line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Math::Business::BlackScholes::Binaries::Greeks::Gamma; |
2
|
1
|
|
|
1
|
|
459
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
29
|
|
3
|
1
|
|
|
1
|
|
4
|
use warnings; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
46
|
|
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
our $VERSION = '0.06'; ## VERSION |
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
=head1 NAME |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
Math::Business::BlackScholes::Binaries::Greeks::Gamma |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
=head1 DESCRIPTION |
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
Gets the gamma for different options, Vanilla and Foreign for all our bet types |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
=cut |
16
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
=head1 SUBROUTINES |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
See L |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
=cut |
22
|
|
|
|
|
|
|
|
23
|
1
|
|
|
1
|
|
5
|
use List::Util qw( max ); |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
63
|
|
24
|
1
|
|
|
1
|
|
6
|
use Math::CDF qw( pnorm ); |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
46
|
|
25
|
1
|
|
|
1
|
|
6
|
use Math::Trig; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
175
|
|
26
|
1
|
|
|
1
|
|
11
|
use Math::Business::BlackScholesMerton::Binaries; |
|
1
|
|
|
|
|
3
|
|
|
1
|
|
|
|
|
42
|
|
27
|
1
|
|
|
1
|
|
7
|
use Math::Business::BlackScholes::Binaries::Greeks::Math qw( ddgauss dgauss ); |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
1866
|
|
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
sub vanilla_call { |
30
|
12
|
|
|
12
|
0
|
3934
|
my ($S0, $Strike, $t, $r_q, $mu, $vol) = @_; |
31
|
|
|
|
|
|
|
|
32
|
12
|
|
|
|
|
54
|
my $d1 = (log($S0 / $Strike) + ($mu + (($vol**2) / 2)) * $t) / ($vol * sqrt($t)); |
33
|
|
|
|
|
|
|
|
34
|
12
|
|
|
|
|
37
|
my $gamma = |
35
|
|
|
|
|
|
|
dgauss($d1) * exp(($mu - $r_q) * $t) / ($S0 * $vol * sqrt($t)); |
36
|
|
|
|
|
|
|
|
37
|
12
|
|
|
|
|
28
|
return $gamma; |
38
|
|
|
|
|
|
|
} |
39
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
sub vanilla_put { |
41
|
6
|
|
|
6
|
0
|
3835
|
return vanilla_call(@_); |
42
|
|
|
|
|
|
|
} |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
sub call { |
45
|
16
|
|
|
16
|
0
|
4012
|
my ($S, $U, $t, $r_q, $mu, $vol) = @_; |
46
|
|
|
|
|
|
|
|
47
|
16
|
|
|
|
|
59
|
my $v = $mu - ($vol**2) / 2; |
48
|
16
|
|
|
|
|
44
|
my $log_value = log($U / $S); |
49
|
|
|
|
|
|
|
|
50
|
16
|
|
|
|
|
30
|
my $da = -1 / $S; |
51
|
16
|
|
|
|
|
31
|
my $dda = 1 / ($S * $S); |
52
|
|
|
|
|
|
|
|
53
|
16
|
|
|
|
|
41
|
my $q = ($log_value - $v * $t) / ($vol * sqrt($t)); |
54
|
16
|
|
|
|
|
30
|
my $dq = $da / ($vol * sqrt($t)); |
55
|
16
|
|
|
|
|
29
|
my $ddq = $dda / ($vol * sqrt($t)); |
56
|
|
|
|
|
|
|
|
57
|
16
|
|
|
|
|
65
|
my $gamma = |
58
|
|
|
|
|
|
|
