too low."; |
196
|
|
|
|
|
|
|
} |
197
|
|
|
|
|
|
|
} |
198
|
|
|
|
|
|
|
|
199
|
26
|
|
|
|
|
58
|
my $alpha = $mu_dash / ($vol * $vol); |
200
|
26
|
|
|
|
|
77
|
my $dalpha_domega = -(($mu_new * $omega) + (2 * $mu_new * $mu_new) + (2 * $r_dash * $omega)) / (2 * $alpha * $omega * $omega * $omega); |
201
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
# We have to handle the special case where the denominator approaches 0, see our documentation in |
203
|
|
|
|
|
|
|
# quant/Documents/Breakout_bet.tex under the SVN "quant" module. |
204
|
26
|
50
|
|
|
|
80
|
if ((Math::Trig::sinh($alpha * $h)**2) == 0) { |
205
|
0
|
|
|
|
|
0
|
$hyp_part = 0; |
206
|
|
|
|
|
|
|
} else { |
207
|
26
|
|
|
|
|
350
|
$hyp_part = |
208
|
|
|
|
|
|
|
-($dalpha_domega * $alpha) * |
209
|
|
|
|
|
|
|
((($h + $x) * Math::Trig::cosh($alpha * ($h - $x))) + (($h - $x) * Math::Trig::cosh($alpha * ($h + $x)))) / |
210
|
|
|
|
|
|
|
(2 * Math::Trig::sinh($alpha * $h) * Math::Trig::sinh($alpha * $h)) + |
211
|
|
|
|
|
|
|
$dalpha_domega * |
212
|
|
|
|
|
|
|
(Math::Trig::sinh($alpha * ($h - $x)) + Math::Trig::sinh($alpha * ($h + $x))) / |
213
|
|
|
|
|
|
|
(2 * Math::Trig::sinh($alpha * $h) * Math::Trig::sinh($alpha * $h)); |
214
|
|
|
|
|
|
|
} |
215
|
|
|
|
|
|
|
|
216
|
26
|
|
|
|
|
1527
|
my $d2c_domegadx = ($hyp_part + $series_part) * exp(-$r_q * $w * $t); |
217
|
|
|
|
|
|
|
|
218
|
26
|
|
|
|
|
58
|
return $d2c_domegadx; |
219
|
|
|
|
|
|
|
} |
220
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
sub ot_up_ko_down_pelsser_1997 { |
222
|
13
|
|
|
13
|
0
|
32
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
223
|
|
|
|
|
|
|
|
224
|
13
|
|
|
|
|
32
|
my $mu_new = $mu - (0.5 * $vol * $vol); |
225
|
13
|
|
|
|
|
37
|
my $h = log($U / $D); |
226
|
13
|
|
|
|
|
29
|
my $x = log($S / $D); |
227
|
13
|
|
|
|
|
22
|
my $omega = ($vol * $vol); |
228
|
|
|
|
|
|
|
|
229
|
13
|
|
|
|
|
52
|
my $c = Math::Business::BlackScholesMerton::Binaries::common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 1); |
230
|
13
|
|
|
|
|
3738
|
my $dc_domega = Math::Business::BlackScholes::Binaries::Greeks::Vega::w_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 1); |
231
|
13
|
|
|
|
|
59
|
my $dc_dx = Math::Business::BlackScholes::Binaries::Greeks::Delta::x_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 1); |
232
|
13
|
|
|
|
|
45
|
my $d2c_domegadx = xw_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 1); |
233
|
|
|
|
|
|
|
|
234
|
13
|
|
|
|
|
94
|
my $d2Vu_domegadx = |
235
|
|
|
|
|
|
|
((((0.5 * $omega) + $mu_new) / ($omega * $omega)) * (1 + ($mu_new / $omega) * ($h - $x)) * exp(($mu_new / $omega) * ($h - $x)) * $c) - |
236
|
|
|
|
|
|
|
((((0.5 * $omega) + $mu_new) / ($omega * $omega)) * ($h - $x) * exp(($mu_new / $omega) * ($h - $x)) * $dc_dx) - |
237
|
|
|
|
|
|
|
(($mu_new / $omega) * exp(($mu_new / $omega) * ($h - $x)) * $dc_domega) + |
238
|
|
|
|
|
|
|
(exp(($mu_new / $omega) * ($h - $x)) * $d2c_domegadx); |
239
|
|
|
|
|
|
|
|
240
|
13
|
|
|
|
|
50
|
return (2 * $vol / $S) * $d2Vu_domegadx; |
241
|
|
|
|
|
|
|
} |
242
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
sub ot_down_ko_up_pelsser_1997 { |
244
|
13
|
|
|
13
|
0
|
40
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
245
|
|
|
|
|
|
|
|
246
|
13
|
|
|
|
|
26
|
my $mu_new = $mu - (0.5 * $vol * $vol); |
247
|
13
|
|
|
|
|
25
|
my $x = log($S / $D); |
248
|
13
|
|
|
|
|
22
|
my $omega = ($vol * $vol); |
249
|
|
|
|
|
|
|
|
250
|
13
|
|
|
|
|
38
|
my $c = Math::Business::BlackScholesMerton::Binaries::common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 0); |
251
|
13
|
|
|
|
|
3597
|
my $dc_domega = Math::Business::BlackScholes::Binaries::Greeks::Vega::w_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 0); |
252
|
13
|
|
|
|
|
47
|
my $dc_dx = Math::Business::BlackScholes::Binaries::Greeks::Delta::x_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 0); |
253
|
13
|
|
|
|
|
34
|
my $d2c_domegadx = xw_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 0); |
254
|
|
|
|
|
|
|
|
255
|
13
|
|
|
|
|
79
|
my $d2Vl_domegadx = |
256
|
|
|
|
|
|
|
((((0.5 * $omega) + $mu_new) / ($omega * $omega)) * (1 - ($mu_new / $omega) * $x) * exp(-($mu_new / $omega) * $x) * $c) - |
257
|
|
|
|
|
|
|
((((0.5 * $omega) + $mu_new) / ($omega * $omega)) * $x * exp(-($mu_new / $omega) * $x) * $dc_dx) - |
258
|
|
|
|
|
|
|
(($mu_new / $omega) * exp(-($mu_new / $omega) * $x) * $dc_domega) - |
259
|
|
|
|
|
|
|
(exp(-($mu_new / $omega) * $x) * $d2c_domegadx); |
260
|
|
|
|
|
|
|
|
261
|
13
|
|
|
|
|
52
|
return (2 * $vol / $S) * $d2Vl_domegadx; |
262
|
|
|
|
|
|
|
} |
263
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
sub range { |
265
|
6
|
|
|
6
|
0
|
4002
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
266
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
# Range always pay out at end |
268
|
6
|
|
|
|
|
13
|
$w = 1; |
269
|
|
|
|
|
|
|
|
270
|
6
|
|
|
|
|
22
|
return -1 * upordown($S, $U, $D, $t, $r_q, $mu, $vol, $w); |
271
|
|
|
|
|
|
|
} |
272
|
|
|
|
|
|
|
|
273
|
|
|
|
|
|
|
1; |
274
|
|
|
|
|
|
|
|