-exp(-$r_q * $t) * (ddgauss($q) * $dq * $dq + dgauss($q) * $ddq); |
59
|
|
|
|
|
|
|
|
60
|
16
|
|
|
|
|
49
|
return $gamma; |
61
|
|
|
|
|
|
|
} |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
sub put { |
64
|
16
|
|
|
16
|
0
|
4211
|
my ($S, $D, $t, $r_q, $mu, $vol) = @_; |
65
|
|
|
|
|
|
|
|
66
|
16
|
|
|
|
|
45
|
my $v = $mu - ($vol**2) / 2; |
67
|
16
|
|
|
|
|
38
|
my $log_value = log($D / $S); |
68
|
16
|
|
|
|
|
32
|
my $db = -1 / $S; |
69
|
16
|
|
|
|
|
31
|
my $ddb = 1 / ($S * $S); |
70
|
|
|
|
|
|
|
|
71
|
16
|
|
|
|
|
33
|
my $q = ($log_value - $v * $t) / ($vol * sqrt($t)); |
72
|
16
|
|
|
|
|
35
|
my $dq = $db / ($vol * sqrt($t)); |
73
|
16
|
|
|
|
|
33
|
my $ddq = $ddb / ($vol * sqrt($t)); |
74
|
|
|
|
|
|
|
|
75
|
16
|
|
|
|
|
51
|
my $gamma = |
76
|
|
|
|
|
|
|
exp(-$r_q * $t) * (ddgauss($q) * $dq * $dq + dgauss($q) * $ddq); |
77
|
|
|
|
|
|
|
|
78
|
16
|
|
|
|
|
49
|
return $gamma; |
79
|
|
|
|
|
|
|
} |
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
sub expirymiss { |
82
|
10
|
|
|
10
|
0
|
4308
|
my ($S, $U, $D, $t, $r_q, $mu, $vol) = @_; |
83
|
|
|
|
|
|
|
|
84
|
10
|
|
|
|
|
35
|
return call($S, $U, $t, $r_q, $mu, $vol) + put($S, $D, $t, $r_q, $mu, $vol); |
85
|
|
|
|
|
|
|
} |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
sub expiryrange { |
88
|
5
|
|
|
5
|
0
|
3336
|
my ($S, $U, $D, $t, $r_q, $mu, $vol) = @_; |
89
|
|
|
|
|
|
|
|
90
|
5
|
|
|
|
|
18
|
return -1 * expirymiss($S, $U, $D, $t, $r_q, $mu, $vol); |
91
|
|
|
|
|
|
|
} |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
sub onetouch { |
94
|
13
|
|
|
13
|
0
|
4597
|
my ($S, $U, $t, $r_q, $mu, $vol, $w) = @_; |
95
|
13
|
100
|
|
|
|
35
|
if (not defined $w) { |
96
|
7
|
|
|
|
|
12
|
$w = 0; |
97
|
|
|
|
|
|
|
} |
98
|
|
|
|
|
|
|
|
99
|
13
|
|
|
|
|
32
|
my $sqrt_t = sqrt($t); |
100
|
|
|
|
|
|
|
|
101
|
13
|
|
|
|
|
38
|
my $theta_ = (($mu) / $vol) - (0.5 * $vol); |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
# Floor v_ squared near zero in case negative interest rates push it negative. |
104
|
13
|
|
|
|
|
54
|
my $v_ = sqrt(max($Math::Business::BlackScholesMerton::Binaries::SMALL_VALUE_MU, ($theta_ * $theta_) + (2 * (1 - $w) * $r_q))); |
105
|
|
|
|
|
|
|
|
106
|
13
|
|
|
|
|
52
|
my $e = (log($S / $U) - ($vol * $v_ * $t)) / ($vol * $sqrt_t); |
107
|
|
|
|
|
|
|
|
108
|
13
|
|
|
|
|
31
|
my $e_ = (-log($S / $U) - ($vol * $v_ * $t)) / ($vol * $sqrt_t); |
109
|
|
|
|
|
|
|
|
110
|
13
|
100
|
|
|
|
39
|
my $eta = ($S > $U) ? 1 : -1; |
111
|
|
|
|
|
|
|
|
112
|
13
|
|
|
|
|
92
|
my $part1 = (($U / $S)**(($theta_ + $v_) / $vol)) * pnorm(-$eta * $e) * ($r_q * (1 - $w) + ($mu) * ($theta_ + $v_) / $vol); |
113
|
13
|
|
|
|
|
56
|
my $part2 = (($U / $S)**(($theta_ - $v_) / $vol)) * pnorm($eta * $e_) * ($r_q * (1 - $w) + ($mu) * ($theta_ - $v_) / $vol); |
114
|
13
|
|
|
|
|
52
|
my $part3 = $eta * (($U / $S)**(($theta_ + $v_) / $vol)) * dgauss($e) * (-$e_ * 0.5 / $t + ($mu) / ($vol * $sqrt_t)); |
115
|
13
|
|
|
|
|
38
|
my $part4 = $eta * (($U / $S)**(($theta_ - $v_) / $vol)) * dgauss($e_) * ($e * 0.5 / $t + ($mu) / ($vol * $sqrt_t)); |
116
|
|
|
|
|
|
|
|
117
|
13
|
|
|
|
|
20
|
my $gamma = $part1 + $part2 + $part3 + $part4; |
118
|
13
|
|
|
|
|
43
|
return $gamma * 2 * exp(-$w * $r_q * $t) / ($vol * $vol * $S * $S); |
119
|
|
|
|
|
|
|
} |
120
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
sub notouch { |
122
|
6
|
|
|
6
|
0
|
4033
|
my ($S, $U, $t, $r_q, $mu, $vol, $w) = @_; |
123
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
# No touch bet always pay out at end |
125
|
6
|
|
|
|
|
11
|
$w = 1; |
126
|
|
|
|
|
|
|
|
127
|
6
|
|
|
|
|
18
|
return -1 * onetouch($S, $U, $t, $r_q, $mu, $vol, $w); |
128
|
|
|
|
|
|
|
} |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
sub upordown { |
131
|
13
|
|
|
13
|
0
|
4881
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
132
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
# $w = 0, paid at hit |
134
|
|
|
|
|
|
|
# $w = 1, paid at end |
135
|
13
|
100
|
|
|
|
46
|
if (not defined $w) { $w = 0; } |
|
7
|
|
|
|
|
15
|
|
136
|
|
|
|
|
|
|
|
137
|
13
|
|
|
|
|
47
|
return ot_up_ko_down_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w) + ot_down_ko_up_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w); |
138
|
|
|
|
|
|
|
} |
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
sub xx_common_function_pelsser_1997 { |
141
|
26
|
|
|
26
|
0
|
74
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w, $eta) = @_; |
142
|
|
|
|
|
|
|
|
143
|
26
|
|
|
|
|
46
|
my $pi = Math::Trig::pi; |
144
|
|
|
|
|
|
|
|
145
|
26
|
|
|
|
|
51
|
my $h = log($U / $D); |
146
|
26
|
|
|
|
|
46
|
my $x = log($S / $D); |
147
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
# $eta = 1, onetouch up knockout down |
149
|
|
|
|
|
|
|
# $eta = 0, onetouch down knockout up |
150
|
|
|
|
|
|
|
# This variable used to check stability |
151
|
26
|
50
|
|
|
|
77
|
if (not defined $eta) { |
152
|
0
|
|
|
|
|
0
|
die |
153
|
|
|
|
|
|
|
"$0: (xx_common_function_pelsser_1997) Wrong usage of this function for S=$S, U=$U, D=$D, t=$t, r=$r_q, mu=$mu, vol=$vol, w=$w. eta not defined."; |
154
|
|
|
|
|
|
|
} |
155
|
26
|
100
|
|
|
|
60
|
if ($eta == 0) { $x = $h - $x; } |
|
13
|
|
|
|
|
19
|
|
156
|
|
|
|
|
|
|
|
157
|
26
|
|
|
|
|
52
|
my $mu_ = $mu - (0.5 * $vol * $vol); |
158
|
26
|
|
|
|
|
98
|
my $mu_dash = |
159
|
|
|
|
|
|
|
sqrt(max($Math::Business::BlackScholesMerton::Binaries::SMALL_VALUE_MU, ($mu_ * $mu_) + (2 * $vol * $vol * $r_q * (1 - $w)))); |
160
|
|
|
|
|
|
|
|
161
|
26
|
|
|
|
|
49
|
my $series_part = 0; |
162
|
26
|
|
|
|
|
40
|
my $hyp_part = 0; |
163
|
|
|
|
|
|
|
|
164
|
26
|
|
|
|
|
75
|
my $stability_constant = |
165
|
|
|
|
|
|
|
Math::Business::BlackScholesMerton::Binaries::get_stability_constant_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, $eta, 3); |
166
|
|
|
|
|
|
|
|
167
|
26
|
|
|
|
|
536
|
my $iterations_required = Math::Business::BlackScholesMerton::Binaries::get_min_iterations_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w); |
168
|
|
|
|
|
|
|
|
169
|
26
|
|
|
|
|
1955
|
for (my $k = 1; $k < $iterations_required; $k++) { |
170
|
570
|
|
|
|
|
1101
|
my $lambda_k_dash = (0.5 * (($mu_dash * $mu_dash) / ($vol * $vol) + ($k * $k * $pi * $pi * $vol * $vol) / ($h * $h))); |
171
|
|
|
|
|
|
|
|
172
|
570
|
|
|
|
|
1117
|
my $phi = ($vol * $vol) / ($h**4) * exp(-$lambda_k_dash * $t) * ($k**3) / $lambda_k_dash; |
173
|
|
|
|
|
|
|
|
174
|
570
|
|
|
|
|
1070
|
$series_part += $phi * ($pi**3) * sin($k * $pi * ($h - $x) / $h); |
175
|
|
|
|
|
|
|
|
176
|
570
|
50
|
66
|
|
|
1409
|
if ($k == 1 |
177
|
|
|
|
|
|
|
and (not(abs($phi / ($S**2)) < $stability_constant))) |
178
|
|
|
|
|
|
|
{ |
179
|
0
|
|
|
|
|
0
|
die |
180
|
|
|
|
|
|
|
"$0: PELSSER GAMMA formula for S=$S, U=$U, D=$D, t=$t, r=$r_q, mu=$mu, vol=$vol, w=$w, eta=$eta cannot be evaluated because PELSSER GAMMA stability conditions ($phi / ($S * $S) less than $stability_constant) not met. This could be due to barriers too big, volatilities too low, interest/dividend rates too high, or machine accuracy too low."; |
181
|
|
|
|
|
|
|
} |
182
|
|
|
|
|
|
|
} |
183
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
# Need to take care when $mu goes to zero |
185
|
26
|
50
|
|
|
|
65
|
if (abs($mu_) < $Math::Business::BlackScholesMerton::Binaries::SMALL_VALUE_MU) { |
186
|
0
|
0
|
|
|
|
0
|
my $sign = ($mu_ >= 0) ? 1 : -1; |
187
|
0
|
|
|
|
|
0
|
$mu_ = $sign * $Math::Business::BlackScholesMerton::Binaries::SMALL_VALUE_MU; |
188
|
0
|
|
|
|
|
0
|
$mu_dash = |
189
|
|
|
|
|
|
|
sqrt(max($Math::Business::BlackScholesMerton::Binaries::SMALL_VALUE_MU, ($mu_ * $mu_) + (2 * $vol * $vol * $r_q * (1 - $w)))); |
190
|
|
|
|
|
|
|
} |
191
|
|
|
|
|
|
|
|
192
|
26
|
|
|
|
|
110
|
$hyp_part = (($mu_dash**2) / ($vol**4)) * (Math::Trig::sinh($mu_dash * $x / ($vol * $vol)) / Math::Trig::sinh($mu_dash * $h / ($vol * $vol))); |
193
|
|
|
|
|
|
|
|
194
|
26
|
|
|
|
|
515
|
my $d2c_dwdx = ($hyp_part + $series_part) * exp(-$r_q * $t * $w); |
195
|
|
|
|
|
|
|
|
196
|
26
|
|
|
|
|
55
|
return $d2c_dwdx; |
197
|
|
|
|
|
|
|
} |
198
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
sub ot_up_ko_down_pelsser_1997 { |
200
|
13
|
|
|
13
|
0
|
44
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
201
|
|
|
|
|
|
|
|
202
|
13
|
|
|
|
|
33
|
my $mu_ = $mu - (0.5 * $vol * $vol); |
203
|
13
|
|
|
|
|
38
|
my $h = log($U / $D); |
204
|
13
|
|
|
|
|
30
|
my $x = log($S / $D); |
205
|
|
|
|
|
|
|
|
206
|
13
|
|
|
|
|
52
|
my $c = Math::Business::BlackScholesMerton::Binaries::common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 1); |
207
|
13
|
|
|
|
|
3954
|
my $dc_dx = Math::Business::BlackScholes::Binaries::Greeks::Delta::x_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 1); |
208
|
13
|
|
|
|
|
62
|
my $d2c_dx2 = xx_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 1); |
209
|
|
|
|
|
|
|
|
210
|
13
|
|
|
|
|
46
|
my $dVu_dx = |
211
|
|
|
|
|
|
|
-( |
212
|
|
|
|
|
|
|
($mu_ / ($vol * $vol)) * Math::Business::BlackScholesMerton::Binaries::common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 1)); |
213
|
13
|
|
|
|
|
3571
|
$dVu_dx += Math::Business::BlackScholes::Binaries::Greeks::Delta::x_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 1); |
214
|
13
|
|
|
|
|
38
|
$dVu_dx *= exp($mu_ * ($h - $x) / ($vol * $vol)); |
215
|
|
|
|
|
|
|
|
216
|
13
|
|
|
|
|
69
|
my $d2Vu_dx2 = |
217
|
|
|
|
|
|
|
((($mu_**2) / ($vol**4)) * exp(($mu_ / ($vol * $vol)) * ($h - $x)) * $c) - |
218
|
|
|
|
|
|
|
(2 * ($mu_ / ($vol**2)) * exp(($mu_ / ($vol * $vol)) * ($h - $x)) * $dc_dx) + |
219
|
|
|
|
|
|
|
(exp(($mu_ / ($vol**2)) * ($h - $x)) * $d2c_dx2); |
220
|
|
|
|
|
|
|
|
221
|
13
|
|
|
|
|
55
|
return (1 / ($S**2)) * ($d2Vu_dx2 - $dVu_dx); |
222
|
|
|
|
|
|
|
} |
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
sub ot_down_ko_up_pelsser_1997 { |
225
|
13
|
|
|
13
|
0
|
41
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
226
|
|
|
|
|
|
|
|
227
|
13
|
|
|
|
|
29
|
my $mu_ = $mu - (0.5 * $vol * $vol); |
228
|
13
|
|
|
|
|
25
|
my $x = log($S / $D); |
229
|
|
|
|
|
|
|
|
230
|
13
|
|
|
|
|
35
|
my $c = Math::Business::BlackScholesMerton::Binaries::common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 0); |
231
|
13
|
|
|
|
|
3489
|
my $dc_dx = Math::Business::BlackScholes::Binaries::Greeks::Delta::x_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 0); |
232
|
13
|
|
|
|
|
41
|
my $d2c_dx2 = xx_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 0); |
233
|
|
|
|
|
|
|
|
234
|
13
|
|
|
|
|
50
|
my $dVl_dx = |
235
|
|
|
|
|
|
|
-( |
236
|
|
|
|
|
|
|
($mu_ / ($vol * $vol)) * Math::Business::BlackScholesMerton::Binaries::common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 0)); |
237
|
13
|
|
|
|
|
3561
|
$dVl_dx -= Math::Business::BlackScholes::Binaries::Greeks::Delta::x_common_function_pelsser_1997($S, $U, $D, $t, $r_q, $mu, $vol, $w, 0); |
238
|
13
|
|
|
|
|
45
|
$dVl_dx *= exp(-$mu_ * $x / ($vol * $vol)); |
239
|
|
|
|
|
|
|
|
240
|
13
|
|
|
|
|
94
|
my $d2Vl_dx2 = |
241
|
|
|
|
|
|
|
((($mu_**2) / ($vol**4)) * exp(-($mu_ / ($vol * $vol)) * $x) * $c) + |
242
|
|
|
|
|
|
|
(2 * ($mu_ / ($vol**2)) * exp(-($mu_ / ($vol * $vol)) * $x) * $dc_dx) + |
243
|
|
|
|
|
|
|
(exp(-($mu_ / ($vol**2)) * $x) * $d2c_dx2); |
244
|
|
|
|
|
|
|
|
245
|
13
|
|
|
|
|
56
|
return (1 / ($S**2)) * ($d2Vl_dx2 - $dVl_dx); |
246
|
|
|
|
|
|
|
} |
247
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
sub range { |
249
|
6
|
|
|
6
|
0
|
4271
|
my ($S, $U, $D, $t, $r_q, $mu, $vol, $w) = @_; |
250
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
# Range always pay out at end |
252
|
6
|
|
|
|
|
14
|
$w = 1; |
253
|
|
|
|
|
|
|
|
254
|
6
|
|
|
|
|
22
|
return -1 * upordown($S, $U, $D, $t, $r_q, $mu, $vol, $w); |
255
|
|
|
|
|
|
|
} |
256
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
1; |
258
|
|
|
|
|
|
|
|